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Quasilinear transport approach to equilibration of quark-gluon plasmas
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We derive the transport equations of quark-gluon plasma in the quasilinear approximation. The
equations are either of the Balescu-Lenard or Fokker-Planck form. The plasma’s dynamics is assumed
to be governed by longitudinal chromoelectric fields. The isotropic plasma, which is stable, and the two-
stream system, which is unstable, are considered in detail. A process of equilibration is briefly discussed in
both cases. The peaks of the two-stream distribution are shown to rapidly dissolve in time.
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L. INTRODUCTION

The quark-gluon plasma (QGP), which is produced in
relativistic heavy-ion collisions, is believed to be equili-
brated within a time interval of order of 1 fm/c or even
shorter [1]. Such a fast equilibration is naturally explained
assuming that the quark-gluon plasma is strongly coupled
[2-4]. Then, scattering processes are very frequent and
relaxation times are short. However, the theory of high-
energy density QCD [5] suggests that due to the existence
of a large momentum scale Q, at which the gluon density
saturates, the plasma is rather weakly coupled at the early
stage of the collision because of asymptotic freedom.
Experimental data on jet quenching indicate that the cou-
pling constant a, = 0.3 [6,7], even though the value as-
sumes averaging over the whole evolution of the QCD
medium created in the relativistic heavy-ion collision.
Thus, the question arises how fast the weakly interacting
plasma equilibrates. Because of anisotropic momentum
distributions the early stage plasma is unstable with respect
to the chromomagnetic plasma modes. The instabilities
isotropize the system and thus speed up the process of its
equilibration. The scenario of the instabilities-driven iso-
tropization is reviewed in [8]. However, the complete
evolution of the plasma momentum distribution is now
accessible only by numerical simulations [9-11].

The transport theory of a weakly coupled quark-gluon
plasma has been studied since the 1980s when the kinetic
equations in the mean-field approximation were derived
[12,13]. Although the mean-field dynamics is rather sim-
plified, the equations are still difficult to solve due to their
nonlinear structure. If one is interested in small deviations
from equilibrium or any other homogeneous and stationary
state, the equations can be linearized and then solved. The
mean-field transport theory, which is linearized in small
deviations from equilibrium, is now well understood, for a
review see [14]. It is known to be equivalent to the effective
QCD in the hard-thermal loop approximation. The linear-
ized transport theory around any homogeneous and sta-
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tionary but nonequilibrium plasma state was also worked
out and the connection with the diagrammatic hard loop
approximation was established [15,16]. Numerous prob-
lems of the theory of the quark-gluon plasma were success-
fully resolved within the hard loop approach. For example,
a systematic method to eliminate infrared divergences,
which plague perturbative calculations, was developed,
see the reviews [17,18].

However, various questions cannot be addressed within
the mean-field theory. For example, transport coefficients
are then formally infinite. Thus, there were numerous
efforts to derive transport equations of quark-gluon plasma
which hold beyond the hard loop approximation [19-39].
These efforts were mostly concerned with the transport
properties of an equilibrium quark-gluon plasma. Our mo-
tivation is rather different. We are interested in equilibra-
tion of quark-gluon plasma, in particular, in the
equilibration of the system which is initially unstable.
Thus, we intend to study how fluctuating deviations from
a quasistationary nonequilibrium state influence the sys-
tem’s bulk or average momentum distribution. This effect
of backreaction is particularly important in the case of
unstable systems. The linear response theory describes
how unstable modes initially grow in the presence of a
nonequilibrium momentum distribution, but it says nothing
on how the modes modify the plasma momentum distribu-
tion. Thus, the problem of equilibration cannot be ad-
dressed in such a theory.

Our objective here is to derive the transport equations
where the bulk distribution function slowly evolves due to
the interaction with fluctuating chromodynamic fields. We
actually consider only a simplified problem of QGP in a
self-consistently generated longitudinal chromoelectric
field. This simplification is not much needed for isotropic
plasma but it appears crucial to study anisotropic systems.
Taking into account only the longitudinal chromoelectric
field, we obtain the transport equations of the Fokker-
Planck or Balescu-Lenard form which describe the effect
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of backreaction. A similar, but incomplete effort was
undertaken by Akkelin [39]. The derivation presented
here closely follows the procedure developed for the elec-
tromagnetic plasma, where it is known as the quasilinear
theory or the theory of a weakly turbulent plasma [40-42].
The theory assumes that the distribution function of plasma
particles can be decomposed into a large but slowly vary-
ing regular part and a small fluctuating or turbulent one
which oscillates fast. The average over the statistical en-
semble of the turbulent part is assumed to vanish and thus
the average of the distribution function equals its regular
part. The turbulent contribution to the distribution function
obeys the collisionless transport equation while the trans-
port equation of the regular part, which is our main interest
here, is determined by the fluctuation spectra. The fluctua-
tions of chromodynamic fields, which are used to derive
the quasilinear transport equations, were studied in [43]
where stable and unstable plasma states were considered.

The Fokker-Planck equation derived here is somewhat
similar to the equation obtained in [44,45]. It was used
there to show that the chromomagnetized quark-gluon
plasma exhibits an anomalous shear viscosity, as presence
of the domains of chromomagnetic field leads to the mo-
mentum transport in the plasma.

Our paper is organized as follows. In Sec. II we present
the QGP transport equations; the notation and conventions
are introduced. The decomposition of the distribution func-
tions into the regular and turbulent parts is discussed in
Sec. III. The explicit expressions of the fluctuating distri-
bution functions which obey collisionless transport equa-
tions are derived in Sec. IV. A general form of the
equations of the regular distribution functions is found
here as well. Further discussion splits into two parallel
parts: Section V is devoted to the stable isotropic plasma
while in Sec. VI the unstable two-stream system is dis-
cussed. Although we neglect transverse chromodynamic
fields, the collision terms of transport equations, which are
found here for an isotropic plasma, are very similar to those
derived in [19,21,25,25,26,29-33]. As an application of the
transport equations we derived, a process of equilibration
of the isotropic plasma and of the two-stream system is
discussed. The paper closes with a summary of our con-
siderations and outlook.

II. PRELIMINARIES

The transport theory of a quark-gluon plasma, which
forms the basis of our analysis, is formulated in terms of
particles and classical fields. The particles—quarks, anti-
quarks and gluons—should be understood as sufficiently
hard quasiparticle excitations of quantum fields of QCD
while the classical fields are highly populated soft gluonic
modes. An excitation is called ““hard” when its momentum
in the equilibrium rest frame is of order of the temperature
T, and it is called ‘“‘soft” when the momentum is of order
gT with g being the coupling constant. Since we consider a
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weakly coupled quark-gluon plasma, the coupling constant
is assumed to be small g < 1. In our further considerations
the quasiparticles are treated as classical particles obeying
Boltzmann statistics but the effect of quantum statistics can
be easily taken into account.

The transport equations of quarks, antiquarks and gluons
are assumed to be of the form

1
DO x,p) = 5{F(t, 1), V,0(1r, p)} = 0,
DO, x.p) + 3 {F6 1.V, 06 e =0, (1)
DG(t,r, p) — %{F(z‘, r),V,G(t,r,p)} = 0.

The (anti-)quark distribution functions Q(z, r,p) and
O(t,r, p), which are N. X N, Hermitian matrices, belong
to the fundamental representation of the SU(N,) group,
while the gluon distribution function G(z, r, p), which is a
(N2 — 1) X (N? — 1) matrix, belongs to the adjoint repre-
sentation. The distribution functions depend on the time
(#), position (r) and momentum (p) variables. There is no
explicit dependence on the timelike (1 = 0) component of
the four-vector p* as the distribution functions are as-
sumed to be nonzero only for momenta obeying the
mass-shell constraint p#p, = 0. Because the partons are
assumed to be massless, the velocity v equals p/E,, with
E,=1pl. D= DY + v-D is the covariant substantive
derivative given by the covariant derivative which in the
four-vector notation reads D* = 9* — ig[A*(x), - - -] with
A#(x) being the chromodynamic potential. The mean-filed
terms of the transport Egs. (1) are expressed through the
color Lorentz force F(z, r) = g(E(z,r) + v X B(t, r)). The
chromoelectric E(z, r) and chromomagnetic B(z, r) fields
belong to either the fundamental or adjoint representation.
To simplify the notation we use the same symbols D, D°,
D, E, and B for a given quantity in the fundamental or
adjoint representation. The symbol {...,...} denotes the
anticommutator.

The collision terms are neglected in the transport
Egs. (1). The collisionless equations are applicable in three
physically different situations: when the distribution func-
tion is of (local) equilibrium form; when the timescale of
processes of interest is much shorter than the average
temporal separation of parton collisions; and when the
system dynamics is dominated by the mean field. In our
study we refer to all three situations. When the equilibra-
tion of isotropic plasma is discussed, it is crucial that the
collision terms vanish in local equilibrium. In the case of
an unstable two-stream system, the effects of collisions can
be initially neglected, as the growth of unstable modes is
very fast. Later on, the strong fields become mostly re-
sponsible for the system’s evolution.

The transport equations are supplemented by the Yang-
Mills equations describing a self-consistent generation of
the chromoelectric and chromomagnetic fields. The equa-
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tions read

D -E(t,r) = p(t, 1)

D-B(s,r) =0,

D X E(r,r) = —DyB(z, 1),

D X B(r,r) = j(t,r) + DyE(z, 1),

@)

where the color four-current j* = (p, j) in the adjoint
representation equals

dp ﬁ
) @n) E,
+ 79(Q(1, 7, p) — O(1, 1, p))], 3)

where 7¢, T¢ witha = 1, ..., N> — 1 are the SU(N,) group
generators in the fundamental and adjoint representations,
normalized as Tr[7¢7?] =16 and TH{T9T"] = N6.
The set of transport Egs. (1) and Yang-Mills Eqs. (2) is
covariant with respect to SU(N,.) gauge transformations.

jitr)=— Ti[T°G(t, r, p)

III. REGULAR AND FLUCTUATING QUANTITIES

We assume that the chromodynamic fields and distribu-
tion functions which enter the set of transport equations
can be decomposed into the regular and fluctuating com-
ponents. The quark distribution function is thus written
down as

o(t,r,p) =(0(t,r, p)) + 60(t, 1, p), (4)

where (- - -) denotes ensemble average; (Q(1, r, p)) is called
the regular part while §Q(z, r, p) is called the fluctuating or
turbulent one. It directly follows from Eq. (4) that (§Q) =
0. The regular contribution is assumed to be white, and it is
expressed as

(Q(1,r,p)) = n(t,r, p)l, )

where / is the unit matrix in color space. Since the distri-
bution function transforms under gauge transformations as
Q — UQU™', where U is the transformation matrix, the
regular contribution of the form (5) is gauge independent.
We also assume that

KO > |60, IV () > |V,560| (6)
but at the same time

960 Q)

o0 | |2 | V501> V(). (7)

Analogous conditions are assumed for the antiquark and
gluon distribution functions. What concerns the chromo-
dynamic fields, we assume in accordance with (5) that their
regular parts vanish and thus

(E(t,1)) = (B(1, 1)) = 0. ®)

We substitute the distribution functions (4) into the
transport equations and the Yang-Mills equations and lin-
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earize the equations in the fluctuating contributions. The
linearized transport and Yang-Mills equations remain
rather complex. Therefore, we discuss here a simplified
problem: we consider a QGP in the presence of turbulent
longitudinal chromoelectric fields, but neglect the chromo-
magnetic and transverse chromoelectric fields. This sim-
plification can be avoided for an isotropic plasma but it is
needed, as explained below, to make progress on an ana-
lytical treatment for anisotropic systems which are our
main interest here. The simplified transport equations
then read

DésQ(t,r,p) — gE(t, 1) - V,n(t,r,p) =0,
DsQ(t,x,p) + gE(t,x) - V,ia(t,r,p) =0, 9)
DGt r,p) — gE(1, 1) -V n,(t,1,p) =0,

where D = L + v -V denotes from now on the material
(not covariant) derivative.

The equation describing the self-consistent generation
of a longitudinal chromoelectric field is

d3
V-E, (1) = palt,r) = —gf(zT’;aNa(a rp). (10)

where

SN,(t,xr,p) = Tr[7*(80(t, xr, p) — 8QO(t, r, p))
+ T*8G(t, 1, p)]. (11)

The linearized equations are formally Abelian but they
include a fundamentally non-Abelian effect, i.e. the gluon
contribution to the color current. Therefore, the gluon-
gluon coupling is partly taken into account. The linearized
Yang-Mills equation corresponds to the multicomponent
electrodynamics of N, charges (in the so-called Heaviside-
Lorentz system of units). The equations, however, are no
longer manifestly covariant with respect to SU(N,) gauge
transformations. Nevertheless, our final results are gauge
independent.

We now substitute the distribution functions (4) into the
transport Eqs. (1). Instead of linearizing the equations in
the fluctuating contributions, we take the ensemble average
of the resulting equations and trace over the color indices.
Thus we get

Dn - Ni TH(E - V,60) = 0,

c

Dii + Ni T(E - V,80) =0, (12)

c

g
Dn, —
TN

THE - V,8G) = 0.

Since the regular part of distribution function is assumed to
be color neutral, see Eq. (5), the terms of the form Tr[(E -
V,n)] vanish because the field E is traceless. The trace
over color indices also cancels the terms originating from
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covariant derivatives like Tr([A#, §Q]). We finally note
that the regular distribution function n is gauge indepen-
dent and so is T(E - V,6Q).

IV. SOLUTION OF THE LINEARIZED EQUATIONS

Because of the condition (7), the space-time dependence
of the regular distribution functions is neglected in the
linearized transport Eqgs. (9) and the equations become
easily solvable. We solve Eq. (9) with the initial conditions

5Q(t = O’ r, P) = 5Q0(rr P),
80(t=0,r,p) = 5Q(r, p), (13)
8G(t = 0,1, p) = 8Gy(r, p),

using the one-sided Fourier transformation defined as
flok = [ar [@reer . aa
0

The inverse transformation is

wotic do [ d3k
f(tr) =[

—cotio 27T 2m)3 ¢

where the real parameter o > 0 is chosen in such a way
that the integral over w is taken along a straight line in the
complex w-plane, parallel to the real axis, above all singu-
larities of f(w, k). We note that

7i(wt7k~r)f(w’ k), (15)

—iof(w, k)= f(t=0k) + [w dtfd3rei(wt—k~r)
0

af(t,r)
x S (16)
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The linearized transport Egs. (9), which are transformed
by means of the one-sided Fourier transformation, are
solved as

l.gE -V, n(p) + 6Qy(k, p)

50(w, Kk, p) = P ’
) E - V,ii(p) — 8Q(k,
50(w, k,p) = i 1) =00k p) (g
w—k-v
E-V + 8Gy(k,
3G(w,k,p)=,’g () ol P)'
w—Kk-v

We note that the color electric field E(w, k) retains its full
frequency and wave number dependence in these equa-
tions. Inverting the one-sided Fourier transformation, one
finds the solutions of linearized transport equations as

50(t1,p) = g ﬁ) "AE(, T — V(i — 1))V, n(p)
+6Q(r — v, p),

50(,r,p) = —g jo "APE(x — vt — 1)) - V,i(p)
+8Q,(r — vt, p),

5G(1 v, p) = g fo "AYE(, T = V(i — 1)) - V,ny(p)
+ 8Gy(r — vt, p), (13)

where we assumed that E(w, k) is an analytic function of

w. With the help of solutions (18), the force terms in the
transport Egs. (12) become

(E(r,r) - V,860(1,1,p)) = ¢ [01 di'Vi(E'(t, r)E/ (', x — V(1 — ))Vhn(p) + VI(E (1, r)6Qo(r — v1,p)),

(E(t1)-V,80(,1,p) = —¢ fo LdrV B DB, T — V(e — )Vhi(p) + Vi(E (6, 1)80(r — vi,p)),  (19)

(E(1,r) - V,8G(1,1,p)) = g ]0 LAV (E (0 E ([, t — V(e — £)Vn,(p) + Vi(E (1, 1)8Go(r — vt, p)).

We conclude that the transport Egs. (12) are determined
by the correlation functions <(Ei(t,r)E/(¢, 1)),
(E'(1,1)8Q,(r", p)), (E'(1,1)8Q,(r", p)), and
(E'(t,1)8G(r!, p)). To compute these functions, the state
of the plasma must be specified. Although we are mainly
interested in an anisotropic plasma, we start with the iso-
tropic case. Thereafter, we consider the two-stream system.

|

(B ) = S e [T 2
&p f(p)
% /(27)3 -k V(K -v)

otic dw Ak fwﬂa’ do'
(277')3 7oo+io"ﬁ

V. ISOTROPIC PLASMA

For the case of isotropic plasma, the correlation func-
tions of both longitudinal and transverse fields are well
known [43]. Here we limit our considerations to longitu-
dinal chromoelectric fields, whose correlation function is
[43]:

BK
2m)*

kKK (27)389 (k! + k)
k’k”? g, (w, k)e; (o', k')

—i(wt+o'! —k-r—k'-r')

(20)

where f(p) = n(p) + 7ii(p) + 2N n,(p) and &, (w, k) is the longitudinal chromodielectric function discussed in the
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Appendix. Note that we do not assume that n(p), 7i(p), and n,(p) are given by the thermal equilibrium distributions, only
that they are isotropic functions of p. Zeroes of g; (w, k) and &, (w’, k') as well as those of the denominators (w — K - V)
and (o’ — K’ - v) contribute to the integrals over w and w’. However, when the plasma system under consideration is stable
with respect to longitudinal modes, all zeroes of g; lie in the lower half-plane of complex w. Consequently, the
contributions associated with these zeroes exponentially decay in time, and they vanish in the long-time limit of both ¢
and .

We are further interested in the long-time limit of (E(t, r)E'(#, r')). The only nonvanishing contribution corresponds to
the poles at w = k - vand o’ = K’ - v. This contribution reads

Ep [ Pk - KK @)
Qm)? J @2n)? k* |e (k- v, k)|?

_ 2
(E(nDE) () = Lo 1)

The correlation functions like (E', (¢, r)6Q,(r’, p’)) are not computed in Ref. [43], but they can be readily inferred from
the formulas given there. One finds

wtic do [ &Pk [ Pk kK m)3s® (k' + k)  n(p')

E; t,r)o /, Ny = — “f ) = —i(wt—k-r—k’-r')
(Ei(t, 1) Q()(l' p') 87T Ry (277_)3 (277_)3 k2 sL(w, K) ©o—Kk-v
Pk o K n(p’)
= jora —ik-(Vt—r+r')) 2
T (2m)? ¢ k? g, (k -V, k) (22)

where the last equality holds in the long-time limit which is carried by the contribution corresponding to the pole w =
k - v. Similarly, one finds

otic do [ &’k [ K K m)3s® (k' + k) a(p')

Ei 1, 6_ /, Ny — a[ «w —i(wt—k-r—k’-r')
(EaltroQop ) =g | on ) Gar ) Gar© K e(wk) w-kV
Pk ok a(p’)
— _:o.a —ik-(Vi—r+r)) 23
g7 f<2w)3e LA (23)

, wtic d &Pk [ PK . ook (2m)389 (k! + k !
(Ei(1,£)8G(x', p')) = —gT* f w[ f p-itorkr—k K M8V + k) ny(p')

—witic 2 ) 2m)F ) @m)? k? g (w, k) w—k- Vv
= igT" [ %e"k'w’”*r/»é—;i& (’:;@V/,) 0 (24)
Substituting the correlation functions (21) and (22) into (19), one finds o
B0 V000500 = § 08 = 1) [y [42 [ ewomentl S8 gl
+iS W2 - 1)V (g:; % - (E(Pi, o (25)

and analogous expressions for Tr(E(s,r) -V péQ_(t, r,p)) and TrE(s,r)-V,6G(t,r,p)). As shown in [43],
Tr(E'(t, *)E/(¢, r')) is gauge independent within the linear response approach. The same arguments used to show this
apply to Tr{Ei(t,r)8Q,(r’, p’)). Thus, we conclude that the collision term of the transport Eq. (12), Tr(E(z,r) -
V,80(t, 1, p)), is gauge independent.
Let us now discuss the first term on the right-hand side of (25). Computing the integral over ¢’ we get
3 3 31 it /
g . [ dp &’k k'K f(p)
TE(,r) -V 60, =—N§—1V’f -—
cos(k - (v—=v)t)—1 sin(k - (v—v))\_;
X | —i + \% : 26
( : k-(v—V) k-(v—V) )pn(p) (26)

The first term does not contribute to the integral because it is an odd function of k. Since in the limit r — oo we have

one finally finds
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&Sk kK f(p) Sk - (v—v)Vin(p). (28)

3
TH(E(, 1) - V,80(t, 1, p))(1) = gz (N2 — 1)V

Analogously, one computes Tr(E(zr) - VPSQ_(t, T, P
and TE(, 1) - V,6G(¢, 1, p))).
The second term on the right-hand side of (25) can be
written as
A’k

TE(t, 1) - V,60(1, 1, p))) = %(N% -V, [(277)3

K e lcnk)
K Sekovk) o
K ek -v. k)PP

(29)

because the term with Ne; (K - v, K) is an odd function of
k (see the Appendix). Alternatively, one can argue that the
right-hand side of (29) has to be real as the left-hand side is
real. In the same way one finds (E(z, r) - V,,(SQ_(I, r,p)o
and (E(t,r) - V,8G(1, 1, p))()-

With the formulas derived above, the transport Egs. (12)
can now be written either in the Balescu-Lenard form or
the Fokker-Planck form.

A. Balescu-Lenard equations

Using the formula (A2) to express Jeg; through the
distribution function, the transport Eqs. (12) get the
Balescu-Lenard form [42]

Dn(t,r,p) =V, -S[n, 1, n,],
Di(t,x,p) =V, -S[n, it n,), (30)
Dny(t,x,p) =V, - S,[n, @i, n,],

where, as previously, D is the material derivative, and

3 ,
St ] = [ &5 BT 9)
— n(p)V1, f(p")]
3 '
Stnan]= [ (‘; L B VLV}0) )
— )V, f(p))],
Y (A - /
Seln, i, ng] = WBg v, V)[Vyn,(p)f(p')
= ng(P)V), f(p")] (31)
with
By = & N =L [k KK 2ma(k - (v = V)
YWERTN, J o K ek v P
(32)
and

p (277.)3

2 k* |ey(k -V, k)|?

y 2N?
Bi(v, V) = ¢

Bii(v, v').
N1 (v, V) (33)

Since the interaction processes that are taken into account
conserve the numbers of particles of every species (g, g, g),
the transport equations in the Balescu-Lenard form (30)
can be seen as continuity equations in momentum space

with S, S, S, playing a role of currents. One observes that
for classical equilibrium functions

f4(p), n*4(p), *4(p), ng'(p) ~ e /7, (34)
the collision terms (31) vanish, as expected, because
(vi — v')Bi(v,v') = 0. (35)

If &; (w, k) is replaced by unity, i.e. if one ignores the
chromodielectric properties of the plasma, the tensor
B/ (v, V') is easily found to be

¢t N2-1 L

BY(v.v) = 327 N, |v—V]|
G W =) =)
with
L= [ dk/k = 1ol i) (37)

The parameter L is called the Coulomb logarithm and the
collision term with the tensor B/ (v, V') of the form (36) is
called the Landau collision term [42]. Estimating k., as
the system temperature 7 and k,;, as the Debye mass
mp ~ gT, one finds L ~ In(1/g).

It may appear strange that we start with the collisionless
transport Egs. (1) to derive the collision terms. This pro-
cedure, which is commonly used in the plasma literature, is
well justified, however, see e.g. Ref. [42]. The collision
terms, which are derived above, represent the effect of
fluctuating soft fields on the hard quasiparticles. It is
important to note that the collision terms are dominated,
as they should be, by the soft wave vectors. Consequently,
the collisions of quasiparticles involving the exchange of
hard momenta, which are neglected in Egs. (1), do not need
to be taken into account at lowest order.

B. Fokker-Planck equations

Sometimes it is more convenient to use the transport
equations in the Fokker-Planck form. Following Ref. [42],
one rewrites Egs. (30) as

065021-6



QUASILINEAR TRANSPORT APPROACH TO ...
(D — Vi, X (V)V}
(D — Vi Xii(v)V}

=V, Y'(W)n(t,r,p) =0,
= VioYi(v)a(s, r, p) = 0, (38)

(D — ViXJ (V)V} — ViYi(W)n,(r,r,p) = 0
where

4 3 ../ 3 i1,j /
oy — & (a2 d’p dk k'K f(®)
Xi(v)=(N?—1
=500 (G [ 5o Wt v

X2mwd(K - (v—V))
3!

2 )g

f(@"BY(v, V), (39)

Pk kK TJe; (kv k
()Eg—Nz—l)f 3_2\58L( v )2
2 (27)° k? |e; (k - v, k)|

&Ep [ Pk K k-V,f(p')
_ 2
(N 1),[ [277')3 k* le, (k - v, k)|?

X 2778(k (v—=v))

&Ap . g
== ,[(277')3 v;,ff(P/)Bl](V: V/)? (40)
and
ng(V) = WXU(V)’ (41)
Yy(v) = NC Y’( )- (42)

The Eqgs. (38) appear to be linear but actually they are not:
the coefficients X (v), Y¥(v), X¢(v) and Yi(v) depend on
the distribution functions. When the distribution functions
are of the classical equilibrium form
(f4(p), n*4(p), i%(p), ng'(p) ~ e £»/T), we have the rela-
tion
. Ui ..
Yi(v) = TXU(V). (43)
Consequently, the Fokker-Planck collision terms vanish in
equilibrium, as do the Balescu-Lenard collision terms.

‘Since the system is assumed to be isotropic, X ii(v) and
Y'(v) can be expressed as follows:

XU(v) = ad + bviv/, (44)
Yi(v) = cv', (45)
with
d3
a=z 2m) fPH8" — vvi]BY(v, V)  (46)
&p' / j Ji1gii
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&dp .
vV f(p')BY (v, V). 48
Because of the system’s isotropy, the coefficients a, b, ¢
can depend only on v2. In the ultrarelativistic limit, which
is adopted here, v2 =1, and consequently a, b, ¢ are
independent of v. We also note that in equilibrium the
coefficients are related as

Tc=a-+b, 49)

which follows from Eq. (43).
When g (w, k) is replaced, as previously, by unity one
finds that » = 0 and

a=sE MR j dpp*f(p),  (50)

C_

963(N2 1)Lf dpp dfg’). (51)

Using the relations (AS), the coefficient ¢ can be expressed
in terms of the Debye mass as

2

_ 8
2472

(N2 = 1)Lm3, (52)

Furthermore, in equilibrium, a = ¢T.

We note that in spite of our neglect of transverse chro-
modynamic fields, the collision terms for the isotropic
plasma derived here are very similar to those derived in
[19,21,25,26,29-33].

C. Equilibration of an isotropic plasma

As an application of the Fokker-Planck Egs. (38) we
discuss the problem of plasma equilibration. In this section
we limit our considerations to quarks, as the analysis for
antiquarks and gluons is very similar. We consider the
system which is homogenous and mostly equilibrated but
a small fraction (A << 1) of the particles, denoted by
Sn(t, p), is out of equilibrium. One asks on what time scale
the system reaches the equilibrium. The distribution func-
tion is assumed to be of the form

n(t,p) = (1 — M)n®(p) + Adn(z, p). (53)

In the course of equilibration n(z, p) tends to n°4(p). Since
the particle number is conserved within the transport the-
ory approach developed here, dn(z, p) is not reduced to
zero in the equilibration process but it tends to n¢4(p).
We define the rate of equilibration I" through the relation
an _ I'én. (54)
Jt
We note that I" is either positive, when én grows going to
n®, and it is negative, when on decreases going to nd.
Using the Fokker-Planck Eq. (38), the definition (54) gives
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U vioi s i
I'= < (VjX'V} + V}Y)on. (55)

Since the fraction of particles with nonequilibrium dis-
tribution is assumed to be small, the coefficients a, b, ¢
from the formulas (44) and (45) are given by the equilib-
rium function n% ~ ¢~ £/T. Using the approximate ex-
pression of a (50) with b =0 and ¢ = a/T, Eq. (55) is
rewritten as

a 1 2
r=—(V2+_-v-V +—)5. 56
an("TV”TEp” (56
The equilibration rate obviously depends of the form of
on. Here we consider the case where the small fraction of
partons has an equilibrium distribution of temperature 7
which differs from the temperature 7 of the bulk of the

partons. Thus, 6n ~ e £»/To. Then, the equilibration rate
(56) equals

T—T,

I'=a 5
T2TE,

(E, — 2T,). (57)

For T = T,, the whole system is in equilibrium and, as
expected, I' = 0. When T > T, the distribution e £»/70 is
steeper than e £»/T. Equation (57) tells us that &n de-
creases for E, < 2T, and grows for E, > 27|, during the
equilibration process. When T' < T\), we have the opposite|

k2 — (k - u)?

PHYSICAL REVIEW D 81, 065021 (2010)

situation. In both cases, the slope of the distribution func-
tion on tends to the slope of n®l. With the coefficient a
given by (50), the formula (57) quantitatively predicts how
fast the equilibrium is approached.

VI. TWO-STREAM SYSTEM

The two-stream configuration provides an interesting
case of an unstable plasma. The correlation function of
longitudinal chromoelectric fields, which is needed to de-
rive the transport equations, was computed in [43].
Unfortunately the correlation function for transverse fields
is not known. This limits our considerations to longitudinal
fields.

The distribution function of the two-stream system is
chosen as

f)=QaPn[6%(p—-q +%p+ql (58

where n is the effective parton density in a single stream.
The distribution function (58) should be treated as an
idealization of the two-peak distribution where the parti-
cles have momenta close to q or —q.

To compute g; (w, k) we first perform an integration by
parts in (A1) and then substitute the distribution function
(58) into the resulting formula. We obtain

e (w, k) =1—pu? 2

1 n 1
(w — k - u)? (w+k-u)2:|
(0~ oK)+ o (k)0 - o_(k)(o+ o (k)

(0 = (k- u)’)? ’

(39)

where u = q/E, is the stream velocity, u* = g’n/2E, and *w. (k) are the four roots of the dispersion equation

g1 (w, k) = 0 which are explicitly given by

wi(k) = %[kz(k ‘w4 pi(k? = (k-w)’) = ,u\/(k2 — (k- w)@k*(k -u)* + p*(k* — (k- w)?)]  (60)

One can show that 0 < w, (k) € R for any k, while w_ (k) is imaginary for k - u # 0 and k*>(k - u)?> <2u?(k> — (k -
u)?). w_ represents the well-known two-stream electrostatic instability generated by a mechanism analogous to the
Landau damping. For k?(k - u)?> = 2u?(k? — (k - u)?), the w_ mode is stable: 0 < w_(k) € R.

The terms like (E(z, 1) - V,6Q(1, r, p)), which enter the transport Egs. (12), are given by Eqs. (19). As for the isotropic
plasma one needs to specify the correlation functions (E!(w, k)Ei(w’, k'), (E(t,r)6Q,(r’, p')), etc. The correlation
function of the longitudinal fields (E!(w, k)E/ (o', k')) was found in [43]:

(El(w, K)E}(', k') = —g28n

2m)38C)(k + k') kik/

[wow + (k- u)(k’ - u)]

X

k2
w? — (k - u)?

(@ = w_(K)(o + o_(k) (o - o (k)0 + o (k)

wl2 _ (k/ . u)2

0 o K@+ o K@ — o KN F oK)

(61)

We are particularly interested in the contributions of the unstable modes to the correlation function. For this reason we
consider the domain of wave vectors obeying k - u # 0 and k?(k - u)> < 2u?(k?> — (k - u)?) when w_(Kk) is imaginary
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and the mode is unstable. We write w_ (k) = iy, with 0 < vy, € R. The contribution coming from the modes * w _ (k)
then equals [43]

Pk e®r) ki (yE + (k- u)?)?

G K Wl-alF N

X [(yi + (k- w)*) cosh(yy (r + 1)) + (v — (k - w)?) cosh(yy (r — )]. (62)

As Eq. (62) shows, the contribution of the unstable modes to the field-field correlation function is space translation
invariant—it depends only on the difference (r — r’). If the initial plasma is on average homogeneous, it remains so over
the course of its evolution. The time dependence of the correlation function (62), however, is very different from the spatial
dependence. The electric field grows exponentially and so does the correlation function, both in (¢ + #) and (¢ — ¢'). The
fluctuation spectrum also evolves in time as the growth rate of the unstable modes is wave-vector dependent. After a
sufficiently long time the fluctuation spectrum will be dominated by the fastest growing modes.

The correlation function (E(z, r) 8 Q,(r — vz, p)) is, as previously, given by Egs. (29). Since the dielectric function (59) is
real, the correlation functions (E(z, r)8Q,(r — vt, p)), (E(f, r)8Q(r — vt, p)) and (E(z,r)8G,(r — vz, p)) all vanish.

2
; j 8
(EL(t, ) EL (1, ¥))unstable = 5 8n

Therefore,

Tr(E(1,r) - V, 80,1, p)) = g fo LAV (E (0 E (!, — V(e — ) Vn(p)

Bk eikv(tft’) Kk

O W e 4 i up)

3

_8 o ! /i[
- (N: 1)nf0dtv,, :
X

27} kKt (0 — w?)? yi

cosh(yy (t + 1)) + (y2 — (k - u)?) cosh(y, (r — t’))]V{,n(p).

(63)

Performing the integration over ¢ and keeping only the real part, one finds

&k

KK O+ (k-wp2p

3
THEG D) V,600,1.p) = £ (V2 = DaV) f

2m) k(0 — 02)? yilyi + (kv))

[y; sinh(2yy1) + (k - u)?

X (yg sinh(2yy 1) + (k - v) sin((k - v)z) cosh(yy 1) — v cos((K - v)z) sinh(yy t))]Vf,n(p).

Neglecting the oscillating terms, we finally get
g’ d*k

(64)

i1 2 . 2)3 ;
KK Oa (k) o V). (65)

Tr(E(s,r) - V,60( 1, p)) = ?(NC2 — nVi,

In an analogous way one can obtain explicit expressions
for (E(t,r) - V,80(s,x,p)) and (E(s,r) -V ,8G(tr, p)).
We do not present these here, because they do not provide
any new insight.

Since we explicitly integrated over the distribution func-
tion (58) in deriving these results, we only give the trans-
port Egs. (12) for the two-stream system in the Fokker-
Planck form:

@=L -0

(66)
(D = VioX{ (1, v)V))n (1, r, p) =0,
where
) ¢ N2—1 [ &k kik/
XU(t,v) ==~ n 3 %402 2
4 N, 2w’ k*(wi + i)
2 + . 2\3

Uit kw2, (67)

yk(vi + (kv)?)
and X3 (1, v) = 2N2X'i(1, p)/(N% — 1).

@2m)* k(@ — 02)” yilyg + (kv)?)

To get an idea how the two-stream system evolves
according to the Fokker-Planck Egs. (66), we take into
account in the integral (67) only those wave vectors which
are parallel to the stream velocity u, with the latter being
chosen along the axis x. The only nonvanishing component
of X"(t, v) is then X**(t, v). Neglecting the dependence of
X**(t, v) on p and assuming that the system is homogenous,
the Fokker-Planck Eq. (66) for quarks becomes a one-
dimensional diffusion equation

an(r,p) _ a%n(r, p)
o D(t) T (68)

with the diffusion coefficient D(¢) = X**(r) depending on
time approximately as

D(t) = de*, (69)

where d and y are constants.
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If the distribution function is initially of the form
n(t=0,p) =27id(p, — q), (70)

where 71 is independent of p,, the solution of the diffusion
Eq. (68) is found as

27y y(p: — q)*

t, =7 |—  ° -t "7
n(t,p) =7 d(e*" — l)exp[ 2d(e* — 1)

]. (71)

The distribution function (71) is normalized in such a way
that

fdpxn(t, p) = 7.

27

According to the solution (71), the electric field growing
due to the electrostatic instability rapidly washes out the
peaklike structures of the two-stream distribution function
(58). It should be understood, however, that the solution
(71) is valid only for time intervals which are sufficiently
short that the distribution function used to compute the
coefficient X%(z, v) is not much different from the function
(58). Nevertheless, the solution (71) shows how the equili-
bration process commences.

VII. SUMMARY AND OUTLOOK

We have developed here the quasilinear transport theory
of a weakly coupled quark-gluon plasma. Our main moti-
vation was to study the equilibration of plasmas that are
initially unstable. The field fluctuation spectrum, which is
found within the linear response approach, determines the
evolution of the regular distribution functions. More spe-
cifically, the fluctuations of chromodynamic fields provide
collision terms to the transport equations of the regular
distribution functions. We have limited our considerations
to longitudinal chromoelectric fields, as then the field
correlation functions are known for both the isotropic
and two-stream systems. The collision terms were found
in either the Balescu-Lenard or Fokker-Planck form. In the
case of an isotropic plasma we showed how the system
equilibrates when a small fraction of particles has a differ-
ent temperature than the bulk.

The case of the two-stream system is more interesting.
The Fokker-Planck equation could be approximately writ-
ten as an equation of diffusion in momentum space. The
diffusion coefficient, which is given by the chromoelectric
fields for the two-stream instability, exponentially grows in
time. We found the exact solution of the diffusion equation,
which showed that the peaklike structures in the parton
momentum distribution dissolve rapidly.

In nonrelativistic plasmas it is often a well-justified
approximation to keep only longitudinal electric fields
and to neglect magnetic and transverse electric fields
[40,41]. In the case of ultrarelativistic plasmas, this is no
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longer true. If initially the fields are purely longitudinal, the
transverse fields are automatically generated, and they are
dynamically important. Therefore, the ultrarelativistic
plasma considered here, where the transverse fields are
neglected, should be rather treated as a toy model which
we have studied mostly for the sake of analytical tracta-
bility. With this simplified example we have been able to
elucidate some general features of the problem. Physically
better motivated situations will require substantial numeri-
cal work, which is less conducive to general insights.

The considerations presented here clearly demonstrate
the usefulness of the quasilinear transport theory for the
study of equilibration processes of quark-gluon plasmas.
As mentioned in the Introduction, numerical studies indi-
cate that the unstable chromomagnetic plasma modes play
an important role at the early stage of the quark-gluon
plasma produced in relativistic heavy-ion collisions.
Therefore, it would be of considerable interest to compute
the correlation functions of transverse fields in arbitrary
anisotropic plasmas in order to derive the relevant transport
equations. As explained in [43], there is no conceptual
difficulty in such a computation, but one has to invert the
matrix 27 (w, k) = —k?86Y + k'k/ + w?e(w, k). This is
easily done for isotropic plasmas but for anisotropic plas-
mas one obtains a rather complex expression which is very
cumbersome for further analytic calculations [46]. Except
for some special cases, numerical methods seem to be
unavoidable. Such computational studies are beyond the
scope of the present work but progress in this direction will
be hopefully reported soon.
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APPENDIX

We discuss here the longitudinal chromodielectric per-
meability &; (w, k) which is known to be

2

e k) =1+ £ [Lp KV, /0)

2k? ) 7P w —k-v+i0T’

(AL)

Applying the identity

1

x *i0"

_pl s ime()
X

to Eq. (A1), one immediately finds Je; (w, k)
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& [ dp
4k? ) 2w)?

Sep(w, k) = — 278(w — k - v)k -V, f(p).
(A2)

If the plasma is isotropic V, f(p) can be expressed as

df(p)
dE,

V,f(p) = V. (A3)

And if the partons are additionally masslees, the integral in
(A1) factorizes into the angular integral and the integral
over p = |p|. Then, one finds the real and imaginary parts
of the longitudinal chromodielectric permeability &; (w, k)

as
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m> ® o + K|
N ,k=1+—D[1— 1| ]
sr(@. k) KL 2k o - K|
5 (A4)
: m mpw
Sey(w,k) = 700 — o) 2T
where the Debye mass my, is
2
2 = 8 b 2df(P)
= — = d —_—. A5
b 47 Jo d (AS)
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