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We propose to apply Ramsey’s method of separated oscillating fields to the spectroscopy of the

quantum states in the gravity potential above a horizontal mirror. This method allows a precise

measurement of quantum mechanical phaseshifts of a Schrödinger wave packet bouncing off a hard

surface in the gravitational field of the Earth. Measurements with ultracold neutrons will offer a sensitivity

to Newton’s law or hypothetical short-ranged interactions, which is about 21 orders of magnitude below

the energy scale of electromagnetism.
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I. INTRODUCTION

The system of a Schrödinger quantum particle with mass
m bouncing in a linear gravitational field is known as the
quantum bouncer [1–5], and a description of ‘‘quantum
wave packet revivals’’ can be found in [6]. Gravity tests
with neutrons as quantum objects or within the classical
limit are reviewed in [7].

Above a horizontal mirror, the linear gravity potential
leads to discrete energy eigenstates of a bouncing quantum
particle. The lowest energy eigenvalues En, (n ¼ 1, 2, 3, 4,
5), are 1.41 peV, 2.46 peV, 3.32 peV, 4.09 peV, and
4.78 peV. The energy levels together with the neutron
density distribution are shown in Fig. 1. The idea of
observing quantum effects in such a gravitational cavity
was discussed with neutrons [8] or atoms [9]. Such quan-
tum states have been demonstrated at the Institut Laue-
Langevin with ultracold neutrons in a previous collabora-
tion [10–13]. The follow-up experiment qBOUNCE realized
the quantum bouncing ball with neutrons and evidence for
the time evolution of a superposition of quantum states in
the gravity potential has been observed [4,5]. In the neu-
tron whispering gallery, quantum states are caused by a
bounding well formed by the centrifugal potential [14]. A
quantum mechanical phaseshift of neutrons caused by the
interaction with Earth’s gravitational field was observed
[15] with the interferometers originally developed for x-
rays and adapted for thermal neutrons [16].

An important feature of the quantum bouncing ball—in
contrast to the harmonic oscillator problem—is the fact
that levels are not equidistant in energy. A combination of
any two states can therefore be treated as a two-level
system. The energy eigenstates in the gravity potential
can be coupled to a mechanical or magnetic oscillator field.
Transitions between quantum states in the gravitational
field of the earth i.e. a change of the state occupation can
therefore be induced similar to magnetic transitions, which
occur when the oscillator frequency equals one of the Bohr
frequencies of the system. This magnetic resonance
method was in the original conception for measurements

of nuclear magnetic moments [17,18], but soon it became a
very general technique for radio frequency spectroscopy
[19]. Ramsey developed his method of separated oscillat-
ing fields in which the oscillatory field is confined to a
region at the beginning and a region at the end with no
oscillating field in between [20]. Variations of Ramsey’s
method is inherently connected with precision measure-
ments ranging from atomic clocks [21] to atom interfer-
ometry [22], from NMR [23] to quantum metrology [24],
or the related spin-echo technique [25]. That method has
also been used to measure the precession frequency of
atoms, molecules or neutrons in a weak magnetic field,
for example, in a search for permanent atomic or neutron
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FIG. 1 (color online). Energy eigenvalues and neutron density
distributions for level one to five.
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electric-dipole moments and in constructions of sensitive
magnetometers. The sensitivity is extremely high, because
a quantum mechanical phase shift is converted into a
frequency measurement. The sensitivity reached so far
[26] in a search for the electric-dipole moment of the
neutron is 6:8� 10�22 eV, or one Bohr rotation within 6
days. Regeneration experiments are also a nice application
of this method e.g. in the neutral kaon system, where the
complex regeneration amplitude interferes with the com-
plex CP-violating parameter.

In analogy to these examples from electrodynamics, we
discuss here an application of Ramsey’s method to probe
the eigenstates in the gravity potential. Such a technique
should open a new way to precision gravity experiments,
and we propose to apply it to quantum states of neutrons or
atoms in the gravitational field of the Earth. Here, we are
sensitive to energy shifts of a Schrödinger wave packet
bouncing off a hard surface. Such energy shifts are ex-
pected from hypothetical gravitylike forces in the light of
recent theoretical developments in higher-dimensional
field theory and will allow searches for pseudoscalar cou-
pling of axions in the previously experimentally unacces-
sible astrophysical axion window [27,28]; see Sec. III. Our
method will allow a precise measurement of energy dif-
ferences with a precision similar to the magnetic resonance
technique. With a four-layer mu-metal shield, the coupling
of residual fluctuations of the magnetic field to the mag-
netic moment of the neutron can be suppressed to the
10�22 eV level as it has been demonstrated in a search
for an electric-dipole moment [26]. Other electromagnetic
effects are extremely suppressed compared to gravity [27].
A prerequisite of this method is the coherent superposition
of bound quantum states over the full length scale of the
experiment. In the qBOUNCE experiment, the time evolu-
tion of the spatial probability distribution of such a super-
position was studied over a length of 6 cm and quantum
interference was observed [4,5].

II. RAMSEY’S METHOD AND ITS APPLICATION
TO GRAVITY POTENTIALS

A quantum mechanical system that is described by two
states can be understood in analogy to a spin 1=2 system
(assuming two states of a fictitious spin in the multiplet,
similarly to spin up and spin down states). The time
development of such systems is described by the Bloch
equations. In magnetic resonance of a standard spin 1=2
system, the energy splitting results in the precession of the
related magnetic moment in the magnetic field. Transitions
between the two states are driven by a transverse magnetic
radio frequency field. Similar concepts can be applied to
any driven two-level system, e.g. in optical transitions with
light fields. Here, we apply this picture to quantum states in
the gravity field.

We start with a short description of Rabi’s method [17]
to measure the energy difference between a two-level

system with a coupled oscillating field. With !pq, the

frequency difference between the two states, !, the fre-
quency of the driving field,�R, the Rabi frequency and the
time t, the Hamiltonian H is given by

H ¼
@!pq
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where the effective Rabi frequency is
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with detuning � from resonance. The sinusoidal population
transfer is referred to as Rabi flopping. It has been pro-
posed to measure the energy levels of a neutron in the
gravitational field of the Earth with this method (GRANIT
experiment [29,30]). The periodic drive is given by neu-
trons moving through a spatially oscillating magnetic field
created by horizontal conducting wires.
As we will show below, one can drive transitions be-

tween quantum states in gravity above the mirror by vi-
brating the mirror surface.
Lets consider the motion of ultracold neutrons in the

gravitational field above a mirror. We assume the gravita-
tional force to act in z direction, while the mirror is aligned
with the xy plane, vibrating with amplitude a in the z
direction. The motion in the x and y directions is free
and completely decouples from that in z direction. It
suffices therefore to consider the time-dependent
Schrödinger equation restricted to the z direction�

� @
2

2m

@2

@z2
þmgzþ V0�ð�zþ a sin!tÞ

�
� ¼ i@

@�

@t
:

(4)

Here, g is the acceleration of gravity, m is the mass of the
neutron, and � is the Heaviside step function. The poten-
tial V0 � 100 neV associated with the substance of the
mirror is repulsive and much larger than eigenenergies of
the lowest quantum states in the gravitational field.
Therefore, Eq. (4) must be solved with the boundary
condition �ðz ¼ a sin!t; tÞ ¼ 0. For further considera-
tions, it is preferable to introduce ~z ¼ z� a sin!t and to
transform Eq. (4) into the rest frame of the mirror,

fH0 þWð~z; tÞg ~� ¼ i@
@ ~�

@t
; (5)

where

H0 ¼ � @
2

2m

@2

@~z2
þmg~zþ V0�ð�~zÞ; (6)
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Wð~z; tÞ ¼ a

�
mg sin!tþ i@! cos!t

@

@~z

�
; (7)

and ~�ð~z; tÞ ¼ �ðz; tÞ.
The Hamiltonian H0 describes the neutron in the gravi-

tational field above a mirror at rest. The corresponding
stationary Schrödinger equation is conveniently scaled by
the characteristic gravitational quantum length scale [9] of
the bouncing neutron

z0 ¼
�

@
2

2m2g

�
1=3 ¼ 5:88 �m; (8)

resulting in

c 00ð�Þ � ð� � �EÞc ð�Þ ¼ 0; (9)

where � ¼ z=z0, �E ¼ zE=z0, and zE ¼ E=mg.
The second termWð~z; tÞ accounts for the vibration of the

mirror surface.
The solution of Eq. (5) can be expressed in terms of the

eigenfunctions c nðzÞ of H0

�ðz; tÞ ¼ X
n

CnðtÞe�iEnt=@c nðzÞ (10)

with time-dependent coefficients CnðtÞ.
Using this ansatz, projection of Eq. (5) on the eigenstates

of H0 yields a system of differential equations for the
coefficients CnðtÞ

i@ � d
dt

CnðtÞ ¼
X
k

hc njWjc ki � CkðtÞ � ei!nkt: (11)

The transitions between different quantum states is gov-
erned by the matrix elements of Wð~z; tÞ defined in (7)

hc njWjc ki ¼ a½mg�n;k sin!tþ i@!Qn;k cos!t�; (12)

with

Qn;k ¼
Z 1

0
dzc nðzÞ ddz c kðzÞ: (13)

The relevant overlap integrals Qn;k for the transitions be-

tween the lowest eigenstates in the gravitational field are
given in Table I.

The physics behind the transitions between the energy
eigenstates of the quantum bouncer caused by a vibrating
mirror or an oscillating potential is related to earlier studies

of energy transfer when matter waves bounce of a vibrating
mirror [31–34] or on a time-dependent crystal [35–37]. In
the later cases, the transitions are between continuum
states, in the quantum bouncer between discrete eigen-
states. Most interesting for our proposal to drive transitions
between eigenstates of the quantum bouncer with a vibrat-
ing mirror is the physics of reflection of a neutron by an
oscillating potential step as has been investigated at the
research reactors Munich and Geesthacht [33], however in
a different energy regime.
Applying Ramsey’s resonance method with separated

oscillating fields will allow a careful measurement of the
energy eigenstates states of the quantum bouncer [38]. We
propose to implement it with neutrons by traversing five
regions as shown in Fig. 2. The horizontal direction in
space is considered as free motion, while the vertical one
is described by a one-dimensional time-dependent
Schrödinger equation [see e.g. Eq. (4)].
To implement Ramsey’s method, one has to realize (1) a

state selector, (2) a region, where one applies a �=2 pulse
creating the superposition of the two states, whose energy
difference should be measured, (3) a region, where the
phase evolves, (4) a second region to read the relative
phase by applying a second �=2 pulse, and finally, (5) a
state detector.
In the following, we will describe all these components

as they are shown in Fig. 2.
In region one, neutrons are prepared in a specific quan-

tum state jpi in the gravity potential following the proce-
dure demonstrated in [10]. A polished mirror on bottom
and a rough absorbing scatterer on top at a height of about
20 �m is a realization of a state selector. It prepares
neutrons into the ground state. Neutrons in higher, un-
wanted states are scattered out of the system and absorbed
i.e. C1 ¼ 1 and Cn ¼ 0 for n > 1. A quantum mechanical
description of such a system can be found in [13]. The
neutron passage through a mirror-scatterer system has also
been studied in a frame, where the rough scatterer surface

TABLE I. Relevant overlap integrals Qn;k defined in Eq. (13)
for the five lowest eigenstates in the gravitational field in �m�1.

k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5

n ¼ 1 0.00000 0.09742 �0:05355 0.03831 �0:03040
n ¼ 2 �0:09742 0.00000 0.11894 �0:06314 0.04419

n ¼ 3 0.05355 �0:11894 0.00000 0.13458 �0:07031
n ¼ 4 �0:03831 0.06314 �0:13458 0.00000 0.14724

n ¼ 5 0.03040 �0:04419 0.07031 �0:14724 0.00000

Region 4
Quantum state |q>

Region 2
Region 3

Region 1

Region 5

Mirror 1
and scattereron top

Mirror 2
with coupledoscillator,flight path l

Mirror 3,
flight path L Mirror 4

with coupledoscillator,
flight path l

Mirror 5 
and scattereron top

Neutron flight path

?

Coherent superpositionof |p> and |q> 

Energy

Quantum state |p>

FIG. 2 (color online). Sketch of the proposal. Region 1:
Preparation in a specific quantum state, e.g. state one with
polarizer. Region 2: Application of first �=2-flip. Region 3:
Flight path with length L. Region 4: Application of second
�=2 flip. Region 5: State analyzer.
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has been treated as a time-dependent variation of the
scatterer position [39].

In region two of length l, the first of two identical
oscillators is installed. Here, transitions between quantum
states jpi and jqi are induced within a time � according to
Eq. (2). The oscillator frequency at resonance for a tran-
sition between states with energies Eq and Ep is

!pq ¼
ðEq � EpÞ

@
: (14)

The squared ratio of�R and�
0
R as a function of the driving

field ! for transitions j1i ! j3i, j1i ! j2i and j2i ! j3i is
shown in Fig. 3. For the j1i ! j2i transition, which we
chose as an example for transitions in a two-level system,
!12 ¼ !2 �!1 ¼ 2�� 254 s�1.

Driven on resonance (! ¼ !pq), this oscillator drives

the system into a coherent superposition of state jpi and
jqi. A �=2 pulse, that is one with pulse area �R� ¼ �=2,
creates an equal superposition between state jpi and jqi.
This can be done by using oscillating magnetic gradient
fields or by vibrating mirrors i.e. a modulation of the mirror
potential in height.

In the intermediate region three, a nonoscillating mirror
with a neutron flight path of L and flight time T follows. It
might be convenient to place a second mirror on top of the
bottom mirror at a certain height h. It allows us to tune the
resonance frequency between jai and jbi due to the addi-
tional potential, and it provides an effective doubling of
sensitivity in a search for hypothetical axion induced phase
shifts or other fifth forces;, see Sec. III.

Subsequently, in region four a second oscillator in phase
with the oscillator in region two is placed. If the oscillating
! is equal to !pq, then the system is at resonance and we

have a complete reversal of the state occupation between
jpi and jqi. There is no change in the relative phase of the
oscillator and the quantum state of the neutron independent
of the neutron velocity. In the other cases for ! � !pq, a

velocity dependent relative phase shift builds up, since a

slower neutron is in the region three longer and experiences
a greater shift than a faster neutron.
Afterwards in section five, such a phase shift can be

measured by transmission through a second state selector.
This method can be realized with some modifications to

the previous setup in the following way: Neutrons are taken
from the ultracold neutron installation PF2 at Institut Laue-
Langevin with a measured horizontal velocity v ¼
3:2 m=s< v< 20 m=s. At the entrance of the experiment,
a collimator absorber system limits the transversal velocity
to an energy in the pico-eV range. The experiment itself is
mounted on a polished plane granite stone with an active
and passive antivibration table underneath. This stone is
leveled using piezo translators [40]. Inclinometers together
with the piezo translators in a closed loop circuit guarantee
leveling with a precision better than 1 �rad [41]. A solid
block with dimensions 10 cm� 15 cm� 3 cm composed
of optical glass serves as a mirror for neutron reflection.
The neutrons see a surface that is essentially flat. In region
one, an absorber/scatterer that is a rough mirror with a
surface roughness of about 0:4 �m is placed above the first
mirror at a height of 27 �m in order to select the first
quantum state. The other states are efficiently removed,
except for the second state, which is still present with a
contribution of a few percent. In region two, a second
mirror is placed after the first one. Piezo elements attached
underneath induce a fast modulation of the surface height
with amplitude a according to Eq. (4).
As an example, we consider transitions between state

j1i ! j2i for the most probable velocity at the PF2/UCN
beam position, 6 m=s. The length l ¼ 15 cm of this mirror
is chosen in such a way to provide a neutron in a superpo-
sition of these two quantum states after � ¼ 25:0 ms.
Region three has a flight path of L ¼ 80 cm on a single
mirror between the two oscillators in region two and,
identical to region two, in region four. In region five, a
state selector as an analyzer is placed, identical to the
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selector in region one but with a neutron detector behind
for counting the transmitted neutrons. Calculated transition
probabilities [20] for jpi and jqi as a function of ! are
shown in Fig. 4 for different parts of the measured velocity
spectrum.

This method can also be applied to stored ultracold
neutrons. Figure 5 shows the theoretical Ramsey signal
for a neutron storage time of 100 s. The appeal of a neutron
storage lies in a very narrow resonance line. A search for
phase shifts are suggested in the next section.

III. PHASE SHIFTS FROM HYPOTHETICAL
GRAVITY-LIKE FIFTH FORCES

Theoretical considerations arising from higher-
dimensional gravity, gauge forces, or massive scalar fields
suggest that the Newtonian gravitational potential for
masses mi and mj and distance r should be replaced by a

more general expression including a Yukawa term,

VðrÞ ¼ �G
mi �mj

r
ð1� � � e�r=�Þ; (15)

where � is the Yukawa distance over which the correspond-
ing force acts, and � is a strength factor in units of
Newtonian gravity. G is the gravitational constant. Most
interesting, from the experimental point of view, are sce-
narios, where the strength of the new force is expected to
be many orders of magnitude stronger than Newtonian
gravitation. Such forces are possible via Abelian gauge
fields in the bulk [42–45], (see also [46,47] for explicit
realizations in string theory). The strength of the new force
would be 106 <�< 1012 stronger than gravity, indepen-
dent of the number of extra dimensions n [44]. The obser-
vation of quantum states already tests speculations of this
kind on large extra dimensions of submillimeter size of
space-time [27,48,49]. Most recent theoretical develop-
ments support the original proposal of large extra dimen-
sions with bulk gauge fields and more specific predictions
for a high interaction strength can be made. One proposal
of Callin et al. [50] predicts deviations from Newton’s law

on the micron scale on the basis of supersymmetric large
extra dimensions. The basic idea behind this proposal is to
modify gravity at small distances in such a way as to
explain the smallness of the observed cosmological con-
stant. The hope is to achieve this without changing non-
gravitational physics (which may be possible because of
the small gravitational response of the vacuum in specific
models of supersymmetric large extra dimensions) and to
link the size of the extra dimensions to the energy density
1010 eV=m3 governing the observed dark energy compo-
nent of the Universe. In the concrete constructions pres-
ently under discussion, a radius r of 10 microns, as well as
the necessary interaction strength up to � ¼ 106, may turn
out to be well motivated. Best limits at short distances are
derived from neutron-scattering experiments [51–54].
Other experimental limits on extra forces are derived
from mechanical experiments and can be found, e.g., in
[55–61]. Probing submicron forces by interferometry of
Bose-Einstein condensated atoms has been proposed by
[62]. In practice, the experimental data are subject to
corrections, which can be orders of magnitude larger
than the effects actually searched for. It is therefore im-
portant to stress the completely different nature of possible
systematic effects inherent to these micro-mechanical ex-
periments as compared to those in neutron experiments. In
the former case, gravitational interactions are studied in the
presence of large van der Waals and Casimir forces, which
depend strongly on the geometry of the experiment, and the
theoretical treatment of the Casimir effect is a difficult
task. Currently, atomic force microscopes’ measurements
using functional tips determine the limits on non-
Newtonian gravitation below 10 �m. The best experimen-
tal data available, obtained with atomic force microscopes,
are claimed to be at the same level of accuracy (1%–2%) as
the numerical calculations of the Casimir force. The major
obstacle for improvement in the theoretical calculation is
the fact that it is very hard to take the boundary conditions
of the tip and its functionality properly into account.
Our approach of probing Newtonian gravity at the mi-

cron scale with the help of Ramsey’s method of separated
oscillating fields is advantageous because of its small
systematic effects. In contrast to atoms, the electrical po-
larizability of neutrons [63] inducing such Casimir effects
or van der Waals forces is extremely low. Together with its
electric neutrality, the neutron provides the key to a sensi-
tivity of more than 10 orders of magnitude below the
background strength of atoms.
The dynamics of such a quantum mechanical wave

packet combines quantum theory with aspects of
Newtonian mechanics at short distances. When a neutron
with mass m approaches the mirror, the mass of this
extended source might modify the earth acceleration g,
when strong non-Newtonian forces with range � and
strength � are present. For small neutron distances z
from the mirror, say several micrometers, we consider
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the mirror as an infinite half-space with mass density �. By
replacing the source mass mi by dmi and integrating over
dmi, the modified Newtonian potential �VðzÞ has the form

�VðzÞ ¼ 2�m���2Ge�jzj=�

¼ 8:5� 10�14��2e�jzj=� peV (16)

with � ¼ 19:32 g=cm3 (gold or tungsten coating) and �
given in �m. Taking these gravitylike forces into account,
first order perturbation theory predicts a shift of the nth
energy eigenvalue [27],

�En ¼ hc nj�VðzÞjc ni: (17)

They differ from state to state in the range of interest. The
sensitivity can been seen in Fig. 6, where the energy shift as
a function of range � is plotted for a fixed � ¼ 1012.

Newtonian gravity and hypothetical fifth forces evolve
with different phase information in the nonoscillating re-
gion. The following examples consider transitions between
state j1i ! j3i, which are energetically well separated; see
Fig. 3. We expect the following sensitivity for 50 days of
beam time at the PF2/UCN beam position at the Institut
Laue-Langevin: With a count rate of 0:1 s�1 for neutrons
in the ground state, we will have N ¼ 430 000 registered
neutrons. Because of the uncertainty principle ���N �
2�, we estimate a minimal detectable phase shift of 1�
10�2 radians. For an estimate of T ¼ 130 ms interrogation
time (flight path between the oscillators), the minimal
resolvable energy shift is

�E ¼ ��@=T ¼ 5� 10�17 eV: (18)

Together with Eqs. (16) and (17), this corresponds to a
sensitivity of

� ¼ 1� 108; (19)

where the range � has been set to be equal to the character-
istic quantum length scale z0. This sensitivity limit for
strength � is the projected reach of a first-round Ramsey
experiment.

In principle, ultracold neutrons can be stored and the
time scale can be increased to T ¼ 130 s. Therefore, a
sensitivity to energy differences of �E ¼ 5� 10�20 eV
is feasible. This corresponds to an � ¼ 1� 105. With new
neutron sources, which are under development right now,
the source strength density is expected to be increased by 2
orders of magnitude. The statistical sensitivity of the new
method in a search for hypothetical fifth forces is therefore
around

�E ¼ 5� 10�21eV; (20)

or

�< 1� 104: (21)

Over a wide range of �, this is orders of magnitude better
than existing limits as shown in Fig. 7 (line 1b). The

projected reach of the first round of Ramsey experiments
[the limit given by Eq. (19)] is shown as line 1a.
These limits for hypothetical fifth forces can be easily

interpreted as bounds of the strength of the matter cou-
plings of axions. Axion interactions with a range within
20 �m< �< 200 mm (corresponding to axion masses
10�6 eV<ma < 10�2 eV), the ‘‘axion window,’’ are still
allowed by the otherwise stringent constraints posed by
cosmological data (see e.g. [64,65]). The CP-violating
spin-dependent part in presence of matter given by [66] is
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Vð~rÞ ¼ @gpgs
~	 � ~n
8�mc

�
1

�r
þ 1

r2

�
e�r=�: (22)

Here, ~	 denotes the neutron spin, and ~n is a unit vector
related to the geometry of the macroscopic matter
configuration.

Integrating this potential over the geometry of region
three [27], and using the sensitivity given in Eq. (20), we
reach at range � ¼ z0 ¼ 5:88 �m an experimental bound

gsgp
@c

& 9 � 10�23 (23)

for the dimensionless axion coupling strength; see Fig. 8

(line 1b). This is 8 orders of magnitude better than the only
existing limit in the axion window, which has been derived
from the previous experiment with bound quantum states
of neutrons [27,28]. The projected reach of the first-round
Ramsey experiment based on Eq. (18) is shown as the
upper line 1a.

IV. SUMMARY

In conclusion, we discussed an application of Ramsey’s
method of oscillating fields to the quantum bouncer. It will
allow high precision spectroscopy of the energy eigenstates
of a neutron bouncing on a flat horizontal surface. Such
Ramsey-type interference measurements will improve the
sensitivity for neutron’s coupling to gravity, to hypothetical
short-ranged forces or the influence of the cosmological
constant. A sensitivity of more than 21 orders of magnitude
below the strength of electromagnetism is found, when the
energy �E ¼ 5� 10�21 eV of Eq. (20) is compared with
the Rydberg energy of 13.6 eV, which is the energy scale of
electromagentically bound quantum systems. Such an en-
ergy change corresponds to a strength of �� 1� 104

compared to gravity or to
gsgp
@c � 9 � 10�23, the axion cou-

pling strength, at a range � ¼ z0; see Fig. 8.
The new method profits from small systematic effects in

such systems, mainly due to the fact that in contrast to
atoms, the electrical polarizability of neutrons is extremely
low. Neutrons are not disturbed by short range electric
forces such as van der Waals or Casimir forces. Together
with its neutrality, this provides the key to a sensitivity of
several orders of magnitude below the strength of
electromagnetism.
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