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Quasiconstant external fields in nonlinear electromagnetism generate a global contribution proportional

to g�� in the energy-momentum tensor, thus a simulacrum of dark energy. To provide a thorough

understanding of the origin and strength of its effects, we undertake a complete theoretical and numerical

study of the energy-momentum tensor T�� for nonlinear electromagnetism. The Euler-Heisenberg

nonlinearity due to quantum fluctuations of spinor and scalar matter fields is considered and contrasted

with the properties of classical nonlinear Born-Infeld electromagnetism. We address modifications of

charged particle kinematics by strong background fields.
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I. INTRODUCTION

Recent analysis has constrained the dark energy to the
characteristics of a cosmological constant: equation of
state w � p=� 6 �1 and spatially homogeneous distribu-
tion [1,2]. This means that the dark energy is present in the
energy-momentum tensor proportional to g�� as has often
been discussed in the context of vacuum energy [3].
Proportionality to g�� does not exclude that dark energy
originates in properties of ponderable fields and matter; in
the energy-momentum tensor

T�� ¼ 2ffiffiffiffiffiffiffi�g
p �

�g��

Z
d4x

ffiffiffiffiffiffiffi�g
p

Veff ; (1)

a nonvanishing trace T�
� ¼ g��T�� is a simulacrum of the

dark energy, that is, a tangible but not necessarily complete
analogy: the properties and consequences are the same, but
ultimately the generating mechanisms may differ between
the observed dark energy and the model T�

� . The possibil-
ity that the cosmological dark energy is consequence of a
(more complete) theory of ponderable matter and fields
motivates a deeper probe of well-controlled situations in
which the phenomenologically similar energy-momentum
trace arises.

As has often been noted, the small magnitude of the dark
energy suggests a weakly broken symmetry as its source.
Hence the natural starting point for the present investiga-
tion is a theory with a traceless energy-momentum tensor.
Extensions of this theory are analyzed for the generation of
an energy-momentum trace and by comparison with the
starting theory the physics of the energy-momentum trace
better understood. An effort in this direction has been made
in the context of the vacuum structure of quantum chro-
modynamics (QCD) [4], and we show here that quantum
electrodynamics (QED) has similar features which are
more easily accessible.

Our point of departure is therefore Maxwell electromag-
netism, whose energy-momentum tensor,

TMax
�� ¼ g��

1
4F��F

�� � F��F�
� (2)

is manifestly traceless. Even in absence of external sources
the Maxwell field equations are incomplete due to interac-
tion with the electron-positron vacuum fluctuations which
are present at the length scale �- e � @=mec. At distances of
comparable magnitude (� ’ �- e) these are vacuum polar-
ization effects which impact precision atomic physics ex-
periments. For long distance (� � �- e) one obtains the
nonlinear effective theory of the photon studied in depth
by Euler, Kockel, and Heisenberg, and Schwinger [5,6].
This nonlinear Euler-Heisenberg (EH) theory of electro-

magnetism is just one of many possible effective actions.
Beyond the EH-QED framework, we can imagine writing
down a more complete theory containing all effective
interactions, reducing in the long wavelength limit at the
classical level to Maxwell’s equations. Born-Infeld (BI)
theory, designed to regulate point-particle-induced diver-
gences [7], can be thought of as an effort to provide a more
complete theory of electromagnetism, though it too is now
considered as an effective theory [8] arising from string
theory.
In nonlinear electromagnetism, the Maxwell energy-

momentum tensor Eq. (2) is modified by two quantities:
a dielectric function ", which scales the contribution of the
Maxwell energy-momentum in the total, and the trace of
energy-momentum tensor T�

� , which is a new contribution.
We have elsewhere observed that T

�
� arising in QED can in

this regard be viewed as the modification of the vacuum
energy by the presence of electromagnetic fields [9], and,
analogously, the connection of dark energy with a form of
vacuum energy has been discussed before [3,4]. In the
external field framework of the EH theory, the trace T�

�

is a global constant energy density proportional to g�� and
thus serves as a simulacrum of a cosmological constant in
the ‘‘universe’’ spanned by the external field. In this work
we investigate the magnitude and some consequences of a
ponderable T�

� -as-cosmological-constant, evaluate the di-
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electric function and compare the behavior of EH and BI
nonlinear theories.

Now, as is well known, a theory with a traceless energy-
momentum tensor is invariant under scale changes.
Maxwell’s electromagnetism is the prime example: the
energy-momentum tensor is traceless and indeed the clas-
sical theory of radiation is scale invariant. In a gauge
theory, the related conformal symmetry can be spontane-
ously broken, the study of which has a long and distin-
guished history, originating with the rise of QCD as the
theory of strong interactions [10,11]. We will rederive here
some results of the extensions of these studies to QED
[12,13].

Scale invariance can be broken by the explicit appear-
ance of a dimensionful quantity in the theory, such as the
mass of the electron in QED. In fact, any nonlinear elec-
tromagnetism requires a scale with the dimension of an
electrical field eE0, in order to render the Lagrangian
dimensionally consistent. We express this scale in terms
of a mass M:

eE0 � ðMc2Þ2
@c

:

For the Euler-Heisenberg (EH) effective action the intro-
duction of M is a natural step to take as the nonlinearity is
of quantum origin and M ’ m=

ffiffiffiffi
�

p
, where � ¼ 1=137 is

the usual fine structure constant. For the BI theory it is a
matter of convenience to use mass rather than length as the
scale, converting one into another using @.

If indeed BI theory is a weak-field limit of string theory
in which the nonlinearity is a consequence of high mass
quantum fluctuations [8] the appearance of @ would be
appropriate, and the associated scale could be as large as
the Planck mass, MPl ¼ 1:2� 1019 GeV. It should be
noted that current experimental limits as well as EH non-
linearity probes a scale below 100 MeV, thus a string
related BI theory maybe quite removed from the present
experimental reality. We compare EH and BI theories
mainly because their behavior is very different.

In QED and BI, the presence of scale which breaks the
conformal symmetry is explicit, and the energy-
momentum trace is not ‘‘anomalous,’’ unlike the case of
QCD. The scale of the nonlinearity is, as we shall show, the
determining factor of T

�
� . This fact is the simple yet

important and original theoretical observation presented
in this paper. Having thus suggested the interconnection
of dark energy, conformal symmetry and the presence of
scale in the theory, we leave issues specific to conformal
symmetry to future work and here focus on the physics of
T�
� and its origins in nonlinearity of the theory.
We derive in Sec. II the field energy-momentum tensor

and explicitly connect its trace to nonlinearity of the elec-
tromagnetic theory. To compare relative magnitudes and
suggest new constraints on a Born-Infeld-type completion
of electromagnetism, in Sec. III we evaluate the BI mod-

ifications to the Maxwell energy-momentum tensor. In
clarification of conflicting statements present in the litera-
ture, we begin our discussion of quantum electrodynamics
in Sec. IV with a new derivation of the relationship be-
tween the electron-positron condensate and the energy-
momentum trace based on the explicit origin of the trace
in nonlinearity of the theory. Extending a technique of
resummation of the action introduced by Müller, et al.
[14], we then provide complete numerical evaluations of
the condensate, energy-momentum trace and dielectric
function for QED and spin-0 quantum electrodynamics.
These evaluations display striking analytical features not
before apparent in the Euler-Heisenberg functions. We
compare BI and QED contributions to T�

� and show that
QED vacuum fluctuations remain dominant given the ex-
perimental constraints.
In Sec. V of this report, we discuss the kinematics of

charged particles moving in external fields. The vacuum of
a nonlinear theory is studied as a ponderous medium with
nonlinear response. The Lorentz force is preserved, but the
breaking of the superposition principle results in effective
potentials for charged particles moving in external fields
that are not automatically obtained from the Lorentz force.

II. ENERGY-MOMENTUM TENSOR OF
NONLINEAR ELECTROMAGNETISM

Setting from now on @ ¼ c ¼ 1, we can consider the
effects of E0 :¼ M2=e mass M or length l ¼ 1=M scale,
whereM can be as large as a string theory scale or as small
as the mass of the electron. The consequences are best seen
writing the effective action in the form

�V eff � �S þM4 �feff

�
S
M4

;
P
M4

�
!

M!1 � S (3)

presented here as a function of the Lorentz scalar and
pseudoscalar

S :¼ 1
4F��F

�� ¼ 1
2ðB2 � E2Þ; (4a)

P :¼ 1
4F

�
��F

�� ¼ E � B: (4b)

As noted, classical, linear electromagnetism must consti-
tute the limit of Eq. (3) for fields small as measured in units
of E0. It should be noted that �feff consists only of nonlinear
terms, specifically excluding linear terms such as S lnm=�
which introduce another scale �. When such terms are
admitted, the bar is left off feff and Veff .

A. Dielectric function and Trace

To understand the implications of the dimensioned scale
we consider the explicit form of the energy-momentum
tensor (1), separating the traceless Maxwell part. For a
general function VeffðS;P Þ, we obtain
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T�� ¼
�
� @Veff

@S

�
ðg��S � F��F�

�Þ

� g��

�
Veff � S

@Veff

@S
� P

@Veff

@P

�
: (5)

Comparison with Eq. (2) shows the energy-momentum
tensor of Maxwell’s electromagnetism is modified by a
dielectric function, �@Veff=@S, to be discussed below.
Using Eq. (3) we simplify the second term to

�
Veff � S

@Veff

@S
� P

@Veff

@P

�
¼ 1

4
M

@ �feff
@M

; (6)

This form is very useful because it provides a simple means
of calculating the trace directly from the effective action.
The importance of Eq. (6) lies in its distillation of the
physical source of conformal symmetry breaking in any
nonlinear theory of electromagnetism:

Terms linear in the invariant S cannot contribute to the
right side of Eq. (6) since they cancel explicitly on the left
side of Eq. (6). Such contributions must therefore be
omitted from Veff in the study of energy-momentum trace,
and hence we have introduced the barred �feff to denote the
nonlinear components of the effective potential. Letting

Vð1Þ
eff denote the remaining linear terms in the Lagrangian,

we have the decomposition

Veff ¼ Vð1Þ
eff þM4 �feff : (7)

The lowest power in S, P is 2 due to preservation of both
parity and charge conjugation symmetry, which, respec-
tively, require an action even under parity transformations
and even in the coupling e, hence even in the field strengths
(already true of any Lorentz scalar). A nonzero imaginary
part of the action entails breaking of time reversal symme-
try, though the trace Twill be small under laboratory
conditions. These symmetry arguments imply that for field
strengths below the critical scale E � m2, the energy-
momentum trace must be at least 4th order in the fields.

Solving the partial differential equation

Veff � S
@Veff

@S
� P

@Veff

@P
¼ 0 (8)

displays one obvious class of nonlinear Lagrangians that
have traceless energy-momentum tensors, namely,

Veff ¼ S
Xþ1

n¼�1
an

�
S
P

�
n
: (9)

Comparison with Eq. (3) reveals the reason: such
Lagrangians are conformal. Since this class is nonpertur-
bative in at least one of the field invariants and we are
interested in having an energy-momentum trace, we ex-
clude theories of the form in Eq. (9) as well any other
nonperturbative actions that may satisfy Eq. (8), despite
their inherent interest.

In view of Eqs. (5) and (6), we summarize

T�� ¼ "TMax
�� þ g��

1
4T (10a)

" � � @Veff

@S
; T�

� � T ¼ �M
d �feff
dM

: (10b)

Here " is the dielectric function, TMax
�� the Maxwell energy-

momentum tensor, and T the energy-momentum trace.
Interestingly, T =4 $ �=2 provides a dark energy or
Einstein-like cosmological constant, while the traceless
part is the same as in Maxwell theory, up to the multi-
plicative dielectric function.
Equation (10b) though derived here for the case of

electromagnetism has a much wider domain of validity.
The implications of the separation in Eq. (10) have been
previously noted in context of the photon propagation
effects [15,16], but Twas not given in the form
Eq. (10b), nor has in any form the trace T been computed.
We shall below demonstrate how the concomitant identi-
ties Eq. (10b) provide new physical insight in understand-
ing the quantum effects and their connection to
nonlinearity of the action.
The alternative and equivalent representation, often used

in the electromagnetism of nonlinear media (for example
see Sec. 8 of [17]),

T�� ¼ H��F�
� � g��L (11)

is using the displacement tensor

H�� ¼ @L
@F��

¼ @L
@S

F�� þ @L
@P

~F��: (12)

The trace is now distributed into several components

T ¼ H��F�� � 4L ¼ ~E � ~Dþ ~B � ~H � 4L: (13)

The origins and properties of T are obscured by the
constitutive relation H��ðF��Þ. The expression Eq. (10)
evidences the departure from the classical theory more
clearly in the context we consider.

B. Stress-energy density

Some further notable properties of the stress-energy
density of the nonlinear electromagnetic (EM) field will
be collected here. The energy density in the frame of the
metric, i.e. the quantity entering Einstein’s equations, is

T00 ¼ "
2ðE2 þ B2Þ þ 1

4T :

The EM-stresses Tij have the same structure as in the
Maxwell theory, as is already evident from the format of
Eq. (16):

Tij ¼ "Tij
Max � �ij

1
4T (14)

The traceT acts to compensate the forces Tij
Max tearing the

field sources apart in Maxwell electromagnetism. For this
reason, for example, in BI theory the Tij vanishes allowing
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a stable charged particle without material stresses. A suffi-
cient condition for this to be true is that the point particle
solution satisfies limr!0r

3T00 ¼ 0 [18].
Because the energy-momentum tensor is conserved we

have T��;� � @T��=@x
� ¼ 0, which is a covariant relation

true in any frame. A differential conservation law leads to
an integral conservation law by integration over the ob-
server’s hypersurface:Z 2

1
d4x

@T��

@x�
¼ 0; or

Z
1
d3	�T

�� ¼
Z
2
d3	�T

��;

(15)

i.e. the energy-momentum flow through surface 1 is the
same as later through surface 2. It is common to choose an
observer at rest in laboratory so that d3	� ¼ u�d

3x, with
u� ¼ ð1; 0; 0; 0Þ.

For nearly homogeneous fields we can omit the 3-
volume and consider a conserved four-momentum density
of the EM field

p�
Max ¼ u�T

��
Max ! ððE2 þ B2Þ=2; ~E� ~BÞ

finding the well-known result for the rest energy and
Poynting vector of the classical field. This result is easily
generalized to the nonlinear electromagnetism:

p� ¼
�
"
E2 þ B2

2
þT

4
; " ~E� ~B

�
; (16)

showing the appropriateness of calling " the dielectric
function, since it plays the role of the dielectric constant
~E ¼ " ~D when considering electric charge in vacuum. For
Maxwell electromagnetism " ¼ 1 and T ¼ 0.

It is an elementary exercise to show that in the Maxwell
limit the proper energy density, or its ‘‘mass density,’’ is

pMax
� p

�
Max ¼

ðE2 þ B2Þ2
4

� ð ~E� ~BÞ2 (17a)

¼ ðE2 � B2Þ2
4

þ ð ~E � ~BÞ2 ¼ S2 þ P 2: (17b)

Generalizing to nonlinear EM theory, we find the local
mass density of the field to be

uf �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p�p

�
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS2 þ P 2Þ"2 þ ðT =4Þ2

q
: (18)

T =4 $ �=2 provides thus both a ‘‘dark energy’’ and a
‘‘mass density’’ of the electromagnetic field.

III. BORN-INFELD ELECTROMAGNETISM

As demonstrated in the preceding discussion, an intrinsi-
cally nonlinear theory of electromagnetism (in most cases)
entails an energy-momentum trace, and we begin by study-
ing a nonquantum example of a nonlinear alternative to
Maxwellian theory. Historically, Born-Infeld electromag-
netism was introduced in order to solve the infinite self-
energy (and self-stress) problem of a pointlike electron

arising in consideration of the radial electric field Er of a
point charge q:

U ¼
Z

d3x
1

2
E2
r ! 1; for Er ¼ q

r2

To remedy this, Born and Infeld took inspiration from
special relativity, considering the action [note that we
follow the modern convention, opposite in sign to the
original paper [7], and also, recall remarks about the scale
M above Eq. (3)]:

VðBIÞ
eff ¼ M4ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2S=M4 � ðP=M4Þ2

q
Þ (19)

¼ M4ð ffiffiffiffiffiffiffi�g
p � ffiffiffiffiffiffiffi�h

p Þ; (20)

h ¼ det h��; h�� ¼ g�� þ
F��

M2
; (21)

where the particular combination of S, P terms derives
from the extension of the space-time metric with the anti-
symmetric field tensor, F��. In the weak field (infinite

mass) limit Maxwell’s theory indeed arises, VðBIÞ ! �S.
For the Born-Infeld case the dielectric function is

"BI ¼ �@VðBIÞ
eff

@S
¼ ½1þ 2S=M4 � ðP=M4Þ2��1=2; (22)

which exhibits a formal analogy to the 
-factor familiar
from special relativity, though with two different limits as
S or P respectively approach the limiting value M4 (see
Fig. 1, left). The dielectric function goes over from sup-
pression (" < 1) to augmentation (" > 1), when the mag-
netic component of the field becomes subdominant, which
corresponds to crossing the line 2S ¼ P 2 from the lower
right.
As presented, Eq. (19) is in the form required by Eq. (3).

However, the BI action contains no terms linear in S; T is
identically �MðdVeff=dMÞ. We obtain for the BI energy-
momentum trace using the relation Eq. (6)

T ðBIÞ ¼ 4M4ð"BIð1þ S=M41Þ � 1Þ;

¼ 4M4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2S=M4 þ ðS=M4Þ2
1þ 2S=M4 � ðP=M4Þ2

s
� 1

�
(23)

which in the latter form is manifestly positive-definite, just
like the cosmological constant. For small fields we expand
the second form in Eq. (23) to obtain

T ðBIÞ ! 2

M4

S2 þ P 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2S=M4

p : (24)

In Fig. 1 we show the dielectric function and energy-
momentum trace for strengths up to the maximum field
strength. The functional behavior of both is smooth, though
a S, P functional asymmetry develops at large values of
the fields.
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In contrast to the classical theory analyzed here, we note
a recent report suggesting that the quantized BI theory as
studied on the lattice may be conformally symmetric [19].

IV. EULER-HEISENBERG ELECTROMAGNETISM

The Euler-Heisenberg effective action is well known:

Vf
eff ¼

Z 1

0þ�

dse�m2s

8�2s3
ð1� eas cotðeasÞebs cothðebsÞÞ

(25)

for Dirac fermions, and

Vs
eff ¼

Z 1

0þ�

dse�m2s

16�2s3
ðeas cscðeasÞebscschðebsÞ � 1Þ

(26)

for charged scalars, in which

a :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P 2

p
� S

q
; and b :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P 2

p
þ S

q
:

(27)

The characteristic strength of fluctuations in the matter
field is made explicit in the appearance of m which is the
mass of the matter particle which has been integrated out;
in QED it is the mass of the electron.

For vanishing P we have a ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijSj � S
p

and b !ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijSj þ S
p

. Thus when E ¼ 0 we find a ! 0, b ! jBj and
when B ¼ 0 we find a ! jEj, b ! 0. In this sense, b plays
the role of the generalized (Lorentz invariant) magnetic
field and a that of the generalized electric field. The
constant subtraction	1 removes the (divergent) zero point
energy of free electrons and positrons. The difference in
normalization reflects the doubling of the number of de-
grees of freedom for spin-1=2 particles, and the overall

sign corresponds to the difference in sign of vacuum fluc-
tuations between bosons and fermions.

A. The condensate h �c c i and trace T

Equation (10b) provides a direct means of calculating
the energy-momentum trace, but its connection to vacuum
structure in QED and its deformation by the applied fields
which induce the EH nonlinearity is encoded in
mðdVeff=dmÞ. Consider the Feynman boundary condition
Green’s function of the fluctuating matter field in presence
of the electromagnetic field, which determines the vacuum
fluctuations,

m
@Veffðx;mÞ

@m
¼ im lim

�!0
tr½SFðxþ �; x� �;mÞ � Sð0ÞF �

(28)

Here � is a timelike vector, and Sð0ÞF is the free field
Feynman Green’s function. In general

SFðx; x0Þ ¼ �ihTðc ðx0Þ �c ðxÞÞi: (29)

We rewrite the right side of Eq. (28) using the elemen-
tary form of Wick’s decomposition theorem

Tðc ðx0Þ �c ðxÞÞ ¼ :c ðx0Þ �c ðxÞ:þ h0jTðc ðx0Þ �c ðxÞÞj0i;
where the normal ordering is with respect to the ‘‘no-field’’
vacuum. Taking the expectation value of this relation at a
single space-time point in the ‘‘with-field’’ vacuum ji we
find

h:c �c :i ¼ hjTðc ðxÞ �c ðxÞÞji � h0jTðc ðxÞ �c ðxÞÞj0i
¼ iSFðx; xÞ � iS0Fðx; xÞ (30)

with the same �-limit as in Eq. (28) implied for equal
propagator arguments. Usually the trace is implied by
commuting the fields and the normal ordering symbols

FIG. 1 (color online). The departure of the Born-Infeld energy-momentum tensor from that of the Maxwell T
��
Max: At left the

dielectric function, Eq. (22) and at right the trace, Eq. (23). Field strength invariants and energy densities are in units of M4.
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omitted,

mh:c �c :i ! �mh �c c i;
hiding the important operational definition Eq. (30) of what
we now recognize as the fermionic condensate. Thus, we
see that the condensate derives from the difference of
normal ordering in the no-field (also called perturbative)
vacuum and the with-field vacuum. Furthermore, one must
keep in mind that the subtraction of the unperturbed vac-
uum term follows directly from application of the rules of
QED and is not a consequence of arbitrary removal of zero-
point energy. For this reason our discussion has no bearing
on the zero-point energy of quantum field theory or its
gravitational coupling.

Equations (29), (28), and (30) then combine with the
result

m
dVeff

dm
¼ �mh �c c i; (31)

a known and widely used relation in nonperturbative QCD.
We will evaluate it for the case of electrons in the presence
of external electromagnetic fields.

We undertook the derivation of the Fermi condensate in
the preceding section in order to emphasize that the con-
densate is not in general the energy-momentum trace,
though there is a relationship. Using Eqs. (7), (10b), and
(31) we find

T ¼ m
dVð1Þ

eff

dm
þmh �c c i: (32)

If and only if Vð1Þ
eff is just the action of classical electro-

magnetism, the first term on the right-hand side, linear in
S, vanishes.

However, the coupling to a fluctuating quantum field
complicates the issue significantly in that it produces a
contribution linear in S with a coefficient which is a
function of m and renormalization scale. It is the logarith-
mic divergence of Eqs. (25) and (26) which in the limit

� ! 0 is also proportional to S and thus appears in Vð1Þ
eff .

The standard procedure is to absorb the divergence into the
definition of the charge in the process of charge renormal-
ization. Equations (25) and (26) assume a cutoff regulator
which of course also introduces a scale. Alternatively one
can use dimensional regularization, the spinor effective
potential can be written

Vf
eff ¼

Z 1

0

dse�m2s

8�2s3��
ð1� eas cotðeasÞebs cothðebsÞÞ

(33)

and similar for the charged scalar case.
For any finite �, Eq. (33) is finite and can be differ-

entiated with respect to m, and hence the quantity

mðdVf;s
eff=dmÞ is finite, allowing the consideration of a

vanishing �. In particular, the differentiation

mðdVeff=dmÞ renders the lowest order contribution

mðdVð1Þ
eff=dmÞ finite. The condensate and energy-

momentum trace are thereby independent of renormaliza-
tion procedure (as they should be), and obey the nontrivial
relationship expressed by Eq. (32). The finiteness of T for
fermions is also discussed at length by Adler et al [12].
Separation of the term linear in S in the Fermi case

shows

m
dVð1Þ

eff

dm
¼ � e2

8�2

b2 � a2

3

Z 1

0

ds

s
e�m2s ¼ 2�

3�
S: (34)

Thus for the EH effective action, the decomposition in
Eq. (7) becomes

m
dVf

eff

dm
¼ m

d �Vf
eff

dm
þ 2�

3�
S (35)

and in turn with emphasis on properties of the vacuum:

T f ¼ 2�

3�
hSi þmh �c c i: (36)

Equation (36) corresponds to Eq. (2.17) in [12]. It is of
importance to note that there is considerable cancellation
between the two terms on the right-hand side [4].
The essential relation Eq. (36) must be preserved at any

number of loops in the effective action in its suitable
generalization. In particular, if the condensate were eval-
uated to two loops, the coefficient of the first term must
become the two-loop � function, i.e.

2�

3�
! �ð�Þ ¼ 2�

3�
þ �2

2�2
þ . . . : (37)

Our result Eq. (36) is not obvious if one evaluates the
energy-momentum trace after renormalization has been
carried out. The logarithmically divergent term in Veff is

Vð1Þ
eff ¼ � e2

8�2

b2 � a2

3

Z 1

0þ�

ds

s
e�m2s ¼ �

3�
S lnðm2�Þ

(38)

in which � ¼ 1=M2, some large mass or momentum ex-
traneous to QED. Before presenting the EH action, this
term is absorbed in the process of charge renormalization.
To restore its contribution one must realize the mass de-
pendence of charge renormalization. The relation of Eq.
(38) to the QED � function [12] demonstrates why use of
the renormalized Veff with the incorrect identificationT ¼
mdVeff=dm leads to the correct result as shown in Eq. (36),
just as it was developed for QCD [4,10,11].

B. Properties of T in QED

We obtain the explicit form of the condensate in external
fields combining Eq. (31) and (25)
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�mh �c c i ¼ m2
Z 1

0

dse�m2s

4�2s2

� ðeas cotðeasÞebs cothðebsÞ � 1Þ: (39)

The condensate vanishes in the absence of field, as it
should, since x cotx ! 1 and x cothx ! 1 for x ! 0. The
term quadratic in the fields has been discussed above, it
must be subtracted to arrive at the integral representation of
the energy-momentum trace:

T f ¼�m2
Z 1

0

dse�m2s

4�2s2

�
�
eascotðeasÞebscothðebsÞ� 1� e2

3
ðb2�a2Þs2

�
:

(40)

To study the integrals Eq. (39) and (40), we introduce a
transformation that will be helpful in dealing with the
nonanalyticities generated by the electric field. The de-
tailed calculations are carried out in the Appendix, and
we simply state here their results. The integral representa-
tions obtained along the way have better convergence
properties than Eq. (39) or Eq. (40), particularly at strong
fields B, E
 E0.

In a magnetic background field, the condensate can be
written

�mh �c c i ¼ � m4

2�2�0
Z 1

0

lnð1� e��0sÞ
s2 þ 1

ds; (41)

where �0 :¼ �m2=eB ¼ �=ðB=E0Þ, with E0 ¼ m2=e. The
energy-momentum trace is obtained by removal of the
leading term quadratic in the field [recall Eq. (36)], with
the result that

T f ¼ � m4

2�2�0
Z 1

0

s2 lnð1� e��0sÞ
1þ s2

ds (42)

is manifestly positive definite.
For the electric field, the poles are resummed into a

logarithmic winding point, with the result

�mh �c c i ¼ m4

2�2�

Z 1

0

lnð1� e��sÞ
1� s2 � i�

ds (43)

where � :¼ �=ðE=E0Þ. The trace in the pure electric back-
ground is

T f ¼ m4

2�2�

Z 1

0

s2 lnð1� e��sÞ
1� s2 � i�

ds: (44)

Eqs. (43) and (44) could equivalently be obtained by
taking B ! iE in the respective magnetic expressions. The
condensate behaves as ðeEÞ2 for small fields, but the poles
displayed in Eq. (A7) give the condensate and the energy-
momentum trace a nonzero imaginary part, which can be
evaluated from Eq. (43) or (44) recalling the identity

1

x� i�
¼ PV

1

x
þ i��ðxÞ:

As befits its role contributing to the proper mass of the
nonlinear electromagnetic field [recall Eq. (18)],

ImT f ¼ �m2 eE

4�2

X1
n¼1

1

n
e�ððn�E0Þ=EÞ (45a)

¼ m4

4��
lnð1� e��Þ; (45b)

is manifestly negative and strongly suppressed for field
strengths less than 0:1E0. This is consistent with direct
differentiation of the positive imaginary part of the action
Vf
eff evaluated by Schwinger

ImVf
eff ¼

ðeEÞ2
8�3

X1
n¼1

1

n2
e�ððn�E0Þ=EÞ:

Observe thatmh �c c i in external magnetic fields is nega-
tive, as is manifest in Eq. (41), while the energy-
momentum trace, Eq. (42) is positive. With the perspective
that the energy-momentum trace represents the energy
arising from deformation of the vacuum, a negative value
would imply that the vacuum state is unstable, for example,
to the spontaneous generation of strong magnetic fields if
T were identically mh �c c i.
The energy-momentum trace in general combinations of

electric and magnetic can also be cast Eq. (A9) reminiscent
of our prior study of the special cases of electric and
magnetic fields. Using b in the definition of �0 and a in
�, the numerically useful representation is

T ðQEDÞ ¼ m4

2�2
ðIa þ IbÞ (46a)

Ia ¼
Z 1

0

dss2

1� s2 � i�

X1
k¼1

e�sk�

k�

�k�

�0 coth
�k�

�0 ; (46b)

Ib ¼
Z 1

0

dss2

1þ s2
X1
k¼1

e�sk�0

k�0
�k�0

�
coth

�k�0

�
: (46c)

A further resummation (see the Appendix) displays a more
statistical form of the integrands:

Ia ¼ �b
X
n;	

Z 1

0

sþ 1
2 lnð1�xþi�

1þx�i�Þ
e�H 	 � 1

ds (47a)

Ib ¼ a
X
n;	

Z 1

0

s� arctans

e�
0H 0

	 � 1
ds (47b)

where 	 ¼ 	1 and n ¼ 0; 1; 2 . . . in accordance with the
Landau levels apparent in the quasi-Hamiltonians

m2H 	 ¼ m2sþ ð2nþ 1� 	Þeb (48a)

m2H 0
	 ¼ m2sþ ð2nþ 1� 	Þea: (48b)

The slower convergence of Ia (Ib) for b=a � 1 (a=b � 1)
means Eq. (47) is not as advantageous as Eq. (46) for
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numerical work. These expressions clarify the electric and
magnetic field limits and thereby the correspondence be-
tween Figs. 2 and 3 below when one also recalls z cothz !
1 for z ! 0.

C. Numerical evaluation of QED T

We evaluate numerically the condensate and the energy-
momentum trace for arbitrary constant, homogeneous
background electromagnetic field. We consider first a
magnetic-only background field in Eq. (39), a form which
is easily integrated numerically. The behavior is displayed
in Fig. 2 as the solid upper (red) line. Noting that fðxÞ ¼
ðx cothx� 1Þ=x2 is essentially constant for x < 1, we re-
cover the quadratic dominance �mh �c c i / ðeBÞ2 for
small fields. Figure 2 confirms the small field (mass-
dominant) quadratic behavior and large field (field-
dominant) linear behavior [20]. The results of numerically
integrating (43) also appear in Fig. 2, but since the result is
opposite in sign to the magnetic field case, we show the
negative of the result as the lower (black) curve.

Equations (44) and (42) are plotted on the right in Fig. 2,
and interestingly, we see that at E ¼ 9E0 T changes sign
from positive at low fields to negative at high fields. This
result is not apparent in the perturbative expansion, but can
be understood from the Cauchy-Riemann equations in
view of the rapidly changing imaginary part. Having the
appearance of a � phase flip, the feature may be related to
the rapid dissolution (attosecond timescale) of fields at
magnitudes surpassing E0 [21]. The methods developed
here are not suited to the dynamics implied by such fields
and the processes used to obtain such field strengths. For
comparison, we also plot the weak field expansions, de-
rived from the original EH expression with the power-law
semiconvergent expansions of cot and coth. The first two

terms for the condensate and energy-momentum trace are

�mh �c c i � m4

12�2

E2

E2
0

� m4

90�2

E4

E4
0

þ . . . (49)

T f � m4

90�2

E4

E4
0

� 4m4

315�2

E6

E6
0

þ . . . (50)

where E2 ¼ B2 or E2 ¼ �E2 for magnetic or electric
fields, respectively.
The condensate and energy-momentum trace for more

general field configurations are evaluated using the rapidly
convergent sums in Eq. (A9), and the results displayed in

FIG. 3 (color online). The spinor energy-momentum trace for
general E;B fields, parametrized by the Lorentz invariants, S,
Pdefined below Eq. (3). As only P 2 appears in Veff , we plot only
positive P . Although the figure has a logarithmic scale, the trace
crosses zero at the dotted line, going from positive to negative for
very large electric fields S � �1, as seen also in Fig. 2.

0.001 0.01 0.1 1 10 100 1000

E / E
0

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

[m
4  ]

Tµ
µ(Ε)  perturb

Tµ
µ
(E)

− Tµ
µ
(E)

− Im Tµ
µ(Ε)

FIG. 2 (color online). The trace T
�
� normalized by the electron mass m4

e for spin-1=2 matter fields in magnetic (left panel) and
electric (right panel) fields, evaluated perturbatively (dashed-dotted line) from the first two terms in Eq. (50) and exactly (solid line)
from Eqs. (42) and (44). At left, the condensate in magnetic-only backgrounds is included for comparison of magnitudes, and at right,
the imaginary part present for electric fields is included. The trace changes sign from positive to negative at E ¼ 9E0 and for higher
fields the negative (� T

�
� ) is plotted.
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Fig. 3. An examination of the condensate for arbitrary field
configurations, which does include the term linear in S (but
is not displayed here), shows nontrivial features near the
line S ¼ P . This is reflecting on the expectation [22], of
the influence of zero modes, known to be present when the
field is self-dual, i.e. S ¼ P . Comparison of the appear-
ance of Fig. 3 with the BI result, Fig. 1 reveals a profound
difference in these results, with the vacuum fluctuation
effective action being more ‘‘edgy,’’ and suggesting the
possibility of a more singular behavior in the full multiloop
strong field case.

The weak field expansions in general electromagnetic
backgrounds give

�mh �c c i � m4

6�2
S � m4

90�2
ð4S2 þ 7P 2Þ þ . . . (51)

T f � m4

90�2
ð4S2 þ 7P 2Þ � 4m4

315�2
Sð8S2 þ 13P 2Þ þ . . .

(52)

using S, P normalized to the natural field strength, E0. We
can compare the perturbative EH result (52) with the Born-
Infeld weak field T Eq. (23), but because the coefficients
of S2 and P 2 do not match in QED, we obtain two values
for the BI-type limiting mass, in obvious notation:

MS ¼
�

45

16�2

�
1=4

m ¼ 15:16m; (53a)

or MP ¼
�

45

28�2

�
1=4

m ¼ 13:18m: (53b)

D. T of scalar QED

The Euler-Heisenberg-Schwinger calculation of the ef-
fective action is easily extended to the case of a charged
scalar field. The spin-0 particle has no Pauli spin coupling
	��F

�� in the Hamiltonian, and the proper time integral is

evaluated for the Klein-Gordon equation with covariant
derivative,

ðD2 þm2Þ
 ¼ 0; D� � @� � ieA�; (54)

leading to Eq. (26) displayed above. The condensate takes
the slightly different form, m2h

�i. Analogous manipu-
lation of the proper time representations as above (see
Sec. IVA) leads to an identity similar to (31):

m2h

�i ¼ m
@Vs

eff

@m
: (55)

In turn, we have

T s ¼ �

6�
S �m2h

�i; (56)

which displays for the scalar field the large cancellation
between the photon and matter condensates. Then, since

the explicit form of the energy-momentum tensor, Eq. (5),
remains valid, we need only manipulate the action of scalar
electrodynamics.
The alternating sign in the meromorphic expansions of

the csc and csch functions (see the Appendix) leads upon
partial integration to the opposite sign, or opposite ‘‘statis-
tics’’ in the logarithm lnð1	 e��sÞ, as was already re-
marked upon by [14]. Thus, we have for magnetic-only
background fields

m2h

�i ¼ m4

4�2�0
Z 1

0

lnð1þ e��0sÞ
1þ s2

ds (57)

and for electric-only fields

m2h

�i ¼ m4

4�2�

Z 1

0

lnð1þ e��sÞ
1� s2 � i�

ds: (58)

Results of numerically integrating Eqs. (57) and (58) ap-
pear in Fig. 4. As before, the condensate appears with
opposite signs when comparing the electric and magnetic
backgrounds, and the pole structure remains consistent for
electric and magnetic fields, irrespective of particle type.
The imaginary part induced by the electric background
similarly becomes

Imm
dVs

eff

dm
¼ m2 eE

8�2

X1
n¼1

ð�1Þn
n

e�ððn�E0Þ=EÞ (59a)

¼ �m4

8��
lnð1þ e��Þ; (59b)

which is again negative in continued agreement with the
role of T in the proper mass-energy of the nonlinear
electromagnetic field.
Finally, the energy-momentum trace generated by the

scalar field quantum fluctuations is

T s ¼ m4

4�2�0
Z 1

0

s2 lnð1þ e��0sÞ
1þ s2

ds; (60)

in the magnetic background, and

T s ¼ � m4

4�2�

Z 1

0

s2 lnð1þ e��sÞ
1� s2 � i�

ds (61)

in the electric background. Similarly positive for all but the
highest electric fields, the scalar energy-momentum trace
is exhibited in Fig. 4 on right. The effect of the fermionic
statistics is apparent in the shift of the zero crossing to E ’
20:2E0. In the figure, we also compare the weak field
expansions,

m2h

�i � m4

48�2

E2

E2
0

� 7m4

1440�2

E4

E4
0

þ . . . (62)

T s � 7m4

1440�2

E4

E4
0

� 31m4

5040�2

E6

E6
0

þ . . . (63)
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where E2 ¼ B2 or E2 ¼ �E2 for magnetic or electric
fields, respectively.

The results for general electric and magnetic back-
grounds are

T s ¼ � m4

4�2
ðIa þ IbÞ; (64a)

Ia ¼
Z 1

0

dss2

1� s2 � i�

X1
k¼1

ð�1Þke�sk�

k�

�k�

�0 csch
�k�

�0 ;

(64b)

Ib ¼
Z 1

0

dss2

1þ s2
X1
k¼1

ð�1Þke�sk�0

k�0
�k�0

�
csch

�k�0

�
: (64c)

which is plotted in Fig. 5. The statistical form analogous to

Eq. (47) can be obtained from that expression by changing
to the fermionic þ sign in the denominator and omitting
the spin sum and 	 term in the quasi-Hamiltonians
Eq. (48); the spectral functions

sþ 1

2
ln

�
1� xþ i�

1þ x� i�

�
and s� arctans

remain unchanged. The weak field expansions for general
electromagnetic backgrounds are

m2h

�i � m4

24�2
S � m4

360�2
ð7S2 þ P 2Þ þ . . . (65)

T s � m4

360�2
ð7S2 þ P 2Þ � m4

630�2
Sð31S2 þ 11P 2Þ . . .

(66)

using S, P normalized to the natural field strength, E0.
Again, we compare with the Born-Infeld weak-field
energy-momentum trace [see Eq. (23)], and as above, the
coefficients of S2 and P 2 are not the same. For the scalar
quantum theory then, the two corresponding values for the
BI-type limiting mass are

MS ¼
�
45

7�2

�
1=4

m ¼ 18:64m; (67a)

and MP ¼
�
45

�2

�
1=4

m ¼ 30:32m: (67b)

E. Euler-Heisenberg dielectric function

As we will discuss below, the kinematical and gravita-
tional effects of a trace contribution to the electromagnetic
energy-momentum differ strikingly from the classical
Maxwell energy-momentum Eq. (2). Although this fact
should make experimental verification of the presence of

FIG. 5 (color online). The scalar energy-momentum trace for
general E;B fields, Eq. (64), parametrized by the Lorentz in-
variants. The dotted vertical line indicates the change in sign of
the trace to negative values for very large electric fields. The
transition is present up to arbitrary values of P as in Fig. 3.
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FIG. 4 (color online). For spinless particle fluctuations, we display the energy-momentum trace in units ofm4
e for both magnetic-only

(left) and electric-only (right) backgrounds. Again, the condensate is displayed for comparison in the magnetic case, and the imaginary
part of the trace present in the electric background. Note the change in sign of the trace is now at E ¼ 5:5E0.

LANCE LABUN AND JOHANN RAFELSKI PHYSICAL REVIEW D 81, 065026 (2010)

065026-10



the trace term easy in principle, the relative strength of the
classical contribution cannot be ignored in the study of real
physical systems. Thus, we complete the analysis of the
energy-momentum tensor of Euler-Heisenberg electro-
magnetism with evaluation of the dielectric function " ¼
�@Veff=@S.

The EH actions are corrections to the classical �S, so
the total dielectric functions have the form

"f � 1 ¼ � @Vf
eff

@S
:¼ �"f ; (68a)

"s � 1 ¼ � @Vs
eff

@S
:¼ �"s; (68b)

requiring differentiation of the expressions Eq. (25) and
(26), via the partial differentials ð@a=@SÞ@=@a and
ð@b=@SÞ@=@b, where

@a

@S
¼ �a

a2 þ b2
; and

@b

@S
¼ b

a2 þ b2
:

Considering first the fermionic case Eq. (25), we find

�"f ¼ 1

8�2

Z 1

0

ds

s3
eas cotðeasÞebs cothðebsÞ

a2 þ b2

� ðcothebs� ebscsch2ebs� coteas

þ eascsc2eas� 2

3
ðbþ aÞs2Þe�m2s; (69)

for which renormalization only requires subtraction of the
logarithmic divergence, since the zero-field constant is
differentiated away. Obtaining the meromorphic expansion
of the integrand by differentiating the Sitaramachandrarao
identity Eq. (A8), used above in Eq. (46), we have the
numerically more convenient representation

�"f ¼ e4

2�2

ab

a2 þ b2

Z 1

0
se�m2sðKa þ KbÞds; (70a)

Ka :¼ a2
X1
k¼1

�
k� cothðk�b=aÞ
ððeasÞ2 � k2�2Þ2 �

ðb=aÞcsch2ðk�b=aÞ
ðeasÞ2 � k2�2

�

(70b)

Kb :¼ �b2
X1
k¼1

�
k� cothðk�a=bÞ
ððebsÞ2 þ k2�2Þ2 þ

ða=bÞcsch2ðk�a=bÞ
ðebsÞ2 þ k2�2

�
:

(70c)

This form also provides the imaginary part

Im"f ¼ �

2�

��0

�2 þ�02
X1
k¼1

e�k�

k�

�
coth

k��

�0 � 2�

�0 csch
2 k��

�0

�

(71)

which is again a reflection the instability of strong electric
fields, as confirmed in Fig. 7 by its suppression in domi-
nantly magnetic fields. The polarization function in general
field configurations can also be exhibited in the quasistat-
istical form of Eq. (47), but the stronger singularity s�3 in

the proper time variable persisting in the absence of the
m-differentiation makes for simpler ‘‘spectral’’ functions

lnð1� s2 þ i�Þ and lnð1þ s2Þ
for the electric and magneticlike integrals Ka and Kb.
The weak field expansion of the dielectric function can

be obtained by straightforward differentiation of the ex-
pansion of the effective action, giving

�"f 6 � �

90�

e2

m4
8Sþ 2�

315�

e4

m8
ð24S2þ13P 2Þþ . . . (72)

For completeness, we exhibit the dielectric functions for
magnetic-only

�"fðBÞ ¼ � 2�

�

Z 1

0
ds

sðs2 þ 2Þ
ðs2 þ 1Þ2

X1
k¼1

e�k�0s

k2�2
(73)

and electric-only

�"fðEÞ ¼ � 2�

�

Z 1

0
ds

sðs2 � 2Þ
ðs2 � 1Þ2

X1
k¼1

e�k�s

k2�2
: (74)

backgrounds, recalling �0 ! �m2=eB and � ! �m2=eE
in the respective limits.
For the scalar case Eq. (25),

�"s ¼ �
Z 1

0

e�m2sds

16�2s3
eas cscðeasÞebscschðebsÞ

a2 þ b2

�
�
ebs cothebs� eas coteas� bþ a

3
s2
�
; (75)

again renormalized by subtraction of the logarithmic di-
vergence. The identity used above in Eq. (64), provides the
numerically more convenient representation

�"s ¼ � e4

4�2

ab

a2 þ b2

Z 1

0
dsse�m2sðKa þ KbÞ (76a)

Ka :¼ a2
X1
k¼1

ð�1Þkcsch
�
k�b

a

��
k�

ððeasÞ2 � k2�2Þ2

� ðb=aÞ cothðk�b=aÞ
ðeasÞ2 � k2�2

�
(76b)

Kb :¼ �b2
X1
k¼1

ð�1Þkcsch
�
k�a

b

��
k�

ððebsÞ2 þ k2�2Þ2

þ ða=bÞ cothðk�a=bÞ
ðebsÞ2 þ k2�2

�
(76c)

displaying the imaginary part

Im"s ¼ � �

4�

��0

�2 þ �02
X1
k¼1

ð�1Þk
k�

csch

�
k��

�0

�

�
�
1� 2�

�0 coth
k��

�0

�
e�k� (77)

which is positive only for dominantly electric (0< P <
�S) fields. The limits of magnetic- and electric-only back-
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ground are obtained immediately from Eqs. (73) and (74)
by multiplication with�1=2 and insertion of an alternating
ð�1Þk in the sum. The weak field expansion is

�"s 6 � �

1440�

e2

m4
14S

þ �

20 160�

e4

m8
ð279S2 þ 77P 2Þ þ . . . (78)

Numerical evaluations of the EH corrections to the
spinor and scalar dielectric functions for general field
strengths are displayed in Fig. 6. �" again reflects the
unusually square character of the EH integrals, though in
agreement with Born-Infeld theory, dominantly magnetic
fields suppress (�" < 0) the Maxwell tensor. However, the
boundary for which this magnetic suppression is present
differs between fermionic and scalar electrodynamics,
being approximately S / P 2 in the former case and S /
P in the latter. Indeed, the transition to augmentation

FIG. 6 (color online). The dielectric function for spin-1=2 (left panel) and spin-0 (right panel) quantum fluctuations. The value is the
correction to the Maxwell 1, and as in BI theory, a dominantly magnetic field (below the dotted line) gives a negative correction
suppressing the Maxwell energy-momentum.

FIG. 7 (color online). The imaginary part of the dielectric function for spin-1=2 (left panel) and spin-0 (right panel) quantum
fluctuations. For spin-1=2, the dielectric function is consistently positive; however, as indicated on the plot itself in the scalar dielectric
function, the imaginary part is positive to the left and negative to the right of the dotted line at S ¼ �P . The vanishing of �"s for the
anti-self-dual S ¼ �P field configuration is a striking difference from the spinor case, which is suppressed when S > P 2. Details are
suppressed when �" < 10�20.
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(�" > 0) appears to arise in conjunction with the growing
imaginary part, as seen in Fig. 7.

V. KINEMATICAL EFFECTS OF T

With numerics providing the magnitude of the induced
vacuum fluctuation, we can accurately evaluate physical
situations in which the modification of the Maxwell
energy-momentum tensor has observable consequences.
A fundamental (i.e. vacuum) nonlinearity of electromag-
netism is phenomenologically identical to a ponderable
medium with nonlinear dielectric response. As may be
verified by direct calculation (see also discussion in
Sec. 8 of [17]), the formal structure of the Lorentz force
is therefore unaltered

f� ¼ j�F
��; (79)

as it is dictated by the necessity of gauge invariance in the
coupling of EM potentials to charged matter. This point is
to be contrasted with the modification of particle
properties.

Violation of the superposition principle [23,24] entails
an interaction between the background field and the field
generated by the charged matter. Such an interaction can be
extracted by careful study of the Lorentz force [9], but it is
more easily evaluated using the weak field expansion of the
EH effective potential.

As an example, take a large (r > �- e) charged sphere in a
strong background magnetic field, which could provide a
rough model for an � particle in the atmosphere of a highly
magnetized neutron star. In the rest frame of a nonrelativ-
istic charged probe particle, we take the background mag-

netic field as constant ~B ¼ Bẑ and the electric field as the

particle’s Coulomb field ~E ¼ Zer̂=r2. Integrating the en-
ergy of the combined field configuration, T00, over the
volume with a short distance cutoff at the Compton wave-
length �- , the leading contribution is the trace T ! ueff :

ueff ¼
Z

d4x
2�2

45m4
e

ð7P 2 þ 4S2Þ ¼ 2�2

45m4
e

4�

3�-
ðZeBÞ2;

(80)

keeping only the nonlinear-sourced cross terms. The coef-

ficient of the Maxwell energy � @Veff

@S also induces cross

terms subleading at Oð�3Þ. The cutoff arises since at
distances shorter than �- we must use quantum dynamics
to describe the probe particle, consideration of which
would be inconsistent with the classical particle dynamics.

This interaction energy is positive, independent of the
sign of the charge, and comparable to the gravitational
potential of a neutron star with dipolar magnetic field. As
ugrav is negative and / r�1 and the effective (scalar) po-

tential goes with B2 / r�6,

ueff
ugrav

¼ 8�ð�ZÞ2
135026� 9mu�

�
eBsurf

m2
e

�
2 R6

surf

r6

�
1:48M�m

r

��1

(81)

converting Newton’s constant into the convenient units
G ¼ 1:48 km=solarmass. The �- cutoff in Eq. (80) cancels
against particle mass m, making Eq. (81) independent of
both the mass of the particle m and the cutoff �- .
Remarkably, at the surface of a 1:5M�, 14 km radius star
with critical surface field Bsurf ¼ Bc, the nonlinear-
electromagnetic effective potential is 34 times the gravita-
tional potential, resulting in a large repulsive, quasi-
Lorentz-scalar potential for charged particles entering the
strong field region.
For a relativistic particle, a consistent treatment and

thorough discussion of the force due to vacuum fluctua-
tions in a strong magnetic field are given in [9].

VI. DISCUSSION AND CONCLUSIONS

The central motivation of this study is the observation
that externally applied fields in nonlinear electromagne-
tism have a dark energy-like contribution to the energy-
momentum tensor. We therefore examined the physics
giving rise to the trace of the energy-momentum tensor
as an avenue of insight into the origin of the observed dark
energy in the universe. As T�

� in our study is generated by
quantum-induced nonlinearity of the electromagnetic field
the physics of dark energy is accessible to laboratory
experiment probing electromagnetism at high fields.
We derived the energy-momentum tensor for general

nonlinear electromagnetic theories and emphasized the
form Eq. (10). We considered the relationship of the trace
with the matter condensate and obtained a result, Eq. (36)
which amounts to removal of the leading term in S in
h �c c i. This reduces the numerical results by a factor of
about 100 and along with this, the physical dark energy
effect of the energy-momentum trace is greatly reduced.
Employing the resummation technique introduced in

[14], we numerically evaluated the deviations from the
Maxwell tensor, the dielectric function and the trace for
Born-Infeld electromagnetism and the Euler-Heisenberg
effective action with both Fermi and Bose matter fields.
We believe that these are the first presentations in literature
of the matter condensate and energy-momentum trace
arising from the Euler-Heisenberg action at field strengths
well beyond critical. The dielectric function is found in
both BI and EH to suppress the Maxwell tensor in the
presence of dominantly magnetic fields. The dielectric
response of the vacuum thereby enhances the observable
consequences of the presence of the energy-momentum
trace.
The Born-Infeld theory is at first sight an interesting

source of energy-momentum trace. However, a lower limit
on the limiting BI electric field strength obtained 30 years
ago from the study of precision atomic and muonic spectra
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[23] requires M2=e 
 1:71022 V=m, implying M 

60 MeV. Contemporary g� 2 experimental results, if an-
alyzed with the objective to set a limit on the BI scale,
would very probably push this limit further up. As g� 2 of
the electron in strong fields is in itself a project requiring
study of the two-loop Lagrangian [25], such analysis takes
us far beyond the scope of this paper, and we leave the
investigation to the future. The scale of the energy-
momentum trace of BI-type must be rather large and the
effect at best comparable to the effect of vacuum fluctua-
tions expressed by the Euler-Heisenberg effective action.
Even though the energy-momentum trace is suppressed by
the QED coupling, ð�=�Þ2 ¼ 6� 10�6 (see Sec. IV), the
effective scale 40me ’ 20 MeV implies that quantum fluc-
tuations remain dominant compared with any other current
theoretical framework, given the experimental constraints.

This is consistent with BI being a high-cutoff theory
arising from more fundamental matter properties. Hence,
we devoted the largest part of this report to expanding our
prior study of electron fluctuations in the vacuum, the
energy-momentum trace has previously been discussed as
a signal of vacuum deformation [9]. The energy density in
the trace is then interpreted as the shift of the vacuum
energy induced by the applied field, and in concordance
with this interpretation, the trace is positive definite when
extracted correctly from the effective action. The smooth
BI T highlights the extraordinary form of the quantum-
induced trace. Prior considerations of the analytic structure
of the Euler-Heisenberg effective action had not made
apparent the near singular boundaries present in the con-
densate and the trace. The present evaluations suggest
further investigations into the strong field vacuum phase
structure.

We provided further the first complete numerical calcu-
lations of the electron-positron condensates of spinor and
scalar QED for arbitrary fields and have addressed the
contradictory statements in literature relating to claims
that T and �mh �c c i are equal, and we found in our
nonperturbative study a clear difference originating in the
scale dependence of charge renormalization. We empha-
size that our evaluation of the condensate and of the
energy-momentum trace are completely independent of
renormalization procedure.

The energy-momentum trace of QED and its effects
exist anywhere and everywhere an electromagnetic field
is present. For instance, the observed dark energy density

�

4�G
’ ð2:325 meVÞ4 ’ 6:09� 10�10 J=m3 (82)

requires a magnetic field of 108 T. To claim such a mag-
netic field spanning most of the universe has gone as yet
undetected would be extremely far-fetched, and the mea-
sured intergalactic magnetic field on the order of �G is
clearly insufficient to explain the observed dark energy.

However, the lesson for cosmology is that the external
field framework reveals a physical interpretation of the
energy-momentum trace as the observable—and hence
gravitating—energy of a false vacuum. As the external
field is global in extent, this vacuum energy is indistin-
guishable from a cosmological constant. Thus, the QEDT
provides an experimentally tangible simulacrum of the
‘‘cosmological constant’’
We left open in this work the question of how the

structure of the QCD vacuum, which is very strongly
deformed by glue and quark fluctuations, relates to the
trace T and responds to an applied electromagnetic field.
Some discussion of this question, including its relation to
dark energy, has been already offered [4]. Combining the
quantum vacuum with general relativity is a very delicate
question [3]. Our report establishes an important connec-
tion, tying already-recognized quantum vacuum effects to
dark energy.
To summarize, we have studied the energy-momentum

tensor of nonlinear electrodynamics emphasizing an ex-
plicit relationship of the dark energylike trace of the
energy-momentum tensor Eq. (10b) to the nonlinearity of
the theory. In the consideration of electrodynamics as a
quantum gauge theory, the connection provided a new
derivation of a nonperturbative identity between the
energy-momentum trace and the gauge and matter con-
densates, Eq. (36). The Euler-Heisenberg effective action
provided a natural example for the numerical evaluation of
the condensate and energy-momentum trace, the results of
which are displayed for both fermionic and scalar fields in
Figs. 3 and 5. Finally, we briefly explored the implications
of an energy-momentum trace for charged-particle
kinematics.
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APPENDIX: IMPROVING CONVERGENCE OF
EULER-HEISENBERG INTEGRALS

In this appendix, we display the steps in the transforma-
tion of the proper time integrals Eqs. (25) and (26) into the
more rapidly convergent representations used for numerics
in the text.
The effective action for electrodynamics displays non-

analyticities that, generating an imaginary part of the ac-
tion, are associated with the instability of the vacuum.
However, our method of resumming the poles is very
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useful for improving the overall convergence of integrals
of the Euler-Heisenberg form, and we start with the case of
only a magnetic field being present, for which

�mh �c c i ¼ m2

4�2

Z 1

0

ds

s2
ðeBs cotheBs� 1Þ (A1)

is analytic on the real axis. We use the (subtracted) mer-
omorphic expansions,

x cothx� 1 ¼ 2x2
X1
k¼1

1

x2 þ k2�2
(A2)

¼ x2

3
� 2x4

X1
k¼1

1

ðk�Þ2
1

x2 þ k2�2
: (A3)

Inserting Eq. (A2) in Eq. (A1) we obtain

�mh �c c i ¼ m2ðeBÞ2
2�2

Z 1

0
ds

X1
k¼1

e�m2s

ðeBsÞ2 þ ðk�Þ2 : (A4)

All terms are individually absolutely convergent, so we
reorder the sum and integral following the procedure in
[14]. After rescaling s ! sk�=eB, the k sum is evaluated
in closed form and we obtain

�mh �c c i ¼ � m4

2�2�0
Z 1

0

lnð1� e��0sÞ
1þ s2

ds; (A5)

which is Eq. (41).
Equation (A3) allows us to remove the quadratic term in

Eq. (40), and, rescaling and resumming, we find Eq. (42).
A further integration by parts results in

T f ¼ m4

2�2

Z 1

0

s� arctans

e�
0s � 1

ds (A6)

which is the a ! 0 limit of Eq. (47), but we retain the form
Eq. (42) for clarity in the associated discussion of signs.

Turning now to B ¼ 0, i.e. electric field only with a !
jEj, we see in the meromorphic expansion

x cotx� 1 ¼ 2x2
X1
k¼1

1

x2 � k2�2

the singularities that indicate the instability of the system
to produce real pairs. We assign to the mass a small
imaginary component m2 ! m2 þ i� so that

�mh �c c i ¼ m2ðeEÞ2
2�2

Z 1

0
ds

X1
k¼1

e�m2s

ðeEsÞ2 � ðk�Þ2 þ i�
;

(A7)

whence resummation produces Eq. (43). Removing the
leading term in meromorphic expansion for the case of
the electric field by use of

x cotx� 1 ¼ � x2

3
þ 2x4

X1
k¼1

1

k2�2

1

x2 � k2�2
;

we obtain Eq. (44).
For general fields, the proper time integrals are rewritten

using the Sitaramachandrarao identity [Eq. (6) in [26] ]

xy cothx coty ¼ 1þ x2 � y2

3
� 2x3y

X1
k¼1

1

k�

cothðk�y=xÞ
x2 þ k2�2

þ 2y3x
X1
k¼1

1

k�

cothðk�x=yÞ
y2 � k2�2

(A8)

with the result

T ðQEDÞ ¼ m4

2�2
ðIaþIbÞ; (A9a)

Ia¼e4a3b
Z 1

0
dss2e�s

X1
k¼1

cothðk�b=aÞ
k�ðk2�2�ðeasÞ2Þ ; (A9b)

Ib¼e4b3a
Z 1

0
dss2e�s

X1
k¼1

cothðk�a=bÞ
k�ðk2�2þðebsÞ2Þ : (A9c)

Rescaling converts these expressions to those found in
Eq. (46).
The quasistatistical representation of Ia in Eq. (47) is

derived by exchanging the sum and the integral in order to
integrate by parts,

Ia ¼ �b
Z 1

0
ds

�
sþ 1

2
ln

�
1� xþ i�

1þ x� i�

��

� X1
k¼1

coth

�
k�a

b

�
e�ððk�Þ=ðeaÞÞm2s: (A10)

We break up the coth function:

cothx ¼ X
	¼	1

e	x

1� e�2x
e�x: (A11)

Expanding the denominator as a power series, the sum in
Eq. (A10) becomes

X
k;n;	

exp

�
� k�

ea
ðm2sþ ð2nþ 1� 	ÞebÞ

�
: (A12)

Since expð�k�b=aÞ< 1, the n sum is absolutely conver-
gent, though slowly when b=a � 1. We can exchange the
order of summation and do the k sum:

Ia ¼ �b
Z 1

0
ds

�
sþ 1

2
ln

�
1� xþ i�

1þ x� i�

��X
n;	

e��H 	

1� e��H 	

(A13)

with � � �m2=ea and m2H 	 the inner expression in
Eq. (A12), thus obtaining Eq. (47).
For the scalar case, Eq. (26), we require identities paral-

leling those used in the spinor integrations:
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xcschx� 1 ¼ � 1

6
x2 � 2x4

X1
k¼1

1

ðk�Þ2
ð�1Þk

x2 þ k2�2
(A14a)

¼ 2x2
X1
k¼1

ð�1Þk
x2 þ k2�2

(A14b)

x cscx� 1 ¼ 1

6
x2 þ 2x4

X1
k¼1

1

ðk�Þ2
ð�1Þk

x2 � k2�2
(A15a)

¼ 2x2
X1
k¼1

ð�1Þk
x2 � k2�2

: (A15b)

The representation for general fields uses an identity
closely related to Eq. (A8) [see Eq. (20) of [26] ]:

xycschx cscy ¼ 1þ x2 � y2

6
� 2x3y

X1
k¼1

ð�1Þk
k�

� cschðk�y=xÞ
x2 þ k2�2

þ 2xy3
X1
k¼1

ð�1Þk
k�

cschðk�x=yÞ
y2 � k2�2

: (A16)

For the further resummation resulting in the statistical
representation, the csch function is expanded analogously

csch x ¼ 2

1� e�2x
e�x ¼ e�x

X1
n¼0

e�2nx (A17)

but the absence of cosh in the numerator means no sum
over 	 is introduced. The remaining procedure is the same.

[1] E. Komatsu et al. (WMAP Collaboration), Astrophys. J.
Suppl. Ser. 180, 330 (2009).

[2] P. Serra, A. Cooray, D. E. Holz, A. Melchiorri, S. Pandolfi,
and D. Sarkar, Phys. Rev. D 80, 121302 (2009).

[3] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[4] R. Schutzhold, Phys. Rev. Lett. 89, 081302 (2002).
[5] H. Euler and B. Kockel, Naturwissenschaften 23, 246

(1935); H. Euler, Ann. Phys. (Berlin) 26, 398 (1936); W.
Heisenberg and H. Euler, Z. Phys. 98, 714 (1936); For
translation see arXiv:physics/0605038.

[6] J. S. Schwinger, Phys. Rev. 82, 664 (1951).
[7] M. Born and L. Infeld, Proc. R. Soc. A 144, 425 (1934).
[8] E. S. Fradkin and A.A. Tseytlin, Phys. Lett. 163B, 123

(1985); A.A. Tseytlin, Nucl. Phys. B501, 41 (1997).
[9] L. Labun and J. Rafelski, Phys. Lett. B (in press).
[10] M. S. Chanowitz and J. R. Ellis, Phys. Rev. D 7, 2490

(1973); Phys. Lett. 40B, 397 (1972).
[11] R. J. Crewther, Phys. Rev. D 3, 3152 (1971); 4, 3814(E)

(1971); Phys. Rev. Lett. 28, 1421 (1972).
[12] S. L. Adler, J. C. Collins, and A. Duncan, Phys. Rev. D 15,

1712 (1977).
[13] J. C. Collins, A. Duncan, and S.D. Joglekar, Phys. Rev. D

16, 438 (1977).
[14] B. Müller, W. Greiner, and J. Rafelski, Phys. Lett. 63A,

181 (1977).
[15] W. Dittrich and H. Gies, Phys. Rev. D 58, 025004 (1998).
[16] G.M. Shore, Nucl. Phys. B460, 379 (1996).
[17] I. Bialynicki-Birula and Z. Bialynicka-Birula, Quantum

Electrodynamics, (Pergamon, Oxford, 1975).
[18] J. Rafelski, L. P. Fulcher, and W. Greiner, Nuovo Cimento

Soc. Ital. Fis. B 7, 137 (1972).
[19] J. B. Kogut and D.K. Sinclair, Phys. Rev. D 73, 114508

(2006).
[20] I. A. Shushpanov and A.V. Smilga, Phys. Lett. B 402, 351

(1997).
[21] L. Labun and J. Rafelski, Phys. Rev. D 79, 057901 (2009).
[22] G. V. Dunne, H. Gies, and C. Schubert, J. High Energy

Phys. 11 (2002) 032.
[23] J. Rafelski, L. P. Fulcher, and W. Greiner, Phys. Rev. Lett.

27, 958 (1971); G. Soff, J. Rafelski, and W. Greiner, Phys.
Rev. A 7, 903 (1973); J. Rafelski, W. Greiner, and L. P.
Fulcher, Nuovo Cimento Soc. Ital. Fis. B 13, 135 (1973).

[24] C. A. Dominguez, H. Falomir, M. Ipinza, M. Loewe, and
J. C. Rojas, Mod. Phys. Lett. A 24, 1857 (2009).

[25] V. I. Ritus. in Proc. Lebedev Phys. Inst., Issues in Intense-
field Quantum Electrodynamics,Vol. 168, edited by V. I.
Ginzburg (Nova Science Pub., NY, 1987).

[26] Y.M. Cho and D.G. Pak, Phys. Rev. Lett. 86, 1947 (2001).

LANCE LABUN AND JOHANN RAFELSKI PHYSICAL REVIEW D 81, 065026 (2010)

065026-16


