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We present a model-independent method of dealing with fermion flavor mixing in the case when instead

of constant, momentum-independent mass matrices one has rather momentum-dependent self-energies.

This situation is typical for strongly coupled models of dynamical fermion mass generation. We

demonstrate our approach on the example of quark mixing. We show that quark self-energies with a

generic momentum dependence lead to an effective Cabibbo–Kobayashi–Maskawa matrix, which turns

out to be in general nonunitary, in accordance with previous claims of other authors, and to nontrivial

flavor changing electromagnetic and neutral currents. We also discuss some conceptual consequences of

the momentum-dependent self-energies and show that in such a case the interaction basis and the mass

basis are not related by a unitary transformation. In fact, we argue that the latter is merely an effective

concept, in a specified sense. While focusing mainly on the fermionic self-energies, we also study the

effects of momentum-dependent radiative corrections to the gauge bosons and to the proper vertices. Our

approach is based on an application of the Lehmann–Symanzik–Zimmermann reduction formula and for

the special case of constant self-energies it gives the same results as the standard approach based on the

diagonalization of mass matrices.
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I. INTRODUCTION

Flavor physics deals with two main issues: First, with
the mass spectrum of leptons and quarks and second, with
the coupling of leptons and quarks with different masses to
one another. The latter is what we call the flavor mixing.
Both issues are difficult and so far no viable explanation of
their origin is known. At best, we can parametrize them by
means of effective Lagrangians, valid below some energy
scale. The most prominent example of these Lagrangians is
that of the standard model of electroweak interactions
(SM) [1–3], chiefly due to its remarkable phenomenologi-
cal success (we neglect here the issue of neutrino masses
and related mixing in the lepton sector).

The SM is an SUð2ÞL �Uð1ÞY gauge invariant theory
equipped with the electroweak symmetry breaking
(EWSB) sector consisting of the scalar Higgs doublet,
coupled via Yukawa interactions to chiral fermions. The
electroweak symmetry breakdown is driven by nontrivial
vacuum expectation value (VEV) of the Higgs field, which
develops due to the appropriately chosen Higgs potential.
This VEV together with the Yukawa interactions give rise
to fermionic mass matrices in the Lagrangian (this is what
we will call the Higgs mechanism throughout the paper).
Diagonalizing these mass matrices by the biunitary trans-
formation and appropriately rotating the fermionic fields
from the interaction basis to the mass basis, one arrives
readily at the fermion flavor mixing in the charged current
sector, expressed by the unitary Cabibbo–Kobayashi–
Maskawa (CKM) [4,5] matrix.

Despite its phenomenological success, however, the SM
suffers from various theoretical or conceptual problems.
First of all, as mentioned above, it merely parametrizes the
fermions masses and mixings (by the Yukawa couplings)
instead of explaining them. More serious flaws, however,
are connected with the EWSB sector, which is not only
unmeasured so far, but it also has some serious theoretical
drawbacks (especially the hierarchy problem), leading to
the general opinion that the SM is only as an effective
theory.
Thus, there are naturally many models on the market

which go beyond the SM and try to cure (some of) its
problems, connected with the mechanism of the EWSB
and with the flavor physics. First of all, there are models
based, unlike the SM, on some nonminimal realization of
the Higgs mechanism, in the sense that they consider other
scalar content than only one doublet. One can consider two
scalar doublets, resulting in the two Higgs doublet model
(2HDM) [6] or (with additional ingredients) the minimal
supersymmetric standard model (MSSM) [7–9], one scalar
triplet plus possibly additional scalar multiplets [10–12],
et cetera.
Despite many differences, all these models have in

common that they treat the flavor issues exactly in the
same manner as the SM. In particular, they rely on the
existence of mass matrices, generated by the Higgs mecha-
nism, and consequently yield the same flavor mixing pat-
tern (i.e., the unitary mixing matrix in charged current
sector and no flavor changing electromagnetic and neutral
currents) as the SM, using the procedure sketched above.
However, this simple picture is not the only thinkable

one: The EWSB dynamics can manifest itself in the fer-
mion sector not only by generating fermionic mass matri-*benes@ujf.cas.cz
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ces. There is a plausible possibility that the EWSB dynam-
ics generates symmetry-breaking fermionic propagators,
with one-particle irreducible (1PI) parts (the proper self-
energies, sometimes also referred to as the ‘‘dynamical
masses’’) given by flavor matrices with generic momentum
dependence. (Note that this situation in fact contains the
special case of mass matrices, stemming, e.g., from the
Higgs mechanism.)

This happens particularly in models of dynamical
EWSB, in which the electroweak symmetry is broken
down nonperturbatively by some postulated strong dynam-
ics. This is typically accompanied by generation of the
symmetry-breaking self-energies with nontrivial momen-
tum dependence. This phenomenon is often called the
dynamical (fermion) mass generation, since it allows to
reveal the fermion masses from the dynamically generated
self-energies simply by looking for the poles of the corre-
sponding full propagators. (Note, however, that in most
such models the very calculation of the momentum-
dependent self-energies is a difficult task. Therefore, in
reality, the self-energies are often on the basis of various
arguments taken as constant, momentum-independent and
accordingly regarded as the usual mass matrices.)

It must be stressed that, apart from the fermionic two-
point functions, the radiatively induced momentum depen-
dencies of other Green’s functions are in principle of equal
importance. In weakly coupled theories these radiative
corrections can be easily (at least in principle) calculated
by methods of the usual perturbation theory (once the
scalars develop their symmetry-breaking VEVs).
However, in strongly coupled theories this is no longer
possible, since the perturbation theory does not work.

The situation is also complicated by genuine nonpertur-
bative effect, characteristic for strongly coupled theories—
possible formation of bound states. Their omission in the
internal lines of Feynman diagrams can lead to wrong
results [13]. In order to incorporate the bound states into
the calculations of Feynman diagrams, one has to know not
only their spectrum (which itself is difficult to find), but
also their effective couplings to the other (both elementary
and composite) excitations of the theory. This can be
achieved by solving Bethe–Salpeter (BS) equations
[14,15].

In the presence of SSB, however, there is a special
subclass of the bound states, whose treatment is somewhat
easier: the Nambu–Goldstone (NG) bosons. First, their
spectrum is known by the existence Goldstone theorem.
Second, some of their (momentum-dependent) effective
couplings can be relatively easily determined using the
Ward–Takahashi identities [16]. These effective vertices
can be in this way calculated actually only for small
momenta carried by the NG boson, but this is in fact
sufficient for calculating the masses of the corresponding
gauge bosons, to whose polarization tensors they contrib-
ute (Fig. 1).

The most popular class of the models of dynamical
EWSB are undoubtedly the extended technicolor (ETC)
[17,18] or walking technicolor (WTC) [19,20] models.
Roughly speaking, the EWSB is achieved in these models
by new gauge (‘‘technicolor’’) interactions with suitable
dynamical properties (QCD-like or ‘‘walking,’’ respec-
tively). The corrections to the SM fermions’ propagators
are induced by couplings to some new postulated fermions
(‘‘technifermions’’), mediated by the technicolor
interactions.
Not only gauge dynamics can be responsible for the

EWSB, however. Recently it was shown [21,22] that the
electroweak symmetry can be broken nonperturbatively
also by sufficiently strong Yukawa interactions. The key
feature of these models is that, unlike in the Higgs mecha-
nism, the electroweak symmetry is not broken by VEVs
(i.e., by one-point functions) of the scalar fields, but rather
by appropriate scalar ‘‘anomalous’’ propagators (i.e., the
symmetry-breaking two-point functions). These anoma-
lous propagators are computed self-consistently by means
of the Schwinger-Dyson equations. Since the relevant dy-
namics is here that of Yukawa, this self-consistent treat-
ment leads also naturally to generation of the symmetry-
breaking parts, the self-energies, of the fermions. In fact,
the present paper was primarily inspired by this class of
models. However, there are also other papers in which
strong Yukawa dynamics is employed in order to trigger
the EWSB, e.g., [23,24].
Although we will deal in this paper almost exclusively

with fermionic self-energies, let us, as a final example
illustrating the importance of the notion of self-energies,
mention the quasidegenerate binary systems of neutral
mesons. It was argued [25] that the standard treatment of
such systems using the familiar formalism of mass matri-
ces is inappropriate, especially when one deals with dis-
crete symmetries like C, P, T and their combinations.
Instead, it was proposed to consider the appropriate matrix
(2� 2) self-energies.
Noting that the concept of self-energies is crucial in a

variety of models of dynamical EWSB, there is a natural
question how to extract from these models the information

FIG. 1. A composite Nambu–Goldstone (NG) boson (double
line) contribution to the gauge boson polarization tensor���ðqÞ.
As a fermionic composite (in this example; in principle there
could be scalars as well), the NG boson couples to the fermions
via momentum-dependent effective vertices (the black dots),
which in turn provides an effective bilinear coupling of the
NG boson to the gauge boson. The NG boson propagator thus
provides the pole of the type 1=q2 in the polarization tensor,
necessary for giving mass to the gauge boson [16].
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about their flavor structure. The standard method of diago-
nalizing the mass matrices is clearly no longer applicable,
since the self-energies cannot constitute mass matrices in
any local Lagrangian due to their momentum dependence.
While it is still easy to obtain the spectrum simply by
looking for the poles of the full propagators, it is not
immediately clear how to deal with the flavor mixing.

This question was addressed in Refs. [25–28], although
in a slightly different context. The authors of Refs. [25,28]
considered one-loop perturbative corrections to the quark
propagators within the SM. However, they did not calcu-
late these corrections explicitly, but rather assumed the
resulting (finite) self-energies to be general functions of
momentum. This allows to generalize their results also to
nonperturbatively generated self-energies. They realized
that in each fixed momentum the self-energy can constitute
an approximate mass matrix. If one chooses the momen-
tum to be one of the pole values of the full propagator, then
one of the eigenvalues of the resulting mass matrix is the
physical pole mass and consequently the corresponding
effective Lagrangian describes one physical state plus a
number of spurious states. In this way one can construct a
whole series of effective Lagrangians, which altogether
describe, among a number of spurious states, all the physi-
cal states in the spectrum.

In this paper we address the same question, but follow-
ing a different approach. We avoid completely the use of
the mass matrices, even in an effective or approximate
sense. Instead, we directly compute the observable quan-
tities—the amplitudes of processes involving the fermions
with definite masses (i.e., flavors), obtained as the poles of
the full propagators. Such a calculation can be easily
performed by means of the Lehmann–Symanzik–
Zimmermann (LSZ) reduction formula. In order to make
a connection with the usual language of flavor physics,
especially with the notions like ‘‘mixing matrix’’ or ‘‘mass
basis’’, we construct an effective Lagrangian which repro-
duces some of the amplitudes calculated by the LSZ re-
duction formula. Subsequently, it is possible to identify in
the effective Lagrangian the quantities, which can be natu-
rally interpreted as the effective flavor mixing matrices.

For the purposes of the present paper we restrict our-
selves only to the case of quarks; application of our method
to mixing of leptons, neutral mesons or other systems,
should be straightforward.

Our approach reproduces and confirms the results of
Refs. [25,28], but from a completely different perspective.
This enables us to generalize these results and interpret
them in a more accurate way. In particular, we confirm that
the self-energies with general momentum dependence lead
to the nonunitarity of the flavor mixing matrix in the
charged current sector (i.e., the effective CKM matrix)
and to the flavor changing electromagnetic and neutral
changing currents. However, on top of that, we find out
that the ontological status of the corresponding flavor

mixing matrices is merely an effective one, in the specified
sense. Similarly, we clarify the relation between the inter-
action basis and the mass basis and establish that the latter
is again merely an effective notion.
Finally, in order to avoid potential confusion, it should

be noted that momentum-dependent self-energies arise not
only in strongly coupled theories, as suggested above.
They arise in weakly coupled theories as well due to the
very nature of the quantum field theory, i.e., by means of
the radiative corrections. Since a perturbation theory is
applicable in such a case, the standard techniques of (infi-
nite) perturbative renormalization can be used to handle
the flavor issues. This was done for the SM (in one-loop) by
various authors (see, e.g., Refs. [29–32] and references
therein). Note, however, that we consider in this paper
rather nonperturbative corrections to the quarks propaga-
tors. In this case the usual perturbative renormalization
machinery is inapplicable and another methods must be
used, which is the aim of this paper.
The paper is organized as follows: First we introduce in

Sec. II some formalism concerning the momentum-
dependent fermionic self-energies and diagonalizing the
corresponding full propagators. In Sec. III we state the
basic physical assumptions under which we work in the
subsequent sections. Next, before going to the most general
case of momentum-dependent self-energies, we warm up
in Sec. IV by reminding the familiar case of the constant
self-energies—the mass matrices, known from the SM.
The core of the paper is in Sec. V, where we investigate
the fermion flavor mixing in the case of quark self-energies
with general momentum dependence. We consider in more
detail the charged current sector and derive appropriately
defined effective CKM matrix. As for the electromagnetic
and neutral current sectors, we do not go into a detail, since
the procedure would be much the same as in the charged
current sector. We merely state the results which imply a
general flavor changing quark mixing. Having investigated
the effects of quark self-energies’ momentum dependence,
we redo in Sec. VI the same analysis for other Green’s
function of interest, namely, for the gauge boson polariza-
tion tensors and for the proper vertices of the quarks and
gauge bosons. In Sec. VII we discuss the results obtained in
previous sections. The last Sec. VIII is dedicated to sum-
mary and conclusion.

II. FORMALISM AND PRELIMINARIES

Before making any physics, we find useful to introduce
in this section some notation and formulæ concerning the
fermionic self-energies (and corresponding full propaga-
tors) with general momentum dependence. Since we are
interested in this paper in flavor mixing, we focus on the
case of more fermion flavors, in which case the self-energy
is a matrix in the flavor space and as such it is subject to a
diagonalization.
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Let there be n fermions (flavors) c i, i ¼ 1; . . . ; n, or-
ganized into the n-plet c ¼ ðc 1; . . . ; c nÞT . Then the in-
verse of its full propagator

h0jTc ðxÞ �c ðyÞj0i ¼
Z d4p

ð2�Þ4 iSðpÞe
�ip�ðx�yÞ (1)

in the momentum representation has the most general form

S�1ðpÞ ¼ 6pðAðp2Þ þ �5Bðp2ÞÞ � ðCðp2Þ þ �5Dðp2ÞÞ;
(2)

where A, B, C, D are in principle arbitrary p2-dependent
n� n matrices in the flavor space.

Within the present paper we will not consider the fer-
mionic propagator (2) in the full generality but rather make
two approximations: First, we set Aþ �5B ¼ 1 and cor-
respondingly neglect the wave function renormalization.
This approximation does not have any substantial qualita-
tive influence on our results. In fact, taking the wave
function renormalization into account would only induce
the appearance of various Z-factors in the formulas to
come. These Z-factors would not alter the main message
of the paper and hence we dismiss them for the sake of
clarity.

Second, later on we will be using the LSZ reduction
formula, which in the form, which we will use, holds only
for stable states (i.e., the states which exist as asymptotic
states). Hence, we demand that SðpÞ ¼ �SðpÞ �
�0S

yðpÞ�0, which ensures that the propagator SðpÞ has
poles only at real and positive p2. This assumption is
obviously questionable in the real world, however we
make it, since still we will be able to arrive at some
interesting and plausible results. The effects of finite fer-
mion widths are subject to further research.

As a result of the two approximations, the propagator (2)
can be rewritten in the compact form

S�1ðpÞ ¼ 6p� �̂ðp2Þ; (3)

where we introduced the notation

�̂ðp2Þ � �ðp2ÞPL þ �yðp2ÞPR: (4)

In this expression the� is an arbitrary p2-dependent n� n
matrix [the correspondence with Eq. (2) is given by �y,
� ¼ C�D] and PR;L are the usual chiral projectors

PL ¼ 1� �5

2
; PR ¼ 1þ �5

2
: (5)

It is interesting to see that Eq. (3) can be explicitly inverted
as

SðpÞ ¼ ð6pþ �yðp2ÞÞðp2 ��ðp2Þ�yðp2ÞÞ�1PL

þ ð6pþ�ðp2ÞÞðp2 � �yðp2Þ�ðp2ÞÞ�1PR: (6)

We will not use this expression in the following, we only
note that it is easy to deduce from it the pole equation for
revealing the spectrum, which reads

detðp2 ��ðp2Þ�yðp2ÞÞ ¼ 0: (7)

[Note that this equation is the same for both terms in (6),
since detðp2 � ��yÞ ¼ detðp2 � �y�Þ.]
The next step is the diagonalization of the propagator

SðpÞ. Using the biunitary transformation (which is a spe-
cial case of the more general singular value decomposi-
tion) we can write the matrix � in the form

�ðp2Þ ¼ Uyðp2ÞMðp2ÞVðp2Þ; (8)

where U, V are some unitary matrices andM is a diagonal,
real, non-negative matrix:

Mðp2Þ ¼ diagðM1ðp2Þ;M2ðp2Þ; . . . ;Mnðp2ÞÞ: (9)

It is convenient to introduce unitary matrix

Xðp2Þ � Vyðp2ÞPL þUyðp2ÞPR; (10)

since it allows to write more compact formulas, without the
necessity to use explicitly the chiral projectors PL=R. It can

be used to diagonalize �̂ as

�̂ðp2Þ ¼ �Xyðp2ÞMðp2ÞXyðp2Þ; (11)

where �X � �0X
y�0. Then the propagator SðpÞ can be

diagonalized as

SðpÞ ¼ Xðp2Þ 6pþMðp2Þ
p2 �M2ðp2Þ

�Xðp2Þ: (12)

(This expression is correct, since the matrices in the nomi-
nator and denominator commute with each other, as they
both are flavor diagonal.)
Let us now reveal the spectrum by looking for the poles

of diagonalized propagator SðpÞ. Clearly, the poles can
only be found in the denominator of (12), i.e., by solving
the pole equation

detðp2 �M2ðp2ÞÞ ¼ 0; (13)

which is just a diagonalized form of Eq. (7). This equation
decouples, due to the diagonality of Mðp2Þ, into n partial
pole equations

p2 �M2
i ðp2Þ ¼ 0 ði ¼ 1; . . . ; nÞ: (14)

We will assume in the following that each partial pole
equation (14) has exactly one solution p2 ¼ m2

i , which is
necessarily non-negative due to reality of Mðp2Þ. This
assumption that the full pole equation (13) has as many
poles as there are flavors (actually even stronger assump-
tion, that each partial pole equation (14) has exactly one
solution) is our only constraint on the otherwise arbitrary
self-energy �ðp2Þ and clearly is not crucial. In principle,
nothing protects us from allowing each partial pole equa-
tion (14) to have ni solutions, with ni being arbitrary
natural number (including 0), perhaps constraint only by
some phenomenological requirement on the total number
of the poles

P
n
i¼1 ni. We make this assumption only for the
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sake of simplicity and also in order to make a connection
with the usual case of constant �, in which case the
assumption holds.

In the following sections we will make use of the
asymptotic relations for the propagator SðpÞ with the mo-
mentum going on shell. These relations can be easily
derived under the assumption made in the previous para-
graph and using the diagonal form of the propagator SðpÞ
(12). One gets1:

SðpÞ !
p2!m2

i

UiðpÞ �UiðpÞ
p2 �m2

i

þ regular terms; (15a)

Sð�pÞ !
p2!m2

i

�V iðpÞ �V iðpÞ
p2 �m2

i

þ regular terms; (15b)

where we denoted

UiðpÞ � Xðm2
i ÞeiuiðpÞ; (16a)

V iðpÞ � Xðm2
i ÞeiviðpÞ (16b)

(more on the interpretation of these symbols is discussed
below in the subsection ) and their Dirac conjugate defined

in the usual way as �U ¼ Uy�0,
�V ¼ V y�0. Here ei is

the ith canonical basis vector of n-dimensional flavor
vector space, i.e., with the jth component given by ðeiÞj ¼
�ij. Symbols uiðpÞ, viðpÞ are the standard bispinor solu-

tions to the momentum-space Dirac equation2

ð6p�miÞuiðpÞ ¼ 0; (17a)

ð6pþmiÞviðpÞ ¼ 0: (17b)

Having defined the momentum-dependent matrices
Vðp2Þ, Uðp2Þ [Eq. (8)], it will be useful in the following
to define their momentum-independent counterparts ~V, ~U,
such that their elements on position i, j are defined as

ð ~VÞij ¼ ðVðm2
i ÞÞij; (18a)

ð ~UÞij ¼ ðUðm2
i ÞÞij; (18b)

i.e., explicitly

~V ¼
V11ðm2

1Þ V12ðm2
1Þ � � � V1nðm2

1Þ
V21ðm2

2Þ V22ðm2
2Þ V2nðm2

2Þ
..
. . .

. ..
.

Vn1ðm2
nÞ Vn2ðm2

nÞ � � � Vnnðm2
nÞ

0
BBBB@

1
CCCCA (19)

and similarly for ~U. We can also define the constant matrix

~X as

~X � ~VyPL þ ~UyPR: (20)

Obviously, for constant (momentum-independent)U, V we
have ~V ¼ V, ~U ¼ U and consequently ~X ¼ X. In this case
the matrices ~V, ~U, and ~X are also unitary, which need not
be true in general.

A. Interpretation of the U, V symbols

Let us add a comment on how to interpret the symbols
Ui,V i. Assume in this subsection that the self-energy� is
a constant (i.e., momentum-independent) matrix, i.e., ef-
fectively a mass matrix in the Lagrangian. Then the plane-

wave solutions to the Dirac equation ði6@� �̂Þc ¼ 0 with
positive and negative energy (we assume p0 > 0) read

cþðxÞ ¼ UðpÞe�ip�x; (21a)

c�ðxÞ ¼ V ðpÞeþip�x; (21b)

where the quantities U, V satisfy

ð6p� �̂ÞUðpÞ ¼ 0; (22a)

ð6pþ �̂ÞV ðpÞ ¼ 0: (22b)

Now using �̂ ¼ �XyMXy, with M ¼ diagðm1; . . . ; mnÞ, we
arrive at

UðpÞ ¼ X
i

XeiuiðpÞ �
X
i

UiðpÞ; (23a)

V ðpÞ ¼ X
i

XeiviðpÞ �
X
i

V iðpÞ; (23b)

which (for momentum-independent X) coincides with defi-
nitions (16). Thus, we can understand the symbol UiðpÞ
(V iðpÞ) as the polarization vector of the fermion (antifer-
mion) of ith flavor with mass mi, as a generalization of the
usual polarization vector uiðpÞ (viðpÞ) in the case of mul-
ticomponent fermionic field c .

III. SETTING THE STAGE

Concerning the physical context, we make two principal
assumptions:

A. Symmetric lagrangian

First, we assume that there is an SUð2ÞL �Uð1ÞY invari-
ant Lagrangian Lðu0; d0Þ, containing n generations (fla-
vors) of quark fields, organized in the usual
SUð2ÞL �Uð1ÞY multiplets. We deliberately put the up-
type and down-type quark fields into the flavor n-plets

u0 ¼
u01
u02
..
.

u0n

0
BBBB@

1
CCCCA; d0 ¼

d01
d02
..
.

d0n

0
BBBB@

1
CCCCA; (24)

(we combine here the chiral quark fields as q0 ¼ q0L þ q0R,

1There is no summation over the flavor index i. Any summa-
tions over the flavor indices will be always denoted explicitly
throughout the paper. (Summation convention for other type of
indices, e.g., the Lorentz indices, remains in use.)

2Note that we suppress the polarizations indices in Eqs. (17) as
well as sum over them in Eqs. (15). This suppression will be
carried on systematically throughout the paper, in the case of
fermions as well as in the case of vector bosons.
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q0 ¼ u0, d0). Thus, in essence, Lðu0; d0Þ is (up to the
absence of leptons) nothing else than the usual SM
Lagrangian without neither the Higgs sector nor any other
EWSB sector. In particular, it contains (apart from the
gauge self-couplings) only the gauge interactions of
charged, neutral, and electromagnetic currents, which we
state here for the sake of later references:

Lccðu0; d0Þ ¼ gffiffiffi
2

p �u0��PLd
0Wy

� þH:c:; (25a)

Lncðu0; d0Þ ¼ g

2cos�W

X
q0¼u0;d0

�q0��ðvq � aq�5Þq0Z�; (25b)

Lemðu0; d0Þ ¼
X

q0¼u0;d0
eQq �q

0��q0A�: (25c)

We use the standard notation

vq ¼ T3
q � 2Qqsin

2�W; (26a)

aq ¼ T3
q; (26b)

where T3
q is the third component of the weak isospin and

Qq is the electric charge of the corresponding quark fields,

i.e.,

T3
u ¼ þ1

2; Qu ¼ þ2
3; (27a)

T3
d ¼ �1

2; Qd ¼ �1
3: (27b)

According to the common convention in the literature, we
will sometimes refer to the fields u0, d0 as the (weak)
interaction basis, since the interaction Lagrangian (25)
written in their terms is flavor-diagonal.

A remark concerning the denotation of the interaction
basis is in order here. The primes at (24) indicate that the
fields in question do not correspond at this stage to the
physical (massive) quarks. Later on we will (in various
contexts) introduce unprimed quark fields u, d, corre-
sponding directly to the massive quarks and hence referred
to as the mass basis. On the other hand, since the massive-
ness of gauge bosons is not of our primary interest, we will
not be so careful in distinguishing the massless and mas-
sive gauge bosons (and the corresponding operators). We
will denote them all by the same symbolW�, Z, the actual
meaning of which should be always clear from the context.

The leptons could be introduced as well. It would be
interesting especially upon considering the massive neu-
trinos, since then there are richer possibilities concerning
the structure of their self-energy, due to the possibility of
neutrinos beingMajorana particles. However, this richness,
as compared to the case of quarks, might obscure the idea
we want to explain and that is why we restrict our dis-
cussion only to the quarks. Possible application to the
leptons should be straightforward, although more tedious.

B. Symmetry-breaking dynamics

Second, we assume that there is some EWSB dynamics
beyond Lðu0; d0Þ, which breaks the SUð2ÞL �Uð1ÞY sym-

metry down to Uð1Þem. This is manifested by generation of
symmetry-breaking corrections to various Green’s func-
tions, in particular, to the quark and gauge boson propa-
gators and to their vertices.
The point is that in order to keep our analysis as general

as possible, we do not specify this model-dependent dy-
namics in detail. The best what can be done in this situation
with a lack of knowledge about the dynamics is merely to
parametrize somehow the effects of the dynamics on the
Green’s functions of interest. Thus, we will consider the
radiative corrections as the most general functions of in-
volved momenta, consistent with Lorentz symmetry.
If the dynamics in question is strong, the formation of

bound states is to be expected. Again, without knowing the
precise details of given theory their treatment is rather
difficult. Among various models there are substantial dif-
ferences not only in the dynamics of the elementary con-
stituents of the bound states, but also in the very spectrum
of the elementary constituents. For example, in technicolor
theories the NG bosons are composite fields made of
fermions. On the other hand, there are models (e.g., [21–
24]) with dynamical EWSB, in which the NG bosons are
bound states of not only fermions, but also of some ele-
mentary scalars. All these differences clearly affect the
Bethe–Salpeter-based treatment of the bound states.
For these reasons we will not consider explicitly the

effective couplings of bounds states. Although they could
be treated (i.e., parametrized) in a similar way as the
vertices of quarks and gauge bosons, we will not do it,
since we actually do not need it. That is because we will
never need to consider on-shell bound states (i.e., as exter-
nal legs in Feynman diagrams). Nevertheless, the bound
states will be included in our analysis implicitly, through
their contributions to the radiative corrections mentioned
above.
The radiative corrections to the quark propagators are

assumed to be of the form considered in Sec. II. Thus,
without going into detail, we only state here, for the
purpose of later references, the resulting EWSB quark
propagators SuðpÞ ¼ hu0 �u0i, SdðpÞ ¼ hd0 �d0i:

S�1
u ðpÞ ¼ 6p� ð�uðp2ÞPL þ �y

u ðp2ÞPRÞ; (28a)

S�1
d ðpÞ ¼ 6p� ð�dðp2ÞPL þ �y

d ðp2ÞPRÞ: (28b)

Recall that the matrices �uðp2Þ, �dðp2Þ are arbitrary
complex n� n matrices, eventually constrained only by
the requirement that the corresponding full propagators
SuðpÞ, SdðpÞ have exactly n poles (for details cf. Sec. II).
These poles determine the mass spectrum of the theory. We
will denote the corresponding states (i.e., the physical
massive quarks, sometimes in this paper also referred to
as themass eigenstates) as ui, di, i ¼ 1; . . . ; n, with masses
mui andmdi . If we order these states by size of their masses,

this denotation is (for n ¼ 3) just another name for the
usual up (u1), charm (u2), top (u3) and down (d1), strange
(d2), bottom (d3) quarks.
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From other Green’s functions wewill be interested in the
gauge boson propagators and in the vertices connecting the
quarks and the gauge bosons. However, their momentum-
dependence will be considered only in Sec. VI. In the
following we restrict ourselves, for the sake of clarity,
only to free (massive for W�, Z and massless for photon)
vector boson propagators and to bare vertices (stemming
from the interaction Lagrangian).

Note that our assumption about the existence of an
EWSB sector beyondLðu0; d0Þ is quite general in the sense
that is contains a wide class of models of EWSB. In
particular, it contains, as a special case, models based on
some realization of the Higgs mechanism, with constant
self-energies interpreted as mass matrices. However, the
class of models which we will have primarily in mind
throughout the paper are the models of dynamical mass
generation with nontrivial momentum dependence of the
corresponding self-energies (cf. Sec. I).

In the following we will refer to the objects of the two
assumptions stated in the previous two subsections, i.e., to
the symmetry-conserving Lagrangian Lðu0; d0Þ and to the
symmetry-breaking full propagators SuðpÞ ¼ hu0 �u0i and
SdðpÞ ¼ hd0 �d0i, collectively as the exact theory.3 This is
in order to distinguish it from the effective theory, to be
introduced later.

IV. STANDARD MODEL

Before investigating the general case of momentum-
dependent self-energies in the next chapter, we revise in
this short chapter how the fermion flavor mixing is treated
in the special case of constant self-energies. In other words,
we review here the SM; thus, this chapter can be omitted at
first reading. Nevertheless, we present it here, in order to
establish some notation and to make the paper self-
contained. The primary reason is, however, that the SM
provides a natural reference point when discussing in the
next chapter some novel consequences stemming from
self-energies’ momentum dependence.

In the case of constant self-energies the general discus-
sion of diagonalization of fermionic propagators in Sec. II
still applies, the only difference is that all the matrices U,
V,X,M,� are nowmomentum independent. What is novel
in this situation, however, is that the self-energy � can be
now regarded as a mass matrix sitting in the Lagrangian. In
other words, the EWSB sector now generates directly mass
terms in the Lagrangian. This is precisely how the Higgs
mechanism works.

Hence, interpreting the self-energies as mass matrices,
we can join the two basic components of the exact theory,
the self-energies �u, �d, defining the spectrum of the

theory, and the Lagrangian Lðu0; d0Þ, defining structure of
its interactions, into the single Lagrangian

L SMðu0; d0Þ � Lðu0; d0Þ � �u0�̂uu
0 � �d0�̂dd

0 (29)

(plus the suppressed gauge bosons mass terms), which now
describes massive particle spectrum [for the definition of

�̂q, q ¼ u, d, see Eq. (4)]. It is identical to the Lagrangian

of the SM (up to the Higgs boson interactions), hence the
subscript. The whole discussion of the diagonalization of
the propagators in Sec. II still applies, but now it can be
interpreted also as the mass diagonalization of the
Lagrangian. Using the definition of the matrix X (now
momentum-independent) from the Sec. II, we can define
new fields

u ¼ Xy
uu0; d ¼ Xy

dd
0; (30)

so that the Lagrangian (29) expressed now in their terms is
mass diagonal. I.e., the fields u, d have now straightfor-
ward interpretation as fields that create the states with
definite mass from the vacuum and we are allowed to
call them the mass basis.4

As for the applying the redefinitions (30) to the rest of
the Lagrangian (29) (i.e., to the Lagrangian Lðu0; d0Þ), we
first note that the fermionic kinetic terms remain un-
touched, due to the unitarity of the matrices Xu, Xd.
Second, upon redefining the fermionic fields also in the
gauge interactions sector (25), we arrive at

LSM;ccðu; dÞ ¼ gffiffiffi
2

p �u��PLVCKMdW
y
� þ H:c:; (31a)

LSM;ncðu; dÞ ¼ g

2 cos�W

X
q¼u;d

�q��ðvq � aq�5ÞqZ�; (31b)

LSM;emðu; dÞ ¼
X

q¼u;d

eQq �q�
�qA�: (31c)

We see that in contrast to the Lagrangian (25), the charged
current interactions are no longer flavordiagonal, but rather
exhibit the flavor mixing parametrized by the celebrated
Cabibbo-Kobayashi-Maskawa (CKM) matrix [4,5], which
is expressed in terms of the matrices Vu, Vd as

VCKM � VuV
y
d : (32)

Note that VCKM is unitary due to the unitarity of matrices
Vu, Vd. On the other hand, the electromagnetic and neutral
current interactions remain flavor diagonal, which is again
a consequence of the unitarity of the matrices Xu, Xd.
The simplest physical process in which the effect of the

CKM matrix takes place is the decay Wþ ! ui þ �dj. Let

us now calculate for the sake of later references its
S-matrix element

3We do not refer to it as the full theory in order to minimize the
risk of confusion, since the latter term would be more appro-
priate for something else: For the exact theory plus the full
dynamics, which generates the full propagators.

4Note that we use the same denotation u, d for the particles
and for their operators.
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Sfi ¼ hui; �djjSjWþi (33a)

¼ �fi þ ð2�Þ4�4ðpþ k� qÞiMfi (33b)

(we assign the external momenta as WþðqÞ ! uiðpÞ þ
�djðkÞ). In the lowest order in the gauge coupling constant

g we have immediately

M ðSMÞ
fi ¼ gffiffiffi

2
p �uuiðpÞ��PLðVCKMÞijvdjðkÞ"�ðqÞ: (34)

We have added the superscript ðSMÞ in order to indicate that
the matrix element (34) was calculated within the SM
interaction Lagrangian (31) and in order to distinguish it
from another independent calculation of the same quantity
(33) carried out in the subsequent section.

V. MOMENTUM-DEPENDENT SELF-ENERGIES

Let us now relax the requirement of the self-energies’
momentum-independence and allow them to depend on
momentum in a general way. In this situation the self-
energies cannot be any longer interpreted as mass matrices
and there is no obvious way how to reexpress the exact
theory by a Lagrangian, which would be unique, local,
renormalizable, and equivalent to the exact theory in the
sense that it would contain the same amount of physical
information as the original exact theory. However, we will
show that if one releases the requirement of the full
equivalence to the exact theory (as discussed in more detail
in Sec. VII), it is possible to construct an effective
Lagrangian, which mimics some aspects of the exact
theory.

The crucial observation is that although we do not have
the exact theory expressed only by a single Lagrangian of
the type Lðu; dÞ, with u, d being the mass eigenstates’
operators (like in the previous section), but rather repre-
sented by the Lagrangian Lðu0; d0Þ plus the full propaga-
tors SuðpÞ ¼ hu0 �u0i and SdðpÞ ¼ hd0 �d0i, it is still possible to
calculate the amplitudes of the processes involving the
mass eigenstates u, d. This is allowed by the LSZ reduction
formula [33], which states that the amplitude of a given
process involving the mass eigenstates u, d can be calcu-
lated (up to the polarization vectors and possible sign due
to the fermionic nature of involved particles) as a residue of
the appropriate (momentum space) connected Green’s
function for the external momenta going on their mass-
shell. The point is that the Green’s function need not be
calculated in terms of eventual operators u, d of the mass
eigenstates, but rather in terms of the original interaction
basis operators u0, d0, which have no direct connection to
the mass eigenstates. Note that the Green’s functions are
easily calculated in the exact theory: One can apply the
usual perturbation theory given by the Lagrangian
Lðu0; d0Þ, with the additional Feynman rule that the fermi-
onic lines (propagators) in the diagrams are not the bare
ones, determined by the free part of Lðu0; d0Þ, but rather
those that are symmetry breaking defined by Eqs. (28).

The possibility of calculating processes involving the
mass eigenstates, as sketched in the previous paragraph,
opens the way to investigating the fermion flavor mixing in
the case of momentum-dependent self-energies. We ex-
plain it in more detail in the following subsection on the
example of flavor mixing in the charged current sector.
Next, in the subsequent subsection, we state (without de-
tailed derivation) the analogous results for the electromag-
netic and neutral current sectors. The detailed discussion of
the obtained results is postponed to Sec. VII.

A. Charged current interactions

The idea is simple and can be roughly stated as follows:
First, we calculate (using the approach described above)
the S-matrix element for the process Wþ ! ui þ �dj in the

lowest order in the gauge coupling constant. Second, we
demand that the obtained S-matrix element has the same
form as the one calculated within the SM (Sec. IV) and
define this way the effective CKM matrix. This effective
CKM matrix is eventually interpreted to be a part of the
effective Lagrangian of the SM form (31).
Let us work out the idea in detail. Consider the con-

nected Green’s function hu0 �d0Wþ
� i and define its Fourier

transform iGþ
�ðp; k; qÞ asZ

d4xd4yd4zeip�xeik�ye�iq�zh0jTu0ðxÞ �d0ðyÞWþ
� ðzÞj0i

¼ ð2�Þ4�4ðpþ k� qÞiGþ
�ðp; k; qÞ: (35)

For the assignment of the momenta see Fig. 2. Recall that a
connected Green’s function is generally calculated as a
proper (1PI) Green’s function with full propagators at the
external lines:

iGþ
�ðp; k; qÞ ¼ iSuðpÞi�þ

� ðp;�kÞiSdð�kÞiD�
�ðqÞ: (36)

For the external fermionic lines we consider the full
propagators SuðpÞ, SdðpÞ, as defined by Eqs. (28). The
W� propagator D��ðqÞ is taken at this moment to be just

the bare propagator of a massive vector field with hard
mass MW . Similarly, the proper vertex �þ

�ðp;�kÞ is taken
to be the tree one, determined by the charged current
Lagrangian Lccðu0; d0Þ, (25a), i.e.,

�þ
�ðp;�kÞ ¼ gffiffiffi

2
p ��PL: (37)

(A momentum dependence of gauge boson propagator and
the vertex will be discussed in Sec. VI.) Thus, we have at
the leading order in the gauge coupling constant g imme-
diately

iGþ
�ðp; k; qÞ ¼ iSuðpÞi gffiffiffi

2
p ��PLiSdð�kÞiD��ðqÞ: (38)

We are now ready to apply the LSZ reduction formula.
Recall that upon taking the limit p2 ! m2

ui , k
2 ! m2

dj
,

q2 ! M2
W in the Green’s function iGþ

�ðp; k; qÞ, the residue
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of the leading divergent term (i.e., the one with the triple
pole) is (up to polarization vectors and a sign) the desired
matrix element Mfi of the process Wþ ! ui þ �dj
[cf. Eq. (33)]. Taking into account the explicit form (38)
of iGþ

�ðp; k; qÞ and applying the asymptotic formulas (15)

for the fermionic propagators SuðpÞ, SdðpÞ, we arrive
straightforwardly at the result

iGþ
�ðp; k; qÞ !

p2!m2
ui

k2!m2
dj

q2!M2
W

� iUuiðpÞ
p2 �m2

ui

i �V djðkÞ
k2 �m2

dj

i"��ðqÞ
q2 �M2

W

iMfi

þ . . . ; (39)

where the ellipsis represents less divergent terms (i.e., the
terms with double and single poles and regular terms). The
matrix element Mfi in (39) comes out as

M fi ¼ gffiffiffi
2

p �uuiðpÞð ~Vu
~Vy
d Þij��PLvdjðkÞ"�ðqÞ: (40)

For the definition of the matrices ~Vu, ~Vd see Sec. II,
Eq. (18).

We are now going to compare the matrix element Mfi

with the matrix element MðSMÞ
fi [Eq. (34)], calculated

within the SM for the same process Wþ ! ui þ �dj and

in the same (lowest) order in the gauge coupling constant.
Demanding that both matrix elements have the same form,
we conclude that the effective CKM matrix is given by

VðeffÞ
CKM ¼ ~Vu

~Vy
d : (41)

(We discuss the precise meaning of the adjective ‘‘effec-
tive’’ in Sec. VII.) This effective CKM matrix has the
striking feature of being in general nonunitary, in contrast
to the CKM matrix (32) in the SM. This is due to nonun-
itarity of the matrices ~Vu, ~Vd. Note, however, that unitarity

of VðeffÞ
CKM is restored in the special case of constant self-

energies �u,�d. This is not surprising, since in such a case
the exact theory is actually identical to the SM (Sec. IV)

and both expressions for the CKM matrix (32) and (41)
coincide.
Let us now proceed to the definition of the effective

Lagrangian. The CKMmatrix in the SM occurs not only in
the matrix elements of the type (34) (in the sameway as our
effective CKM matrix does), but it also lives in the
charged-current Lagrangian (31a), written in terms of the
mass-diagonalized quark fields u, d. The natural question
arises whether and to what extent it is analogously possible
to replace the exact theory by a Lagrangian written in terms
of the fields u, d, which incorporates in a natural way the
effective CKMmatrix obtained above. The answer is that it
is possible merely in an effective sense to be specified
below.
Let us define the effective Lagrangian Leffðu; dÞ: We

postulate the operators u, d in such a way that they are
operators of the massive states of the exact theory. More
precisely, Leffðu; dÞ contains, apart from the fermionic
kinetic terms, the mass Lagrangian Leff;massðu; dÞ of the

form

L eff;massðu; dÞ ¼ � �uMuu� �dMdd: (42)

Here the mass matrices Mu, Md [not to be confused with
also diagonal, but momentum-dependent matricesMuðp2Þ,
Mdðp2Þ, Eq. (9)] are given by

Mu ¼ diagðmu1 ; mu2 ; . . . ; munÞ; (43a)

Md ¼ diagðmd1 ; md2 ; . . . ; mdnÞ; (43b)

with the entries determined by the poles of the full propa-
gators SuðpÞ, SdðpÞ. Let the effective LagrangianLeffðu; dÞ
contain also the kinetic terms of the gauge bosonsW�, Z, �
and the corresponding mass terms. Since Leffðu; dÞ is
written in terms of massive fields, it has potential to
describe processes like Wþ ! ui þ �dj directly, without

employing the LSZ reduction formula. Indeed, postulating
that Leffðu; dÞ contains the SM-like charged current inter-
actions of the form

L eff;ccðu; dÞ ¼ gffiffiffi
2

p �u��PL
~Vu

~Vy
ddW

y
� þ H:c:; (44)

it is straightforward to see that this leads to same matrix
element (40) as the exact theory. As expected, comparing
this effective charged current interaction Lagrangian with
that of the SM (31a), we are again lead to the definition of
the effective CKM matrix (41).
Let us finally comment on why we have considered for

defining the effective CKM matrix just the process Wþ !
ui þ �dj and not some other. First note that we could have as

well considered any process related to this one by the
crossing symmetry and the result would be the same.
Second, a natural question arises why not define the effec-
tive CKM matrix by some more complicated process, e.g.,
the annihilation process Wþ þW� ! qi þ �qj, q ¼ u, d.

It is, of course, no problem to calculate the matrix element

FIG. 2. The diagrammatical representation and momenta as-
signment of the connected Green’s function iGþ

�ðp; k; qÞ,
Eq. (35). The grey blob denotes its 1PI part, i�þ

�ðp;�kÞ, while
the dark blobs represent the full propagators. (Notice the arrows
on the boson line: We conventionally define the Wþ as an
antiparticle.)
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for this process in the same way we did for the decay
process above. However, it turns out to be difficult to
parameterize the resulting matrix element by a constant
effective CKM matrix so that the matrix element had the
same form as if it was calculated within the SM.
Technically, one would have to solve the equations

~VuV
y
d ðq21Þðq21 �M2

dðq21ÞÞ�1Vdðq21Þ ~Vy
u ¼ VCKMðq21 �M2

dÞ�1

� Vy
CKM; (45a)

~VdV
y
u ðq22Þðq22 �M2

uðq22ÞÞ�1Vuðq22Þ ~Vy
d ¼ Vy

CKMðq22 �M2
uÞ�1

� VCKM: (45b)

Note that in these equations one seeks for a momentum-
independent VCKM (but, again, not necessarily unitary),
which solves these equations for all momenta q1, q2.
This task turns out to be difficult.

B. Electromagnetic and neutral current interactions

In the same way as we probed in the previous subsection
the charged current sector, it is possible to investigate the
flavor mixing also in the electromagnetic and neutral cur-
rent sectors. Since the procedure is technically completely
analogous, we merely state the result. Considering the
decay processes Z ! qi þ �qj and � ! qi þ �qj, q ¼ u, d,

we arrive at the corresponding effective interaction
Lagrangians (to be part of Leffðu; dÞ)

Leff;ncðu; dÞ ¼ g

2 cos�W

X
q¼u;d

�q��½ðvq þ aqÞ ~Vq
~Vy
qPL

þ ðvq � aqÞ ~Uq
~Uy
qPR�qZ�; (46a)

Leff;emðu; dÞ ¼
X

q¼u;d

eQq �q�
�ð ~Vq

~Vy
qPL þ ~Uq

~Uy
qPRÞqA�:

(46b)

We see that, in contrast to their SM counterparts (31b) and
(31c), these effective Lagrangians exhibit nontrivial flavor
mixing. However, as expected, they reduce to those (31b)
and (31c) of the SM with no flavor mixing in the special
case of constant self-energies, since then the matrices ~Vq,
~Uq are unitary.

VI. OTHER SOURCES OF MOMENTUM
DEPENDENCE

In this section we investigate the effects of momentum
dependence of the proper vertices and the gauge boson
polarization tensors (both of which are depicted in Fig. 2).
This is technically very similar to what was done in Sec. V
with fermionic self-energies, so we will be brief. In the
following two subsections we perform the analysis sepa-
rately first for the gauge boson polarization tensors and
then for the gauge boson proper vertices with quarks.

A. Gauge boson polarization tensors

Momentum dependence of the polarization tensors can
induce a mixing among the gauge bosons, much like in the
case of quarks. This can of course happen only between the
two electrically neutral gauge bosons � and Z, therefore we
will not concern ourselves with the W� bosons here. The
treatment of gauge boson mixing is technically similar to
that in the fermion sector, so we are not going into a big
detail.
Since � and Z can mix, it is convenient to consider two-

component field V� � ð��; Z�ÞT , because the form factor

�ðq2Þ from its (necessarily transverse) polarization tensor
���ðqÞ ¼ ðq2g�� � q�q�Þ�ðq2Þ is in general a nondiag-

onal 2� 2 matrix. Assuming the matrix �ðq2Þ to be
symmetric, we can diagonalize it via an orthogonal trans-
formation �ðq2Þ ¼ OTðq2Þ�Dðq2ÞOðq2Þ. Here the matrix
�Dðq2Þ ¼ diagð�D1ðq2Þ;�D2ðq2ÞÞ is diagonal, while the
matrix Oðq2Þ is orthogonal and we parametrize it as

Oðq2Þ ¼ cos�ðq2Þ sin�ðq2Þ
� sin�ðq2Þ cos�ðq2Þ

� �
: (47)

The relevant part of the full propagator of V� is propor-

tional to ½q2 � q2�ðq2Þ��1, which is thus diagonalized as
½q2 � q2�ðq2Þ��1 ¼ OTðq2Þ½q2 � q2�Dðq2Þ��1Oðq2Þ.
We assume that the first pole equation q2 � q2�D1ðq2Þ ¼
0 has the only solution q2 ¼ 0, which corresponds to the
massless photon. For the second pole equation q2 �
q2�D2ðq2Þ ¼ 0 we assume the solution q2 ¼ M2

Z.
Invoking the same method utilizing the LSZ reduction

formula as before, the amplitudes of the two desired pro-
cesses Z=� ! qi þ �qj, q ¼ u, d, can be extracted from

same momentum-space Green’s function hV�q �qi by taking
the momentum carried by V� to q2 ¼ 0 or q2 ¼ M2

Z,

respectively. The resulting effective couplings of quarks
to the photon and Z are most compactly written as

Leff;ncþemðu;dÞ¼
X

q¼u;d

�
g

2cos�W
�q��½ðvqþaqÞ ~Vq

~Vy
qPL

þðvq�aqÞ ~Uq
~Uy
qPR�q½sin�ð0ÞA�

þcos�ðM2
ZÞZ��þeQq �q�

�ð ~Vq
~Vy
qPL

þ ~Uq
~Uy
qPRÞq½cos�ð0ÞA��sin�ðM2

ZÞZ��
�
:

(48)

Note that this is a generalization of the previous result (46),
which can be obtained from (48) as a special case of no
gauge boson mixing (i.e., when �ðq2Þ ¼ 0 for all q2).

B. Proper vertex

In Sec. VA while calculating the amplitude of the pro-
cess Wþ ! ui þ �dj we approximated the proper vertex

�þ
�ðp;�kÞ as the bare one (37), which, in particular, means

momentum-independent. Now we redo the calculation
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with including the most general momentum dependence of
the vertex.

The most general form of �þ
�ðp;�kÞ can be parameter-

ized, e.g., as follows:

�þ
�ðp;�kÞ ¼ A�ðp; kÞ þ p�Bðp; kÞ � k�Cðp; kÞ; (49)

where

A�ðp; kÞ ¼ ��A1 þ 6p��A2 � ��A36k� 6p��A46k; (50a)

Bðp; kÞ ¼ B1 þ 6pB2 � B3 6k� 6pB46k; (50b)

Cðp; kÞ ¼ C1 þ 6pC2 � C36k� 6pC46k: (50c)

Here the form factors Ai, Bi, Ci, i ¼ 1, 2, 3, 4 are n� n
matrices in the flavor space and, except from being some
linear combinations of 1 and �5 (or equivalently PL, PR),
they do not contain any �-matrices. Thus, they can depend
only on three independent Lorentz-invariant combinations
of the two independent momenta p, k, which can be chosen
conveniently as p2, k2 and q2 ¼ ðpþ kÞ2. We do not
indicate this dependence explicitly.

For the notational purposes it is convenient to introduce

now the x, y-dependent matrices ~A�ðx; yÞ, ~Bðx; yÞ, ~Cðx; yÞ,
with matrix elements given by

~A�
ijðx; yÞ ¼ ½ �Xu�

�A1Xd þ xXy
u��A2Xd

þ �Xu�
�A3

�Xy
dyþ xXy

u��A4
�Xy
dy�ij; (51a)

~Bijðx; yÞ ¼ ½ �XuB1Xd þ xXy
uB2Xd þ �XuB3

�Xy
dy

þ xXy
uB4

�Xy
dy�ij; (51b)

~Cijðx; yÞ ¼ ½ �XuC1Xd þ xXy
uC2Xd þ �XuC3

�Xy
dy

þ xXy
uC4

�Xy
dy�ij: (51c)

These quantities are momentum independent, since the
momenta in form factors Ai, Bi, Ci are evaluated at p2 ¼
m2

ui , k
2 ¼ m2

dj
and q2 ¼ M2

W and similarly the matrices Xu,

Xd, introduced in Sec. II, Eq. (20), are evaluated at p2 ¼
m2

ui , k
2 ¼ m2

dj
, respectively. The symbols x, y are quite

general, they can stand for a number, for a matrix or even
for a differential operator.

Using the same approach based on the LSZ reduction
formula as before, we arrive at the amplitude for the
process Wþ ! ui þ �dj, which can be written with the

help of notation (51) compactly as

M fi ¼ �uuiðpÞ½ ~A�ðmui ; mdjÞ þ p� ~Bðmui ; mdjÞ
� k� ~Cðmui ; mdjÞ�ijvdjðkÞ"�ðqÞ: (52)

This is just a generalization of the result (40) obtained
earlier. Analogously we can generalize the effective
charged-current Lagrangian (44):

L eff;ccðu; dÞ ¼ �u½ ~A�ð�i6@Q ; i ~6@Þ � i@Q� ~Bð�i6@Q ; i ~6@Þ
þ i ~@� ~Cð�i6@Q ; i ~6@Þ�dWy

� þ H:c: (53)

Here @Q� and ~@� operate on �u and d, respectively

VII. DISCUSSION

Although not expressed by a single massive Lagrangian,
we showed in Sec. V that the exact theory allows to
calculate amplitudes of the processes involving the mas-
sive quark asymptotic states, using the ordinary perturba-
tion theory and the LSZ reduction formula. In this respect
the introduction of the effective Lagrangian Leffðu; dÞ
[Eqs. (42), (44), and (46)] is unnecessary. However, we
introduced it since it provides a convenient basis for dis-
cussing some of the substantial differences between the
general case of the momentum-dependent self-energies
and the special, familiar case of the constant self-energies
(i.e., the mass matrices).
First, a few comments are in order concerning the ef-

fectiveness of Leffðu; dÞ. It is not effective in the usual
sense as being a low energy approximation of some under-
lying theory, i.e., in our case the exact theory. Rather, it is
by construction effective in the sense that it reproduces
predictions of the exact theory, but only for a very limited
set of processes (and only at the tree level). Namely, only
the processes Wþ ! ui þ �dj and Z=� ! qi þ �qj, q ¼ u,

d, modulo crossing symmetry, are computed correctly (i.e.,
in accordance with the exact theory). If one calculates any
more complicated process (e.g., Wþ þW� ! qi þ �qj)

within this effective theory, one obtains an answer differing
from the answer obtained within the exact theory. Clearly,
we have lost some amount of the physical information
contained in the exact theory when passing to the effective
one. However, this makes sense, since the self-energies as
the momentum-dependent matrix functions (the exact the-
ory) contain ‘‘much more’’ physical information than the
constants like the masses and the flavor mixing matrices
(the effective theory).
There is a significant exception, though. In the case of

constant self-energies the amount of physical information
remains the same while going from the exact theory to the
effective one. Recall that in this case the effective
Lagrangian Leffðu; dÞ [Eqs. (44) and (46)] reduces pre-
cisely to the SM Lagrangian LSMðu; dÞ [Eq. (31)], which
is indeed fully physically equivalent to the original exact
theory.
This leads us to another substantial difference between

the two cases. We are accustomed from the SM that the
interaction basis ðu0; d0Þ and mass basis ðu; dÞ are related to
each other by a unitary transformation (30) and working in
either of them is merely a matter of taste. This is clearly not
the case in the more general situation of momentum-
dependent self-energies: Here the interaction basis opera-
tors u0, d0 are the fundamental ones and there is no way to
obtain from them the mass basis operators u, d by a
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suitable unitary transformation. This is of course related to
the effective nature of the corresponding Lagrangian
Leffðu; dÞ, since the operators u, d are nothing more that
merely postulated, effective fields.

There is also another way of seeing that the two sets of
operators u0, d0 and u, d should be viewed as essentially
unrelated. Note that the dimension of the vectors u, d is in
this paper by construction equal to the number of poles of
the corresponding propagators hu0 �u0i, hd0 �d0i. However,
although we did not assume it here for the sake of sim-
plicity, it is in principle thinkable that this number could be
different from what we called n—the dimension of vectors
u0, d0 (cf. the discussion of number of propagator’s poles in
Sec. II). Thus, in such situation it would be obviously
impossible to relate the two bases u0, d0 and u, d with
different dimensions by any regular linear transformation.

The comparison with the Refs. [25,28] is in order now.
We have confirmed the phenomenological results concern-
ing nonunitarity of the effective CKM matrix and occur-
rence of the flavor changing electromagnetic and neutral
currents. In particular, we recovered the explicit formula
(41) for the former. What is new in our treatment is that we
provided also explicit formulas (46) for the flavor mixing
in the electromagnetic and neutral current sectors.
Moreover, we found out that the corresponding mixing
matrices are only effective ones: They allow us to compute
the processes in the lowest order in the gauge coupling
constants, but if one wants to go to higher orders of the
perturbation theory, it is necessary to come back to the self-
energies and consider their full momentum dependence.

We also contributed to the discussion of the relation
between the interaction basis u0, d0 and the mass basis u,
d. We confirmed that both bases cannot be related by a
unitary transformation. The authors of Refs. [25,28]
showed, however, that the two bases can be related by
the nonunitary transformation

u ¼ ~Xy
uu0; d ¼ ~Xy

dd
0; (54)

[cf. Eq. (30)] with nonunitary ~X’s defined by Eq. (20). (The
resulting nondiagonality of quark kinetic terms due to
nonunitarity of matrices ~X can be cured by adding appro-
priate finite counterterms to Lagrangian [34–36].) This is
in accordance with our result: Using the nonunitary rede-
finitions (54) in the Lagrangian (31) (and neglecting im-
pacts on kinetic terms), we arrive precisely at our effective
Lagrangian (44) and (46). Since we argued, however, that
any Lagrangian, written in the mass basis, should be (at
least in principle) regarded as an effective one, in the sense
described above, we conclude that the nonunitary trans-
formations (54) should be regarded as effective as well.

VIII. SUMMARYAND CONCLUSION

The EWSBmechanism employed in the SM—the Higgs
mechanism—manifests itself by generation of the fermi-
onic mass matrices in the Lagrangian. We considered in

this paper a more general case: Instead of constant mass
matrices we assumed that some unknown EWSB mecha-
nism generates full symmetry-breaking fermionic propa-
gators, with 1PI parts (the proper self-energies) given by
flavor matrices with generic momentum dependence.
Restricting ourselves only to the quark sector, we inves-
tigated some consequences of this generalization.
We computed amplitudes for some elementary processes

involving the massive quarks and arrived at substantially
different predictions from those of the SM. In the charged
current sector, we managed to parametrize the relevant
amplitudes by an effective CKM matrix, which was a
general nonunitary matrix. Recall that the unitarity of the
CKM matrix in the SM is established theoretically [4,5] as
well as experimentally [37,38]. In the electromagnetic and
charged current sectors we found that the relevant pro-
cesses change flavor at the leading order in the gauge
coupling constants. Again, it is a well established theoreti-
cal [39] and experimental [38] fact that the flavor changing
electromagnetic and neutral current interactions are
strongly suppressed.
All of these phenomenological flaws are obviously con-

sequences of nontrivial momentum dependence of the
quark self-energies, because in the special case of constant
self-energies we just obtain the SM. Since the particular
shape of the self-energies’ momentum dependence de-
pends on a particular model of EWSB, we have in this
manner provided a way leading to a possibility of discrimi-
nating among various alternative models of EWSB.
Referring to the properties of the CKM matrix in the

SM, it is worth spending here a few words concerning its
perturbative renormalization. We have considered through-
out the paper only the constant self-energies (mass matri-
ces) in the SM, in which case the unitarity of the CKM
matrix is obviously guaranteed. However, there is a natural
question whether this proclaimed unitarity remains pre-
served upon the radiative corrections and corresponding
infinite renormalization. This question was discussed in the
literature by various authors (e.g., [29–32]), using a variety
of (on-shell) renormalization schemes for the CKMmatrix.
Carrying on the renormalization within a general R� gauge,

they showed that as long as one requires that the renormal-
ized CKM matrix be gauge independent, its unitary stays
indeed preserved. Moreover, they showed that the radiative
corrections to the CKM matrix are negligible, of order
10�5 [40,41], and are therefore of little phenomenological
importance. In fact, all experimental determinations [38] of
its elements are based on the (bare) CKM matrix of the
form considered in Sec. IV.
Apart from the phenomenological consequences, we

showed that the self-energies’ momentum dependence
has also some conceptual impacts on the way we are
accustomed to understand some basic notions in the SM.
In particular, we argued that the interaction basis and the
mass basis should be in principle regarded as essentially

PETR BENEŠ PHYSICAL REVIEW D 81, 065029 (2010)

065029-12



unrelated (e.g., by a unitary transformation), since the
latter one is only an appropriately postulated effective
notion. Noting that such conceptual subtleties are not an
issue in the SM, on should still keep in mind that this is (at
least from the point of view of the present analysis) merely
an ‘‘accidental’’ consequence of the employed particular
mechanism of EWSB in the SM.
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