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The connection of Gribov’s confinement scenario in the Coulomb gauge with the center vortex picture

of confinement is investigated. For this purpose we assume a vacuum wave functional that models the

infrared properties of the theory and, in particular, shows strict confinement, i.e. an area law of the Wilson

loop. We isolate the center vortex content of this wave functional by standard lattice methods and

investigate their contributions to various static propagators of the Hamilton approach to Yang-Mills theory

in the Coulomb gauge. We find that the infrared properties of these quantities, in particular, the infrared

divergence of the ghost form factor, are dominated by center vortices.
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I. INTRODUCTION

The infrared sector of QCD, in particular, the confine-
ment mechanism, is not fully understood yet, although
substantial progress had been made during recent years.
The progress comes mainly from lattice calculations [1,2],
which gave support to both the dual Meissner effect [3] and
the center vortex picture [4] of confinement and also
indicate that these two pictures are likely only two sides
of the same coin. Furthermore, there is lattice evidence that
also Gribov’s confinement scenario is triggered by mag-
netic monopoles and center vortex configurations [5,6]. In
addition, one can show analytically that Zwanziger’s hori-
zon condition, i.e. an infrared diverging ghost form factor,
which is at the heart of Gribov’s confinement scenario in
the Coulomb gauge, implies dual Meissner effect [7].

In recent years there has been a renewed interest in
studying Yang-Mills (YM) theory in the Coulomb gauge,
both in the continuum [8] and on the lattice [9–14]. In
particular, much work has been devoted to a variational
solution of the Yang-Mills Schrödinger equation in the
Coulomb gauge [15–23]. Using Gaussian type of
Ansatzes for the vacuum wave functional, a set of
Dyson-Schwinger equations for the gluon and ghost propa-
gators was derived by minimizing the vacuum energy
density. An infrared analysis [22] of these equations ex-
hibits solutions in accord with the Gribov(-Zwanziger)
confinement scenario. Imposing Zwanziger’s horizon con-
dition one finds an infrared diverging gluon energy and a
linear rising static quark (Coulomb) potential [22] and also
a perimeter law for the ’t Hooft loop [23]. These infrared
properties are reproduced by a full numerical solution of
the Dyson-Schwinger equations over the entire momentum
regime [19], and are also supported by lattice calculations
[10,13,14]. Moreover, these lattice calculations also show
clear evidence for an infrared divergent ghost form factor

and an infrared suppressed static gluon propagator.1 While
the horizon condition has to be imposed by hand in D ¼
3þ 1, as there exist also subcritical solutions with an
infrared finite ghost form factor2 [20], the coupled set of
Dyson-Schwinger equations in D ¼ 2þ 1 only allows for
critical solutions having an infrared diverging ghost form
factor [26]. Furthermore, recent studies within the func-
tional renormalization group treatment of the Hamilton
approach in the Coulomb gauge yields the horizon condi-
tion as a solution of the flow equation [27]. In D ¼ 1þ 1,
finally, the exact ghost form factor is infrared enhanced
[21].3

Despite the encouraging results for the infrared proper-
ties of the various Green’s functions (in particular the
linear Coulomb potential) and the good agreement of the
gluon energy [20] with the lattice data [13,14], the crucial
test for the wave functional in the variational approach,
namely, the calculation of the Wilson loop, still has to
come. In fact, a linear Coulomb potential is necessary
but not sufficient for confinement since the Coulomb string
tension is only an upper bound to the Wilsonian string
tension [8]. With the variational vacuum wave functional
at hand it would be, in principle, straightforward to calcu-
late the Wilson loop. However, path ordering makes an

1This is different from the Landau gauge, where lattice calcu-
lations seem to indicate an infrared finite gluon propagator and
ghost dressing function [24], in contradiction to the scaling
solution of the Dyson-Schwinger equations [25].

2These subcritical solutions are the analogue of the so-called
decoupling solution of the Dyson-Schwinger equations in the
Landau gauge.

3Yang-Mills theory in D ¼ 1þ 1 is nontrivial only on a
compact manifold. In the Hamiltonian approach (with a con-
tinuous time) space is S1 so that the momenta are discrete. The
zero momentum corresponds to a zero mode of the Faddeev-
Popov kernel and is therefore excluded [21].
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exact evaluation of the Wilson loop impossible. In
Ref. [28] the spatial Wilson loop was calculated from a
Dyson equation, which takes care of the path ordering in an
approximate fashion, employing the static gluon propaga-
tor as input. Despite the rather limited range of applicabil-
ity of the Dyson equation, a linearly rising potential could
be extracted from the obtained Wilson loop.

Here we will proceed along a different line. We assume a
wave functional which is known a priori to produce an area
law for the (spatial) Wilson loop, and calculate with this
wave functional the various propagators of the Hamil-
tonian approach in the Coulomb gauge. The infrared prop-
erties of these propagators are then compared with the ones
obtained from lattice results in the D ¼ 4 Coulomb gauge
which, in turn, agree qualitatively with findings from a
Gaussian type of variational wave functional.

A simple choice for a confining wave functional is

�½A� ¼ N exp

�
� 1

8�

Z
d3xFijðxÞFijðxÞ

�
; (1)

where Fij denotes the spatial components of the non-

Abelian field strength and � is a dimensionfull parameter,
which, in principle, could serve as variational parameter.
Wewill later see that the scaling properties ofD ¼ 3Yang-
Mills theory tie the parameter � to the numerical value of
the (spatial) string tension: � thus merely sets the overall
scale.

The wave functional in Eq. (1) models the infrared
sector of the Yang-Mills vacuum: it is gauge invariant
and can be considered as the leading order in a gradient
expansion of the true Yang-Mills vacuum wave functional
[29]. Furthermore, the functional of Eq. (1) produces an
area law for the (spatial) Wilson loop. This is because the
D ¼ 4 expectation value of any gauge invariant and
A0-independent observable �½A� in this state is precisely
given by the one in the D ¼ 3 dimensional Yang-Mills
theory,

h�j�j�i ¼
R
DA�½A� exp½� 1

4�

R
d3xF2

ijðxÞ�R
DA exp½� 1

4�

R
d3xF2

ijðxÞ�
: (2)

For gauge variant observables such as the Green’s func-
tions, we need to pick a specific gauge on the vector
potentialA. Choosing the Coulomb gaugerA ¼ 0 inD ¼
4 obviously entails the Landau gauge for the D ¼ 3 YM
theory.

The wave functional of Eq. (1) is certainly inappropriate
at large momenta where it yields a gluon energy !ðjkjÞ �
jkj2 instead of !ðkÞ � jkj. However, this should be irrele-
vant for the confining properties. Also in the deep IR region
one does not expect Eq. (1) to exactly reproduce theD ¼ 4
Yang-Mills theory, since the standard lattice gluon and
ghost propagator in the D ¼ 3 Landau gauge rather satisfy
a decoupling type of solution [24], in contrast to theD ¼ 4
Coulomb gauge [13,14]. Indeed, one would expect the
correct wave function to be better described by [30]:

�½A� ¼ N exp

�
� 1

2

Z
d3xFijðxÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�D2 þ c
p FijðxÞ

�
;

(3)

where D2 is the adjoint covariant Laplace operator. In
Ref. [30], where the D ¼ 2þ 1 theory was examined,
the choice c ¼ ��0 þm2 was made, �0 being the lowest
eigenvalue of �D2. The technical difficulties of working
with Eq. (3) are however beyond the scope of this paper,
since one does not expect the Laplacian term to modify the
vortex content of the D ¼ 3 theory. Even the simplified
version given in Eq. (1) cannot be used for analytic calcu-
lations; instead, the calculation of expectation values in
this state requires conventional three-dimensional Yang-
Mills lattice simulations. As stated earlier, these D ¼ 3
lattice calculations must be carried out in the Landau gauge
when (1) is used as Schrödinger wave functional in the
Coulomb gauge.
The infrared properties of the vacuum sector of the

Yang-Mills theory are known to be dominated by center
vortices [1]. This is also true in D ¼ 3. The wave func-
tional Eq. (1) thus contains, among other configurations, an
ensemble of percolating center vortices. By standard lattice
methods [31] we can extract the center vortex content of
this wave functional. Therefore, the use of the wave func-
tional Eq. (1) also allows us to study (on the lattice) how,
within the Hamiltonian approach, the Gribov-Zwanziger
confinement mechanism is related to the center vortex
picture of confinement. Previous lattice calculations [5,6]
have shown that removal of center vortices from the (four-
dimensional) Yang-Mills ensemble by the method of
Ref. [31] makes the ghost form factor infrared finite,
analogously to the suppression observed before in the
Landau gauge [32]. In the present work we will calculate
the center vortex contribution to various Coulomb gauge
propagators. The paper is organized as follows:
In the next section, we briefly recall some properties of

the D ¼ 3 Yang-Mills theory, in particular, the scaling
behavior and some known facts about the Landau gauge
Green’s functions. Section III contains a description of our
numerical setup and the results for the static gluon and
ghost form factors in the Coulomb gauge. We also discuss
the role of center vortices and their implications for the
Gribov-Zwanziger scenario. We close with a brief sum-
mary and an outlook on future investigations.

II. YANG-MILLS THEORY IN THREE
DIMENSIONS

Since we want to describe the continuum model of
Eq. (1) using a lattice, we must first have a closer look at
the scaling properties of the D ¼ 3 YM theory. The lattice
model is defined on a D ¼ 3 cubic space-time grid with
periodic boundary conditions. We will use the Wilson
action and employ various gauge fixing algorithms. The
scale � of the continuum wave functional in Eq. (1) plays
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the role of the three-dimensional bare YM coupling in the
continuum limit, � ¼ g20.

In three-dimensional YM theory, the renormalized cou-
pling gR is

� ¼ 4

ag20
; g20 ¼ g2R½1þOð@��1Þ�

in terms of the bare coupling g0 and the lattice spacing a.
The string tension in units of the lattice spacing is therefore

�̂ � �a2 ¼ �
16

�2g40
¼ 16�

�2g4R
þOð��3Þ: (4)

Since gR sets the overall scale, �=g4R is a dimensionless
constant independent of �, i.e. large Creutz ratios should
scale according to

�ðR;RÞ � �̂ð�Þ ¼ const

�2
þOð��3Þ: (5)

Large-scale simulations in SUð2Þ [33] have indeed con-
firmed the existence of a scaling window � � 3 . . . 12 in
which the dependency (5) can be observed. More precisely,
the best fit [33] is

�̂ð�Þ ¼ 1:788

�2

�
1þ 1:414

�
þ � � �

�
(6)

valid for� � 3. From Eqs. (4) and (6) and� ¼ g20, we find

�

�2 ¼ 0:111

�
1þ 1:414

�
þ � � �

�
; (7)

i.e. the variation parameter � ¼ �ð�;�Þ is fixed once the
overall scale � and the lattice coupling � in the scaling
window are given. For the standard value

ffiffiffiffi
�

p ¼ 440 MeV,
� falls in the range� ¼ 1088 MeV . . . 1236 MeVwhen �
is varied in the scaling window. There is however no
compelling reason for the string tension of this D ¼ 3
model of the D ¼ 4 Yang-Mills vacuum to coincide with
the ‘‘physical’’ string tension of the genuine D ¼ 3 Yang-
Mills theory. In view of the following we will then treat �
as an adjustable parameter that controls the trade-off be-
tween matching the D ¼ 4 string tension or the corre-
sponding Green’s functions.

Ghost and gluon Green’s functions in the Landau gauge
are generally expected to be multiplicatively renormaliz-
able, i.e. the lattice data for different � must fall on top of
each other once the momentum is expressed in physical
units and a finite field renormalization Zð�Þ is applied. The
Gribov-Zwanziger confinement criterion makes qualitative
predictions about the deep IR behavior of the Green’s
functions. It is based on the idea that the gauge field
configurations in the functional integral should be re-
stricted to the so-called fundamental modular region
(FMR). The dominant contributions within the FMR
should then come from field configurations near the

Gribov horizon, where the near-zero modes of the

Faddeev-Popov operator4 M � �@D̂ strongly enhance
the Coulomb potential

Vcðjx� yjÞ � TrhM�1ð��ÞM�1i: (8)

To enforce the restriction to the FMR, a nonlocal but
renormalizable horizon term may be added to the Yang-
Mills action. The fact that the partition function is domi-
nated by near-horizon configurations is then expressed as
the so-called horizon condition, which in turn implies that
the ghost propagator should be more singular than the free
ghost in the deep infrared,

GabðpÞ � hðM�1Þabi ¼ �ab

p2
dðpÞ; lim

p!0
d�1ðpÞ ¼ 0:

(9)

Similarly, the gluon propagator should be infrared sup-
pressed or vanishing,

Dab
��ðpÞ � hAa

�ð�pÞAb
�ðpÞi ¼ �ab

�
��� �

p�p�

p2

�
DðpÞ;

lim
p!0

DðpÞ<1: (10)

These results are expected to hold both in D ¼ 3 and D ¼
4 dimensions. It should be noted, however, that a soft
Becchi-Rouet-Stora symmetry breaking but renormaliz-
able mass term is possible in D ¼ 3 and D ¼ 4 which
gives rise to the so-called decoupling solution. The latter is
characterized by a tree-level-like ghost propagator in the
IR (dð0Þ ¼ const) accompanied by an infrared finite, but
nonvanishing gluon propagator Dð0Þ � 0. Recent lattice
investigations seem to favor this type of behavior in the
Landau gauge for both D ¼ 3 and D ¼ 4 which is, how-
ever, at odds with both the Gribov-Zwanziger and the
Kugo-Ojima criterion favored by functional methods in
the continuum. As for the Coulomb gauge in D ¼ 4, there
is, however, ample evidence both from variational methods
[17,19] and lattice investigations [13,14] that the ghost
propagator is infrared enhanced while the static gluon
propagator is infrared vanishing, in accord with the origi-
nal Gribov scenario.
In the next section, we compute the gluon and ghost

Green’s functions in the deep infrared, using the confining
wave functional Eq. (1) as a model of the D ¼ 4 ground
state in the Coulomb gauge, reliable at least in some
intermediate momentum range. Technically, this amounts
to a lattice simulation in the D ¼ 3 Landau gauge; in
contrast to earlier studies cited above, we will first perform
a detour via the maximal center gauge (MCG) to identify
the percolating vortex content of each configuration. We
can then remove or isolate these vortices before going to

4We write D̂ab ¼ @� þ gÂab ¼ @� � gfabcAc
� for the cova-

riant derivative acting on adjoint color fields.
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the Landau gauge, and thus study the interplay between the
vortex and Gribov-Zwanziger scenario.

III. NUMERICAL RESULTS

A. Numerical setup

Since we are mainly interested in the IR properties we
choose in the following a fixed coupling � ¼ 3:5 close to
the smaller end of the scaling window, which in turn gives
access to the smallest momenta while still allowing to
extract continuum physics. Calculations were carried out
on 203 and 403 lattices using a standard over-relaxed
version of Creutz’ heath-bath algorithm. We employed
500 sweeps for thermalization and 50 to 100 sweeps be-
tween measurements to reduce autocorrelations. For each
Green’s function, we took 300 measurements on the
smaller volume 203, and 100 measurements for the volume
403.

In each measurement, the lattice configuration was first
brought to MCG to allow for a clean identification of the
center vortex content. The vortices were then either re-
moved or isolated, and both fields (in addition to the
unmodified MCG configuration) were subjected to further
Landau gauge fixing.5 As explained above, this corre-
sponds toD ¼ 4 simulations with the trial wave functional
Eq. (1) (including its center vortex content) in the Coulomb
gauge.

For both gauge fixing steps, we used an iterated over-
relaxation algorithm with up to 30 restarts after a random
gauge transformation on the initial configuration to reduce
the Gribov noise. The gauge fixing procedure was termi-
nated when the local gauge violation was sufficiently
small,

k � k1� max
x

max
k2f1;2;3g

j�kðxÞj< 	 ¼ 10�12;

where in terms of the quaternion representation U� ¼
a0� þ iak��k of the SUð2Þ links,

MCG: �kðxÞ ¼ 1

2

X2
�¼0

½a0�ðxÞak�ðxÞ

� a0�ðx� �̂Þak�ðx� �̂Þ�;

Landau: �kðxÞ ¼ 1

2

X2
�¼0

ðak�ðxÞ � ak�ðx� �̂ÞÞ:

In all cases, the gauge fixing functional was numerically
stationary long before the violation limit was reached.

For the Landau gauge, we further improved the quality
of the gauge fixing using either flip preconditioning steps
[34] and, on the larger 403 lattice, simulated annealing
methods. However, these improvements had only a mar-
ginal effect on the attained maximum of the gauge fixing
functional, since the previous MCG fixing acts as a strong
preconditioning even when vortices were not removed.

B. Gluon propagator

The gauge field on the lattice is extracted using the
standard definition,

að�ÞAk
�ðxþ �̂=2Þ � 1

2i
ðU�ðxÞ �Uy

�ðxÞÞ ¼ 2ak�ðxÞ;

where að�Þ is the lattice spacing and U� ¼ a0� þ iak��k is

the quaternion representation of the links.6 A fast Fourier
transformation then gives access to the gluon propagator
Eq. (10).7

In the left panel of Fig. 1, we first show theD ¼ 3 gluon
propagator in the Landau gauge, after prior MCG fixing.
As long as vortices are not removed, the resulting propa-
gator is virtually identical with the one obtained by fixing
the minimal Landau gauge directly. As can be clearly seen,
the removal of vortices has little effect in the UV but
clearly suppresses the propagator at intermediate and small
momenta.
Figure 2 shows the equal-time gluon propagator DCðpÞ

for the Coulomb gauge in D ¼ 4, as obtained before
removal of scaling violations. We have compared this
data to the D ¼ 3 gluon propagator
(a) directly in the (minimal) Landau gauge
(b) in the Landau gauge after prior MCG fixing,
(c) in the Landau gauge after prior MCG fixing and

vortex removal

(The cases a. and b. are virtually identical, and only b. is
shown in Fig. 2 to make the plot less cluttered.) The
confining D ¼ 3 MCG/Landau propagators DLðpÞ a. and
b. show good agreement in the low and intermediate mo-
mentum range with the naive instantaneous D ¼ 4
Coulomb propagator, once the (Wilson) string tensions in
the two calculations are set equal.8 (We took

ffiffiffiffi
�

p ¼
440 MeV to set the scale on the momentum axis.) As
expected, the nonconfining Landau gauge propagator

5It should be noted that MCG corresponds to the Landau
gauge for the adjoint link, which reduces to the ordinary
Landau gauge once the singular vortex background is removed.
Thus, the vortex removed MCG configurations are already in the
Landau gauge. Nevertheless, we have carried out the subsequent
Landau gauge fixing step to be sure that we converged to the best
minimum within our numerical precision.

6This assumes that the gauge fields are sufficiently smooth and
the links close to unity, a0� � 1, as ensured by the Landau gauge
and the continuum limit.

7Since only a single coupling � ¼ 3:5 was considered, no
further renormalization was necessary. On the smaller lattice, we
have verified that all considered ensembles do lead to multi-
plicatively renormalizable gluon and ghost propagators.

8In the UV, we have the expected deviations, since the 1=p
behavior of the Coulomb result decays much slower than the
1=p2 typical for the Landau case.
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with vortices removed cannot be matched with the D ¼ 4
Coulomb data in any momentum range.

However, this agreement of the confining propagators
must be considered spurious, since the naive D ¼ 4
Coulomb data is subject to severe scaling violations. In
Ref. [13], these violations were thoroughly analyzed and a
procedure to extract the true instantaneous propagator
DCðpÞ in the infinite volume and continuum limit was
devised. The result displays proper scaling and the correct
deep ultraviolet behavior DCðpÞ � jpj�1; it can also be
fitted in the entire momentum range through the Gribov
formula [13].

As can be seen from the left panel in Fig. 3, the improved
static Coulomb propagator DCðpÞ differs considerably
from the naive result, so that the spurious agreement with
the confining D ¼ 3 ensembles is destroyed. In particular,

the deviation between the strong 1=p2 decay of the D ¼ 3
propagator and the slow 1=jpj decay ofDCðpÞ is now much
more apparent. Qualitative agreement in the phenomeno-
logically important momentum range around 1 GeV can
only be reached if the D ¼ 3 momentum is scaled with a
factor�2:5 as compared to theD ¼ 4 case (see right panel
in Fig. 3). This in turn would mean that the scale parameter
� in the initial wave functional Eq. (1) must be altered by
the same factor and the D ¼ 3 string tension would no
longer match the D ¼ 4 result.9 The best agreement is

0 1 2 3 4

|p|  [GeV]

0

0.5

1

1.5

2

2.5

3

 D
(p

) 
  [

 G
eV

-1
 ]

D=4 Coulomb (β=2.15, β=2.2)
D=3 MCG + Landau
D=3 MCG + Landau  [vortex removed]

0 0.5 1 1.5 2 2.5 3 3.5

|p|  [GeV]

0

0.5

1

1.5

2

2.5

3

 D
(p

) 
  [

 G
eV

-1
 ]

D=4 Coulomb, β=2.15
D=4 Coulomb, β = 2.2
D=4 Coulomb, β=2.25
D=4 Coulomb, β=2.5
D=4 Coulomb, β=2.6
MCG + Landau
D=3 MCG + Landau  [vortex removed]

FIG. 2 (color online). The equal-time gluon propagator in the D ¼ 4 Coulomb gauge, compared to the D ¼ 3 gluon propagator in
the MCGþ Landau gauge, both with and without vortices. In the left panel, we have only included the D ¼ 4 data from two close
couplings, which hides the inherent scaling violations. If more couplings are included (right panel), the scaling problems become
apparent and the comparison with the D ¼ 3 data is less favorable.
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FIG. 1 (color online). Left panel: The D ¼ 3 gluon propagator in the Landau gauge after prior MCG fixing, both with and without
vortices. Right panel: The same plot for the D ¼ 3 ghost form factor in the Landau gauge.

9In the very deep IR, theD ¼ 3 andD ¼ 4 propagators cannot
be matched even with the relaxed condition on �, since the
correct D ¼ 4 static Coulomb propagator vanishes as jpj ! 0,
while the D ¼ 3 MCG-Landau propagator DLðpÞ goes to a
nonzero value in this limit.
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thus obtained if �3D � 6:2�4D, corresponding to � �
7 GeV.

The vortex-removed ensemble d. leads to a gluon propa-
gator which is incompatible with the D ¼ 4 Coulomb
result in any momentum range, even if the restrictions on
the parameter � are relaxed. This shows that the percolat-
ing center vortex content is not only indispensable for the
confining properties of the Wilson loop, but also for the
qualitative behavior of the gluon propagator at intermedi-
ate momenta.

As stated above, a better approximation of the correct
vacuum wave functional is given by Eq. (3). Indeed, either
by inspecting Fig. 3 or on simple dimensional arguments, it
should be clear that one should rather compare the D ¼ 4
static Coulomb propagatorDCðpÞwith pDLðpÞ [14], which

on the other hand will mimic the somewhat less crude
approximation of the vacuum wave functional:

�½A� ¼ N exp

�
� 1

2

Z
d3xFijðxÞ 1ffiffiffiffiffiffiffiffiffiffiffi

�r2
p FijðxÞ

�
: (11)

The data basically coincide when tuning �3D � 1:49�4D,
as can be seen in Fig. 4. Such good agreement in the
direction of the wave functional given in Eq. (3) definitely
deserves further investigation.

C. The ghost form factor

Although large volume simulations performed in a setup
similar to ours clearly show a decoupling behavior also for
the Landau ghost inD ¼ 3 [24], for the momenta available
in our simulations this regime still has not kicked in, so that
Eq. (1) might still be considered a valid approximation in
the following. Future simulations closer to the thermody-
namic/continuum limit will however explicitly have to deal
with Eq. (3) or at least Eq. (11), since the simple dimen-
sional argument leading for the static gluon to the com-
parison in Fig. 4 cannot obviously be applied to the
Faddeev-Popov operator.
The right panel of Fig. 1 shows the dimensionless ghost

form factor (9) as obtained from the D ¼ 3 Landau gauge
with prior MCG fixing. Without vortex removal, the result
is virtually identical to the direct Landau gauge fixing, and
a power law behavior of the form

dðpÞ � p�2
; 
 ¼ 0:23ð1Þ (12)

can be fitted. This agrees well with the infrared exponent of
the D ¼ 4 Coulomb gauge [10], which is not subject to
scaling violations. Figure 5 compares the ghost form fac-
tors in the D ¼ 3 Landau gauge and the D ¼ 4 Coulomb
gauge quantitatively; as expected from the matching IR
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FIG. 4 (color online). The gluon static propagator in theD ¼ 4
Coulomb gauge, compared to the approximation pDLðpÞ of
Eq. (11) in the D ¼ 3 MCGþ Landau gauge.
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FIG. 3 (color online). The equal-time gluon propagator in the D ¼ 4 Coulomb gauge, compared to the D ¼ 3 gluon propagator in
theMCGþ Landau gauge, both with and without vortices. The scaling violations in the Coulomb data are removed [13] to exhibit the
true continuum result. In the left panel, the (Wilson) string tension of the D ¼ 3 and D ¼ 4 calculations are matched, while the right
panel has �3D � 6:2�4D. (For simplicity, we have scaled �4D and left �3D at the standard value.)
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exponent, the comparison is fairly good. In the UV, dðpÞ
approaches 1 in both D ¼ 3 and D ¼ 4, so the qualitative
agreement is also good in this regime. (A closer compari-
son of possible anomalous dimensions in the subleading
terms is beyond our current numerical precision.)

It should be noted that the powerlike behavior Eq. (12) is
conformally invariant, i.e. the exponent 
 is not affected by
any rescaling of the momenta or string tension. This allows
to maintain the good agreement of the ghost form factor,
while relaxing the condition on � to make the gluon
propagators match (approximately). With the higher value
of � and the three-dimensional string tension, it is there-
fore possible to reproduce at least qualitatively both the
gluon and ghost form factor from the wave functional
Eq. (1), at least in the intermediate momentum range.

From the right panel in Fig. 1, it is also seen that the
vortex-removed ghost form factor inD ¼ 3 is virtually flat
(
 < 0:05) so that it cannot be matched even qualitatively
to the D ¼ 4 Coulomb result. In particular, it seems im-
possible to satisfy the horizon condition dð0Þ�1 ¼ 0 once
center vortices are removed. This is, of course, expected

since vortices live on the Gribov horizon and are thus
indispensable to maintain enough near-zero modes of the
Faddeev-Popov operator to produce the diverging ghost
form factor. A similar conclusion was also reached in
Ref. [6] from the direct study of the low-lying Faddeev-
Popov spectrum.

IV. CONCLUSION AND OUTLOOK

In this paper we have investigated the properties of the
static propagators of the Hamiltonian approach in the
Coulomb gauge, assuming the wave functional Eq. (1),
which shows strict confinement, as an approximation of
the low energy limit of the true Yang-Mills vacuum wave
functional. The calculation of expectation values of ob-
servables in the D ¼ 3þ 1 Hamiltonian approach in the
Coulomb gauge in this state requires and ordinary D ¼ 3
lattice simulation in the Landau gauge. Adjusting the free
scale � of the state Eq. (1) yields propagators which in a
low to intermediate momentum regime (up to about
1 GeV) reproduce quite well the exact lattice propagators
of the D ¼ 3þ 1 Coulomb gauge, which also agree quali-
tatively with propagators obtained in the variational ap-
proach to continuum Yang-Mills theory in the Coulomb
gauge. An even better agreement should be obtained by
employing the wave functional given in Eq. (3) and (11), as
Fig. 4 shows.
The propagators drastically change in the infrared when

the magnetic center vortices occurring with the weight
j�½A�j2 in the wave functional are removed by the method
of Ref. [31]. In particular, the ghost form factor loses its
infrared singularity and the horizon condition is no longer
satisfied. These results indicate that there is no need to
include additional explicit center vortex degrees of free-
dom in the trial wave functional of the variational ap-
proach, as was proposed recently [35].
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