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We calculate the one loop beta functions of nonlinear sigma models in four dimensions containing

general two- and four-derivative terms. In the OðNÞ model there are four such terms and nontrivial fixed

points exist for all N � 4. In the chiral SUðNÞ models there are in general six couplings, but only five for

N ¼ 3 and four for N ¼ 2; we find fixed points only for N ¼ 2, 3. In the approximation considered, the

four-derivative couplings are asymptotically free but the coupling in the two-derivative term has a nonzero

limit. These results support the hypothesis that certain sigma models may be asymptotically safe.
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I. INTRODUCTION

In the study of quantum gravity one encounters many
technical complications, and it is often desirable to test
one’s ideas and tools in a simpler setting. The nonlinear
sigma models (NLSMs) have striking similarities to grav-
ity: they are nonpolynomially interacting theories, and
from the point of view of power counting, they have
exactly the same structure as gravity. On the other hand,
they lack the complications due to gauge invariance. They
are therefore a good theoretical laboratory where one can
study various technical aspects of the renormalization of
gravity without having to consider the complications due to
gauge fixing, and with the certainty that one’s results are
not gauge artifacts. Recent work on the beta functions of
gravity suggests that there might exist a nontrivial fixed
point with finitely many UV attractive directions, making
this theory ‘‘asymptotically safe.’’ This means that if one
considers all the terms in the derivative expansion of the
effective action, the corresponding (renormalized) cou-
plings would all run towards a fixed point (FP) in the UV
limit, and that only finitely many combinations of cou-
plings would be relevant (attracted to the FP in the UV).
Then, the requirement of tending to the FP in the UVwould
constrain the theory to lie on a finite dimensional surface,
and the theory would then be predictive. See the original
work [1] for the definition of asymptotic safety, [2] for
reviews, and [3,4] for more recent results. Understanding
the UV behavior of the NLSM may shed some light on the
analogous issue for gravity.

Aside from this, the NLSMs also play an important role
in particle physics phenomenology: they are used as low
energy effective field theories both for strong and weak
interactions. In the former case the scalar fields are iden-

tified with the light mesons [5], in the latter with the three
Goldstone degrees of freedom of the complex Higgs dou-
blet [6]. These effective field theories are usually thought
to break down at some cutoff scale, of the order of the GeV
in the strong case and of the TeV in the weak case. It is an
interesting question in itself, and one that may have some
relevance also for particle physics, whether some of these
NLSM’s might actually be asymptotically safe. Old work
on the epsilon expansion and 1=N expansion suggests that
a fixed point with the right properties may exist [7–10].
More recently, the beta functions of the NLSM were
recalculated using a two-derivative truncation of an exact
renormalization group (RG) equation, and it was found in
the case of theOðNÞmodels that they have a nontrivial UV
FP [11]. In the present work we begin addressing the issue
of asymptotic safety in the NLSM taking into account also
four-derivative interactions. The beta functions of four-
derivative NLSM were considered before in [12,13]. The
former reference uses a formalism that applies only to
group-valued models; the latter uses dimensional regulari-
zation and therefore cannot properly compute the running
of the two-derivative terms, which is necessary to establish
asymptotic safety. In this paper we extend and partly
correct the results of these earlier works.
This paper is organized as follows: in Sec. II we discuss

the models and the techniques we use; in Sec. III we
evaluate the beta functions, first for arbitrary manifolds
and then for the OðNÞ models and the chiral models; in
Sec. IV we list their fixed points; in Sec. V we close with a
discussion. The comparison with [12] is given in the
Appendix.

II. THE THEORY

A. Geometry and action

In general the NLSM is a field theory whose configura-
tions are maps from’: X ! Y, where X is a d-dimensional
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manifold interpreted as spacetime and Y is some
n-dimensional internal manifold. We will always take X
to be four dimensional and to have a fixed flat Euclidean
metric, and we will call h a Riemannian metric on Y. Given
a map’, one calls ‘‘vectorfield along’’’ a rule that assigns
to each point x of X a vector tangent to Y at ’ðxÞ.1 For
example, given a fixed vector v tangent to X at x, the image
of v under the tangent map T’ is a vectorfield along ’. Its
components are v�@�’

�. Thus we can view the matrix

@�’
� as the components of four vectorfields along ’.

The Levi-Civita connection of the metric h in TY can be
used to define the covariant derivative of vectorfields along
’. Let ��

�
� be the Christoffel symbols of h and R��

�
� ¼

@���
�
� � @���

�
� þ ��

�
���

�
� � ��

�
���

�
� its Riemann

tensor. The covariant derivative of a vectorfields along ’ is

r��
� ¼ @��

� þ @�’
���

�
��

�: (1)

A diffeomorphism f of Y can be represented in coor-
dinates by y0 ¼ fðyÞ. It maps vectorfields along ’ to
vectorfields along ’0 ¼ f � ’. One can check explicitly
using the transformation properties

�0� ¼ @’0�

@’�
��;

�0
�
�
� ¼ @’�

@’0�
@’0�

@’�

@’�

@’0� ��
�
� þ @’0�

@’�

@2’�

@’0�@’0�

(2)

that the covariant derivative transforms in the same way as
� under diffeomorphisms of Y.

We also note for future reference that the curvature of
the pullback connection is the pullback of the curvature of
the Levi-Civita connection:

½r�;r	��� � ��	
�
��

� ¼ @�’
�@	’

�R��
�
��

�: (3)

We can now discuss the dynamics of the NLSM. Since
the ordinary derivatives of ’� are the components of
vectorfields along ’, the second covariant derivatives of
the scalars are given by

r�@	’
� ¼ @�@	’

� þ @�’
���

�
�@	’

�: (4)

Note that due to the symmetry of the Christoffel symbols
r�@	’

� ¼ r	@�’
�. We also define h’� ¼ r�@�’

�.

After these preliminaries, the most general Lorentz- and
parity-invariant NLSM with up to four derivatives has an
action of the form:

1

2

Z
d4x½@�’�@�’�hð2Þ��ð’Þ þh’�h’�hð4Þ��ð’Þ

þ r�@	’
�@�’�@	’�A���ð’Þ

þ @�’
�@�’�@	’

�@	’�T����ð’Þ�: (5)

Here we defined parity to correspond to the reflection
’�ðx1; x2; x3; x4Þ � ’�ð�x1; x2; x3; x4Þ. This is the only
parity operation one can define in full generality. We will
discuss below other ‘‘parities’’ that can be defined on

special manifolds. At the classical level, hð2Þ, hð4Þ A, and
T are fixed tensorfields on Y. They represent, in general, an
infinite number of interaction terms. In the quantum theory

these tensors will be subject to RG flow. The tensors hð2Þ,
hð4Þ are assumed to be positive definite metrics. In the

present work we will always use hð4Þ to raise and lower

indices, while hð2Þ is treated as any tensor. Of course
nothing ultimately can depend on this convention. The
tensor A can be assumed to be totally symmetric without
loss of generality. The tensor T must have the following
symmetry properties:

T���� ¼ T���� ¼ T���� ¼ T����:

In (5) we have not considered (parity violating) terms
that involve the � tensor, of the form

c
Z

d4x��	
�@�’
�@	’

�@
’
�@�’

�B����ð’Þ; (6)

where B is some four-form on Y. These could be called
‘‘Wess-Zumino-Witten terms’’ in a generalized sense. A
proper Wess-Zumino-Witten term is one for which the
four-form B is not defined everywhere on Y, but the five-
form H ¼ dB is. Then H defines a nontrivial fifth-
cohomology class and the coefficient c has to obey a
quantization condition. The original Wess-Zumino term
corresponds to the case Y ¼ SUðNÞ and H ¼ trðg�1dgÞ5.
We will briefly return to these terms in the discussion.
We observe that since the field ’ appears nonpolyno-

mially in the action, it must be dimensionless. Then, hð2Þ
must have dimension of mass squared, whereas the other
tensors are dimensionless. Later on we will find it conve-
nient to split off a dimensionful coupling from the dimen-
sionful tensors, so that all the tensors are dimensionless.
We will be especially interested in cases in which the

theory has some global symmetries. Let � be a diffeo-

morphism of Y that leaves the tensors hð2Þ, hð4Þ, A, T
invariant, for example,

T����ðyÞ ¼ @��0

@y�
@��0

@y�
@��0

@y�
@��0

@y�
T�0�0�0�0 ð�ðyÞÞ:

In particular, � is an isometry of hð4Þ. Then the action is
invariant under the transformation ’ � � � ’. Such
global symmetries may be discrete, or they may form a
continuous group G. In the latter case there exist vector

1The vectorfields along ’ should be thought of, in geometrical
terms, as sections of the pullback bundle ’�TY.
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fields Ka on Y (with a ¼ 1 . . . dimG) whose Lie brackets
form an algebra isomorphic to the Lie algebra of G, and

such that hð2Þ, hð4Þ, A, T are invariant under G:

LKa
hð2Þ ¼ 0; LKa

hð4Þ ¼ 0;

LKa
A ¼ 0; LKa

T ¼ 0:

In particular, Ka are Killing vectors for the metric hð4Þ:
r�Ka� þr�Ka� ¼ 0. Then, the action (5) is invariant

under the infinitesimal transformation ��’
� ¼ �aK�

a ð’Þ.
Discrete isometries may appear in the definition of

parity or time reversal. In linear scalar theories one can
define the operation � � ��. For example the pions
transform as ðPÞaðx1; x2; x3; x4Þ ¼ �að�x1; x2; x3; x4Þ
under parity. In a general NLSM the transformation ’� �
�’� has no intrinsic meaning. However, suppose that
every point y 2 Y is the fixed point of an involutive
isometry �y. Such a manifold is said to be a symmetric

space [14]. We can then define a new parity operation, let
us call it ‘‘Parity’’ with capital P, by ðP’Þ�ðx1; x2; x3; x4Þ ¼
�0 � ’ð�x1; x2; x3; x4Þ, where �0 is the involutive isome-
try of the vacuum. The transformation properties of the
action under this new definition of parity are different than
under the previous definition. In particular, if
A���ð�0ðyÞÞ ¼ A���ðyÞ, then the A-term will not be

Parity-invariant. On the other hand if B����ð�0ðyÞÞ ¼
�B����ðyÞ, then the Wess-Zumino-Witten term is Parity-

invariant [15].

B. Background field expansion

We use the background field techniques developed in
[16–19]. We review here some of the main points. Having
chosen a (not necessarily constant) background �’, any
other field ’ in an open neighborhood of �’ can be written
’� ¼ �’� þ ��. In principle one could work with the

quantum fields ��, but this is not convenient because, as
differences of coordinates, they do not have nice trans-
formation properties. It is therefore convenient to proceed
as follows. For each x one can find a unique vector �ðxÞ
tangent to �’ðxÞ such that ’ðxÞ is the point on the geodesic
passing through �’ðxÞ and tangent to �ðxÞ, the distance
between ’ðxÞ and �’ðxÞ being equal to j�ðxÞj. We can
thus write ’ðxÞ ¼ Exp �’ðxÞ�ðxÞ, where Exp is the exponen-

tial map. The field, ��ðxÞ is a vectorfield along �’, and its
covariant derivative is defined as in (1).
In principle, then, the action ’ can be rewritten as

Sð’Þ ¼ �Sð �’; �Þ. In practice one can compute the first few

terms in an expansion �Sð �’; �Þ ¼ �Sð0Þð �’; �Þ þ �Sð1Þð �’; �Þ þ
�Sð2Þð �’; �Þ þ . . . , where �SðnÞ contains n powers of �. The

first term is clearly �Sð0Þð �’; �Þ ¼ �Sð �’; 0Þ ¼ Sð �’Þ. To com-
pute the next terms we use the following formulas (whose
derivation can be found in [16]):

@�’
� ¼ @� �’� þ �r��

� � 1

3
@� �’� �R��

�
��

��� þ . . . ;

t��...ð’Þ ¼ t��...ð �’Þ þ �� �r�t��...ð �’Þ
þ 1

2
���� �r�

�r�t��...ð �’Þ � 1

6
���� �R�

���t��...

� 1

6
���� �R�

���t��... þ . . .

A bar over the derivatives and the curvatures indicates that
they have to be computed with the background field �’. In
particular for the metric g we have

g��ð’Þ ¼ g��ð �’Þ � 1

3
�R�����

��� þ . . .

Inserting in (5), with A ¼ 0, and keeping terms of second
order in � we obtain

1

2

Z
d4x

�
hð2Þ��r��

�r��� � ����R���
�hð2Þ��@�’

�@�’
� þ 2��r��

�r�h
ð2Þ
��@�’

� þ 1

2
����r�r�h

ð2Þ
��@�’

�@�’
�

þ hð4Þ��h��h�� þ 2��h��R����@�’
�@�’� � 4��r��

�R����@
�’�h’� � ����R����h’�h’�

þ ����ðr�R���� þr�R����Þ@�’�@�’�h’� þ ����R����R
�
���@�’

�@�’�@	’
�@	’�

þ 2r��
�r���@	’

�@	’�T���� þ 4r��
�r	�

�@�’�@	’�T���� � 2����R�
���T����@�’

�@�’�@	’
�@	’�

þ 4��r��
�r�T����@

�’�@	’
�@	’� þ 1

2
����r�r�T����@	’

�@	’�@�’
�@�’�

�
: (7)

For notational simplicity here and in the following we drop
the bars over ’, r, and R, but it is always understood that
they are computed at the background field. The terms have
been kept in the order in which they appear in (5), namely,
the first four terms come from the variation of the two-
derivative term, the terms from the fifth to the tenth come
from the variation of the term containing hð4Þ and the terms
from the eleventh to the fifteenth come from the variation
of the term containing T.

C. The running effective action

Our procedure for calculating the beta functions is a
particular implementation of Wilson’s prescription that
physics at the scale k is described by an effective action
�k where all modes with momenta q > k have been inte-
grated out. We define formally an ‘‘effective average ac-
tion’’ �k by implementing an infrared cutoff k in the
functional integral over the quantum field �. If �Sð’; �Þ is
the bare action of the theory, the IR cutoff can be imple-
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mented by adding to �S a term �Skð’; �Þ, quadratic in ��,
which in Fourier space would have the general structure

�Skð’; �Þ ¼
Z

d4q��ð�qÞRk��ðq2Þ��ðqÞ: (8)

The kernel Rk��ðq2Þ, sometimes also called the cutoff, is

chosen in such a way that the propagation of field modes
��ðqÞ with jqj< k is suppressed, while field modes with
jqj> k are unaffected. There is a vast freedom in the
choice of the cutoff �Sk, and in principle physical predic-
tions should turn out to be independent of this choice. One
can use this freedom to simplify calculations to some
extent. One possibility would be to write the cutoff exactly

as in (8), with Rk��ðq2Þ ¼ hð4Þ��Rkðq2Þ, where Rkðq2Þ is a
scalar function of the modulus of the momentum. Note that
q2 is just the eigenvalue of the operator �@2 acting on the
quantum field. It is more convenient to write the cutoff in
terms of the eigenvalues of some covariant operator, such
as the Laplacian constructed with the background field
�r2. This is the choice that was used in [11]. In this paper
we will find it expedient to use instead of �r2 the full

covariant fourth order operator � ¼ �2S
�’�’ :

�Skð’; �Þ ¼ 1

2

Z
d4x��hð4Þ��ð’ÞRkð�Þ��: (9)

Because � depends only on the background field, and not
on the quantum fields, this cutoff is still quadratic in the
quantum fields, as required.

Having modified the propagator of the theory, we define
a generating functional Wkð’; jÞ, depending on the back-
ground ’ and on a source field j coupled linearly to the
quantum field �, by

Wkð’; jÞ ¼ � log
Z
ðd��Þ

� exp

�
� �Sð’; �Þ � �Skð’; �Þ �

Z
j��

�

�
:

(10)

Then we define a modified k-dependent Legendre trans-
form,

�kð’; �Þ ¼ Wkð’; jÞ �
Z

j��
� � �Skð’; �Þ;

where �Sk has been subtracted. The ‘‘classical fields’’ �Wk

�j�

are denoted again �� for notational simplicity. The func-
tional �k reduces for k ! 0 to the usual background field
effective action �ð’; �Þ, the generating functional of one-
particle irreducible Green functions of �.

D. The one loop beta functional

At one loop one can evaluate the functional �k:

�ð1Þ
k ¼ Sþ 1

2
Tr log

�
�2S

�’�’
þ Rk

�
: (11)

Note that �Sk has canceled out. The only remaining de-
pendence on k is in Rk, so

k
d�ð1Þ

k

dk
¼ 1

2
Tr

�
�2S

�’�’
þ Rk

��1
k
dRk

dk
: (12)

The right-hand side can be regarded as the one loop beta
functional of the theory. The individual beta functions can
be read off by isolating the coefficients of various opera-
tors. Of course one could derive the one loop beta functions
in other, more traditional ways. We prefer this route be-
cause it has a few advantages. First, due to the rapid fall off
of the function k@kRk, the beta functional is itself finite and
one does not actually need to introduce any ultraviolet
regularization. So, even though the derivation of the equa-
tion from a functional integral was formal, because the
functional integral is itself ill defined, the functional RG
equation is itself perfectly well defined. A second impor-
tant point is that the RG improvement of this equation,
where one replaces the bare action S by �k in the right-
hand side, is actually an exact equation [20]. So although in
the present work we shall restrict ourselves to the one loop
approximation, the formalism is ready for the calculation
of the beta functions based on a truncation of the exact RG
equation, which amount to resumming infinitely many
orders of perturbation theory. A final, important point is
that experience with other systems shows that this proce-
dure gives exactly the same results as any other procedure
for the universal (scheme-independent) one loop beta func-
tions. We will see in Sec. III D that, to the extent that a
comparison is possible, this expectation will be confirmed
also in this case.

E. Global symmetries

If there are any symmetries, one can define the RG flow
so as to preserve them. To see this, let � be an internal

symmetry, as in Sec. II A. Since it is an isometry of hð4Þ, it
also leaves the connection invariant, so it maps the geode-
sic through y tangent to � to the geodesic through �ðyÞ
tangent to T�ð�Þ [21]:

�ðExpyð�ÞÞ ¼ Exp�ðyÞðT�ð�ÞÞ:
We call ’0 ¼ � � ’ and �0 ¼ T�ð�Þ the transform
of ’ and � under �. Then ’0 ¼ �ðExp �’�Þ ¼
Exp�ð �’ÞðT�ð�ÞÞ ¼ Exp �’0�0. There follows that

�Sð �’0; �0Þ ¼ Sð’0Þ ¼ Sð’Þ ¼ �Sð �’; �Þ; (13)

i.e. the background field action �S is G-invariant provided
both background and quantum field are transformed. The
operator � is covariant, so �0ð�0Þ ¼ T�ð�ð�ÞÞ or ab-
stractly �0 ¼ T� � ð�Þ � T��1, so also the cutoff term
(9) is invariant:

�Skð’0; �0Þ ¼ �Skð’; �Þ: (14)

One can formally choose the measure in the functional
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integral (10) to be invariant under �. Since both measure
and integrand are invariant, the effective action �k will also
be invariant, for all k.

Somewhat less formally, one can arrive at the same
conclusion as follows: observe that the cutoff as defined in
(9) is a suppression term that depends on the eigenvalue of
the operator � on the normal modes of the field. From the
transformation properties of � one sees that if � is an
eigenvector of � with eigenvalue �, then �0 is an eigen-
vector of �0 with the same eigenvalue. Therefore the
spectrum of � is invariant. Equation (12) gives the (one
loop) scale variation of �kð’Þ as a sum of terms, each term
being a fixed function evaluated on an eigenvalues of �.
Since the eigenvalues are invariant, the sum is also invari-
ant, so it follows that @t�kð’Þ is invariant. This implies that
if the starting action �k0ð’Þ is invariant, also the action at

any other k is. This argument is mathematically more
meaningful, because unlike the one based on the path
integral, it involves only statements about finite
expressions.

The previous argument can be applied both to discrete
and continuous symmetries. For example in the case of
discrete symmetries, it implies that the flow preserves
Parity. If the A term violates Parity, it must be set to zero
in order to have a Parity-invariant theory. The flow will
preserve this property, so the beta function of A will be
zero. In other words the condition A ¼ 0 will be ‘‘pro-
tected by Parity’’. Wewill see this in an explicit calculation
in Sec. III B.

III. EVALUATION OF BETA FUNCTIONS

The one loop RG flow Eq. (12) can be approximated by
resorting to a truncation, which means keeping only a finite
number of terms in �k, inserting this ansatz in the flow
equation and deriving from it the beta functions of the
couplings that enter in the ansatz. The best way of truncat-
ing �k is to do so consistently with a derivative expansion,
i.e. to keep all the terms with a given number of derivatives.
In this paper we will approximate �k by a functional of

the form (5), where the tensors hð2Þ, hð4Þ, and T are
k-dependent, and A ¼ 0. In general this is still a functional
flow, because the tensors actually contain infinitely many
couplings. We will be able to say more in the case when a
global symmetry restricts the possible form of these ten-
sors, so that only finitely many couplings remain. In this
paper we will explicitly compute the beta functions in the
case when Y is a sphere or a special unitary group. Since
these are symmetric spaces, it will be consistent to neglect
the A terms altogether.

A. The inverse propagator

Integrating by parts one can rewrite (7) in the form
�Sð2Þð’; �Þ ¼ 1

2 ð�;��Þ, where the inner product of vector-

fields along ’ is ð�; �Þ ¼ R
d4xhð4Þ���

��� and � is a self-

adjoint operator of the form

��� ¼ hð4Þ��h
2 þB�	

��r�r	 þ C���r� þD��: (15)

Self-adjointness means that ð�;��Þ ¼ ð��; �Þ and implies
the properties:

B �	
�� ¼ B	�

��; (16)

C �
�� ¼ �C��� þr	B

�	
�� þr	B

	�
��; (17)

D �� ¼ D�� þr	C
�
�� þr	r	B

	�
��: (18)

In addition by commuting derivatives we can arrange the
operator so that B�	

�� ¼ B	�
��. In order to arrive at the

operator � we proceed in two steps. First we put all the

derivatives of (7) on one of the �’s, so that �Sð2Þð’; �Þ ¼ 1
2 �

ð�; ~��Þ, where ~� is of the form (15), with

~B�	
�� ¼ ��	ð�hð2Þ�� þ 2@
’

�@
’�ðR���� � T����ÞÞ
� 4@�’

�@	’
�T����; (19)

~D �� ¼ @�’
�@�’�

�
1

2
r�r�h

ð2Þ
�� � hð2Þ��R�

���

�

�h’�h’�R����

� 2@
’
�@
’�h’�rð�R�Þ���

þ @
’
�@
’�@�’

�@�’�

�
R����R���

�

þ 1

2
r�r�T���� þ 2R����T

�
���

�
: (20)

We do not display the form of ~C���, since it does not

contribute to the expressions we want to calculate, as will

become clear in due course. This operator ~� is not self-

adjoint, and we define � ¼ 1
2 ð~�þ ~�yÞ. Its coefficients are

B�	
�� ¼ 1

2
ð ~B�	

�� þ ~B	�
��Þ;

C��� ¼ 1

2
ð~C��� � ~C��� þr	

~B�	
�� þr	

~B	�
��Þ;

D�� ¼ 1

2
ð ~D�� þ ~D�� �r�

~C��� þr�r	
~B	�
��Þ:

(21)

Note that the last two terms in C��� and D�
�� are total

derivatives, and will not contribute to our final formulas.
Finally we can symmetrize B�	

�� in �, 	 at the cost of

generating a commutator term that contributes to D��.

The final form of the operator � is (15), with
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B�	
�� ¼ ��	ð�hð2Þ�� þ 2@
’

�@
’�ðR���� � T����ÞÞ
� 2@�’

�@	’
�ðT���� þ T����Þ;

D�� ¼ 1

2
ð ~D�� þ ~D��Þ � @
’

�@
’�@�’
�@�’�

� ðT����R���
� þ T����R���

�Þ þ TD; (22)

where TD stands for ‘‘total derivatives.’’ Again we omit to
give C���, because it does not contribute to the beta func-

tions. These formulas agree with (Eqs. 3.17-21) in [13],
except for a factor 2 in the coefficient of the first term
containing T���� in Eq. (19).

B. Beta functionals

We begin by discussing the general case of the action (5)

with arbitrary hð2Þ, hð4Þ, and T, and A ¼ 0. We evaluate the
trace in (12) by heat kernel methods. The advantage of this
procedure is that pieces of the calculation are readily
available in the literature. Given a differential operator �
of order p, and some function W, we have

TrWð�Þ ¼ 1

ð4Þ2 ½Qð4=pÞðWÞB0ð�Þ þQð2=pÞðWÞB2ð�Þ
þQ0ðWÞB4ð�Þ þ . . .�: (23)

The heat kernel coefficients are defined by the asymptotic
expansion

Tr ðe�s�Þ ¼ 1

ð4Þ2 ½B0s
�4=p þ B2s

�2=p þ B0 þ . . .�;
(24)

with Bn ¼
R
d4x trbn; bn are matrices with indices �, �

and tr denotes the trace over such indices. The matrices bn

that pertain to a fourth order operator of the form (15) can
be found in [22]. The quantitiesQnðWÞ in (23) are given by
QnðWÞ ¼ 1

�ðnÞ
R1
0 dzzn�1WðzÞ for n > 0 and Q0ðWÞ ¼

Wð0Þ. We do not need any higher coefficients. In order to
be able to evaluate the integrals in closed form we choose
the ‘‘optimized’’ cutoff function RkðzÞ ¼ ðk4 � zÞ�ðk4 �
zÞ [23]. The scale derivative of the cutoff is k dRk

dk ¼
4k4�ðk4 � zÞ, and the modified inverse propagator PkðzÞ ¼
zþ RkðzÞ is equal to k4 for z < k4. Then the function to be

traced in Eq. (12) is just a step function: WðzÞ ¼ 1
2 �

1
Pk
k dRk

dk ¼ 2�ð1� z=k4Þ, and the integrals are very simple:

Q1 ¼ 2k4; Qð1=2Þ ¼ 4ffiffiffiffi


p k2; Q0 ¼ 2: (25)

The first term in (23) is field independent and will be
omitted. Putting together the remaining pieces:

k
d�k

dk
¼ 1

ð4Þ2
Z

d4x

�
1

4
k2B�

� þ 1

6
���

�	�
�	
��

þ 1

24
B��

�	B
�	
�� þ 1

48
B��B�� �D�

�

�
; (26)

where � is defined as in (3) and B ¼ B�
�. The first term

comes from B2, the others from B4. One finds

1

4
B�

� ¼ @�’
�@�’�ð2R�� � 2T�

��� � T�
���Þ; (27)

1

6
���

�	�
�	
�� ¼ � 1

6
@�’

�@�’�@	’
�@	’�R����R��

��;

(28)

1

24
B��

�	B
�	
�� þ 1

48
B��B�� ¼ 1

2
hð2Þ��h

ð2Þ�� þ @�’
�@�’�ðT�

�
�
� þ 2T��

�� � 2R�
�
�
�Þhð2Þ��

þ @�’
�@�’�@	’

�@	’�

�
2

3
T����T�

ð�
�
�Þ þ 1

3
T����T�

ð�
�
�Þ þ 4T�ð��Þ�T�

ð�
�
�Þ

� 4R����T�
ð�
�
�Þ � 2R����T�

ð�
�
�Þ þ 2R����R�

ð�
�
�Þ
�
; (29)

�D�
� ¼ h’�h’�R�� þh’�@�’�@�’

�ð2r�R�� �r�R��Þ þ @�’
�@�’�

�
hð2Þ��R�

� � 1

2
r�r�hð2Þ��

�

þ @�’
�@�’�@	’

�@	’�

�
2R�

�T���� þ 2R��
��T���� � 1

2
r�r�T���� � R����R�

�
�
�

�
: (30)

From here one can read off the beta functionals of hð2Þ, A, T
as the coefficients of terms containing two, three, and four
powers of @�’

�, respectively. We do not give these general
formulas, but just make some observations. The only term
proportional toh’�h’� is contained in�D�

�, so the beta
functional of hð4Þ is easily obtained:

k
d

dk
hð4Þ�� ¼ 1

82
R��: (31)

This is very similar to the result for the two-derivative
truncation. In order to compare results obtained with the
same type of cutoff, we should repeat the calculation of
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[11] using a cutoff constructed with the full inverse propa-
gator ��� ¼ �hð2Þ��r2 � @�’

�@�’
�R����. This is a cut-

off of type III in the terminology used in [3]. In this case the
general beta function of the metric is

k
d

dk
hð2Þ�� ¼ 1

ð4Þ2 Q1

� _Rk

Pk

�
R�� ¼ 1

82
k2R��; (32)

where R denotes now the curvature of hð2Þ��. As a side
remark, this little calculation is also useful to test the
scheme dependence of the results: with the type I cutoff
used in [11] the result was

k
d

dk
hð2Þ�� ¼ 1

ð4Þ2 Q2

� _Rk

P2
k

�
R�� ¼ 1

162
k2R��; (33)

which differs by a factor 2.
Another fact that follows from (30) is that the beta

function of A (coming from the coefficient of
h’�@�’�@�’

�) is proportional to covariant derivatives

of the Ricci tensor. For symmetric spaces the covariant
derivative of the curvature vanishes and therefore on such
spaces it is consistent to set A ¼ 0. This confirms the
general statement made in Sec. II E. The particular models
that we shall consider in the following are symmetric
spaces.

C. The spherical models

We now consider the class of models for which the target
space Y is the sphere Sn. Such models are often called the
OðNÞ models, with N ¼ nþ 1, because they have global
symmetry OðNÞ. There is only one Oðnþ 1Þ-invariant
nonvanishing rank two tensor on the sphere, there is no
invariant rank three tensor and there are only two invariant
rank four-tensors with the desired index symmetries, up to
overall constant factors. If we regard Sn as embedded in
Rnþ1, we call h�� the metric of the sphere of unit radius.

Its Riemann and Ricci tensors are given by

R���� ¼ h��h�� � h��h��; R�� ¼ ðn� 1Þh��;
R ¼ nðn� 1Þ:

Therefore both hð2Þ and hð4Þ must be proportional to h, and
T is a combination of h’s:

hð2Þ�� ¼ 1

g2
h��; hð4Þ�� ¼ 1

�
h��;

T���� ¼ ‘1
2
ðh��h�� þ h��h��Þ þ ‘2h��h��:

Here g2 has mass dimension 2, while �, ‘1, ‘2 are dimen-
sionless.2 It is convenient to regard 1

� as the overall factor of

the fourth order terms; then we define the ratios between
the three coefficients of the four-derivative terms as f1 ¼

�‘1 and f2 ¼ �‘2. For the reader’s convenience we rewrite
the action of the Sn models:

Z
d4x

�
1

2g2
h��@�’

�@�’� þ 1

2�
ðh��h’�h’�

þ @�’
�@�’�@	’

�@	’�ðf1h��h�� þ f2h��h��ÞÞ
�
:

(34)

One then finds the following beta functions:

�� ¼ �n� 1

82
�2; (35)

�f1 ¼
�

482
ððnþ 21Þf21 þ 20f2f1 þ 4f22 þ 6ðnþ 3Þf1

þ 24f2 þ 8Þ; (36)

�f2 ¼
�

82

�
nþ 15

12
f21 þ

3nþ 17

3
f1f2 þ 6nþ 7

3
f22

� ðnþ 3Þf1 � ð3nþ 1Þf2 þ n� 7

3

�
; (37)

�~g2 ¼ 2~g2 þ ~g4

162
ðð5þ nÞf1 þ ð2þ 4nÞf2 þ 4ð1� nÞÞ

� �~g2

162
ðð5þ nÞf1 þ ð2þ 4nÞf2 þ 2ð1� nÞÞ:

(38)

Equations (36) and (37) differ in a significant way from
Eq. (5.11) in [13]. This is due to the already mentioned
factor 2 in a term in (19). Unfortunately, this changes
completely the picture of the fixed points.
It will be instructive to compare the results of this four-

derivative truncation with those of the simpler two-
derivative truncation discussed in [11]. If we specialize
(32) to Y ¼ Sn, it gives

k
d~g2

dk
¼ 2~g2 � n� 1

82
~g4; (39)

whereas from (38), setting for simplicity ‘1 ¼ ‘2 ¼ 0 and
in the limit � ! 0 one gets

k
d~g2

dk
¼ 2~g2 � n� 1

42
~g4: (40)

The difference is just a factor 2, which is within the range
of variation due to the scheme dependence. It is quite
remarkable that the beta function is so similar in spite of
the very different dynamics. We shall see in Sec. IVA that
this fact is quite general.

D. The chiral models

Next we consider the case where Y is the group SUðNÞ.
In this case it is customary to denoteUðxÞ the matrix (in the
fundamental representation) that corresponds to the coor-

2The names ‘1 and ‘2 are used commonly in chiral perturba-
tion theory [5].
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dinates ’�. We demand that the theory be invariant under
left and right multiplications UðxÞ � g�1

L UðxÞgR, forming
the group SUðNÞL � SUðNÞR (‘‘chiral symmetry’’).
Further we demand that the theory be invariant under the
discrete symmetries UðxÞ � UTðxÞ, which corresponds
physically to charge conjugation, to the simple parity x1 �
�x1, to the involutive isometry�0:U ! U�1 and hence to
Parity Uðx1; x2; x3; x4Þ � U�1ð�x1; x2; x3; x4Þ. More de-
tails on the translation between the tensor and the matrix
formalism are given in the Appendix.

Let ea be a basis of the Lie algebra, with a ¼ 1 . . . n2 �
1. We denote Ta the corresponding matrices in the funda-
mental representation; they are a set of Hermitian, traceless
N � N matrices. We fix the normalization of the basis by
the equation

TaTb ¼ 1

2N
�ab þ 1

2
ðdabc þ ifabcÞTc: (41)

[In the case of SUð3Þ these matrices are one half the Gell-
Mann � matrices.]

A tensor on SUðNÞ which is invariant under SUðNÞL �
SUðNÞR is said to be ‘‘bi-invariant.’’ There is a one to one
correspondence between bi-invariant tensors on SUðNÞ
and Ad-invariant tensors in the Lie algebra of SUðNÞ,
where Ad is the adjoint representation. Given an
Ad-invariant tensor tab...

cd... on the algebra, the correspond-

ing bi-invariant tensorfield on the group is

t��...
��... ¼ tab...

cd...La
�L

b
� . . .L

�
cL�

d . . . ;

where La
� are the components of the left-invariant Maurer

Cartan form L ¼ U�1dU ¼ La
�dy

�ð�iTaÞ and L�
a are the

components of the left-invariant vectorfields on SUðNÞ.
The matrix L�

a is the inverse of La
�. (In this construction

we could use equivalently right-invariant objects.)
Up to rescalings, there is a unique Ad-invariant inner

product in the Lie algebra, which we choose as
hab ¼ 2TrTaTb ¼ �ab.

3 Then the corresponding biinvar-
iant metric is

h�� ¼ La
�L

b
��ab; (42)

so that the left-invariant vectorfields La can also be re-
garded as a vierbein. The Riemann and Ricci tensors and
the Ricci scalar of h are given by

R���� ¼ 1

4
La
�L

b
�L

c
�L

d
�fab

efecd; R�� ¼ 1

4
Nh��;

R ¼ 1

4
NðN2 � 1Þ: (43)

As with the sphere, we define hð2Þ�� ¼ 1
g2
h��, h

ð4Þ
�� ¼ 1

� h��.

The tensors dabc and fabc are a totally symmetric and a

totally antisymmetric Ad-invariant three tensor in the al-
gebra. In principle chiral invariance would permit a term in
the action with A��� ¼ La

�L
b
�L

c
�dabc; however using

La
�ð�0ðyÞÞ ¼ Ra

�ðyÞ, L�
a ðyÞRb

�ðyÞ ¼ AdðgðyÞÞba, and the
Ad-invariance of dabc, one sees that A���ð�0ðyÞÞ ¼
A���ðyÞ, so this term violates Parity.

For T we have the following Ad-invariant four-tensors in
the algebra with the correct symmetries:

Tð1Þ
abcd ¼

1

2
ð�ac�bd þ �ad�bcÞ; Tð2Þ

abcd ¼ �ab�cd;

Tð3Þ
abcd ¼

1

2
ðfacefbde þ fadefbc

eÞ;

Tð4Þ
abcd ¼

1

2
ðdacedbde þ dadedbc

eÞ; Tð5Þ
abcd ¼ dabedcd

e:

(44)

They are not all independent, however. The identity (2.10)
of [24] implies that

2

N
Tð1Þ � 2

N
Tð2Þ þ Tð3Þ þ Tð4Þ � Tð5Þ ¼ 0; (45)

so that Tð5Þ can be eliminated. In the case N ¼ 3 the
identity (2.23) of [24], together with the preceding relation,
further implies

Tð2Þ � Tð3Þ � 3Tð4Þ ¼ 0; (46)

so that we can also eliminate Tð4Þ. Finally in the case N ¼
2 the tensor dabc is identically zero, so we can keep only

Tð1Þ and Tð2Þ as independent combinations, and use Tð3Þ ¼
Tð2Þ � Tð1Þ.
The action of the generic SUðNÞ models can then be

written in the form

Z
d4x

�
1

2g2
h��@�’

�@�’� þ 1

2�
h��h’�h’�

þ 1

2
@�’

�@�’�@	’
�@	’�

X4
i¼1

‘iT
ðiÞ
����

�
(47)

and the sum stops at i ¼ 3 and i ¼ 2 forN ¼ 3 andN ¼ 2,
respectively. As in (34), it will be convenient to use instead
of the couplings ‘i the combinations fi ¼ �‘i.
Making repeated use of traces given in [25] one finds the

following beta functions:

�� ¼ � N

322
�2; (48)

�f1 ¼
�

7682N2
½16N2ðN2 þ 20Þf21 þ 64N2f22 þ 180N2f23

þ 4ð149N2 � 1280Þf24 þ 320N2f1f2 � 32N3f1f3

þ 32NðN2 þ 4Þf1f4 þ 128Nf2f4 � 120N2f3f4

þ 24N3f1 � 108N2f3 þ 36N2f4 þ 9N2�; (49)

3Here the matrices are in the fundamental representation. The
Cartan-Killing form just differs by a constant: Bab ¼
TrðAdðTaÞAdðTbÞÞ ¼ N�ab.
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�f2 ¼
�

7682N2
½8N2ðN2 þ 14Þf21 þ 32N2ð6N2 þ 1Þf22

þ 60N2f23 þ 4ð7N2 þ 656Þf24
þ 32N2ð3N2 þ 14Þf1f2 þ 80N3f1f3

þ 16Nð7N2 � 44Þf1f4 þ 288N3f2f3

þ 32Nð15N2 � 64Þf2f4 þ 120N2f3f4

� 24N3ðf1 þ 3f2Þ � 36N2ðf3 þ f4Þ þ 3N2�; (50)

�f3 ¼
�

15362N
½52N2f23 þ 12ð23N2 � 320Þf24

þ 768Nf1f3 þ 256Nf1f4 þ 384Nf2f3

þ 128Nf2f4 þ 24ð11N2 � 64Þf3f4
� 192Nðf1 þ f2Þ� 60N2ðf3 þ f4Þþ 384f4 þN2�;

(51)

�f4 ¼
�

15362N
½60N2f23 þ 4ð87N2 � 1728Þf24

þ 1536Nf1f4 þ 768Nf2f4 þ 216N2f3f4

� 36N2ðf3 þ f4Þ þ 3N2�; (52)

�~g2 ¼ 2~g2 þ ~g4

16N2
ðNðN2 þ 4Þf1 þ 2Nð2N2 � 1Þf2

þ 3N2f3 þ 5ðN2 � 4Þf4 � N2Þ

� �~g2

16N2
ðNðN2 þ 4Þf1 þ 2Nð2N2 � 1Þf2

þ 3N2f3 þ 5ðN2 � 4Þf4 � N2=2Þ: (53)

In the Appendix we establish the dictionary between our
notation and that used in [12]. When the beta functions are
compared, we find perfect agreement, except for one small
difference: the very last term in the second line of �~g2

would be N2=2 according to [12], i.e. ~g4 and �~g2 would
have the same coefficients. This is the same difference that
we observed between (32) (type III cutoff) and (33) (type I
cutoff), so, effectively the calculation in [12] is equivalent
to a type I cutoff. Given that the calculation in [12] was
done using completely different techniques, this agreement
confirms that the one loop beta functions of the dimen-
sionless couplings (which in a calculation of the effective
action would correspond to logarithmic divergences) is
scheme independent.

The cases N ¼ 3 and N ¼ 2 have to be treated sepa-
rately, because in these cases only three, respectively, two,
of the couplings fi are independent. In the case N ¼ 3 one
can eliminate f4 in favor of the other three couplings. Then
using (46) one can obtain the beta functions of f1, f2, and
f3 from the ones given above by

�f1 jN¼3 ¼ �f1 jN¼3;f4¼0

¼ �

7682
½464f21 þ 64f22 þ 180f23 þ 320f1f2

� 96f1f3 þ 72f1 � 108f3 þ 9�;
�f2 jN¼3 ¼ �f2 þ

1

3
�f4 jN¼3;f4¼0

¼ �

15362
½368f21 þ 3520f22 þ 180f23

þ 2624f1f2 þ 480f1f3 þ 1728f2f3 � 144f1

� 432f2 � 108f3 þ 9�;
�f3 jN¼3 ¼ �f3 �

1

3
�f4 jN¼3;f4¼0

¼ �

322
½2f23 þ 16f1f3 þ 8f2f3 � 4f1

� 4f2 � 3f3�:

In the case N ¼ 2 we can set f4 ¼ 0, because Tð4Þ ¼ 0
identically, and we can eliminate f3. One can obtain the
beta functions of f1, f2 from the ones given above by

�f1 jN¼2 ¼ �f1 � �f3 jN¼2;f3¼0;f4¼0

¼ �

962
½48f21 þ 8f22 þ 40f1f2 þ 18f1

þ 12f2 þ 1�;
�f2 jN¼2 ¼ �f2 þ �f3 jN¼2;f3¼0;f4¼0

¼ �

1922
½36f21 þ 200f22 þ 208f1f2

� 36f1 � 60f2 þ 1�:

The latter result can be used to check also our beta func-
tions for the spherical sigma model. In fact there is exactly
one manifold which is simultaneously a sphere and a
special unitary group: it is SUð2Þ ¼ S3. Thus the beta
functions should agree in this case. Before comparing, a
little point needs to be addressed. In Sec. III C we chose the
metric h�� to be that of a sphere of unit radius. In this

section we have fixed the metric by the conditions (41) and
(42). It turns out that in the case N ¼ 2 this normalization
corresponds to a sphere of radius two. This can be seen, for
example, from Eq. (43), specialized to N ¼ 2, with fabc ¼
"abc. In order to compare the beta functions of S3 with
those for SUð2Þ we therefore have to redefine � ! �=4,
f1 ! 4f1, f2 ! 4f2, g

2 ! g2=4. With these redefinitions,
the beta functions do indeed agree.

IV. FIXED POINTS

A. The spherical models

We now discuss solutions of the RG flow equations. The
beta function of � depends only on � and the solution is
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�ðtÞ ¼ �0

1þ �0
n�1
82 ðt� t0Þ

; (54)

where �0 ¼ �ðt0Þ. We assume �0 > 0, thus � is asymptoti-
cally free. The beta functions of f1 and f2 do not depend on
g, so their flow can be studied independently. Here we do
not discuss general solutions but merely look for fixed
points. The overall factor � in these beta functions can
be eliminated by a simple redefinition t ¼ tð~tÞ of the
parameter along the RG trajectories:

d

d~t
¼ 1

�

d

dt
: (55)

Since ~t is a monotonic function of t, the FPs for f1 and f2
are the zeroes of the modified beta functions

~� fi ¼
dfi
d~t

¼ 1

�
�fi :

They are just polynomials in f1 and f2. The model has no
real FP for n ¼ 2, but there are FPs for all n > 2. For n ¼
3; . . . 8 they are given in the fifth and sixth column in
Table I. One can then insert the FP values of f1 and f2 in
�~g2 and look for FP of ~g2. In each case there are two

solutions, one at ~g2 ¼ 0, the other at some nonzero value.
These solutions are reported in the fourth column in
Table I, for n ¼ 3; . . . 8. The first solution describes the
Gaussian FP (GFP), where all the couplings ~g2, �, 1=‘1,
1=‘2 are zero, the others are non-Gaussian FP’s (NFP),
where ~g2 has finite limits instead. Each FP can be ap-
proached only from specific directions in the space pa-
rametrized by �, ‘1, ‘2, i.e. the ratios f1 and f2 take
specific values. For each NFP these values are unique,
while for the GFP there may be several possible values:
two if n ¼ 3, 4, 5 and four if n ¼ 6, 7, 8.

When one considers the linearized flow around any of
the GFPs, one finds as expected that the critical exponents,

defined as minus the eigenvalues of the matrix @�i

@gj
, are�2,

0, 0, 0, corresponding to the canonical dimensions of the
couplings. The critical exponents at the NGP are instead 2,
0, 0, 0. Thus the dimensionless couplings are marginal, and
of the two FPs, the trivial one is IR attractive and the
nontrivial one UV attractive for ~g. For � it is clear that
the FP is UVattractive (if we had chosen � < 0 it would be
IR attractive). In order to establish the attractive or repul-
sive character of f1 and f2, one can look at the linearized
flow in the variable ~t, which is described by the 2� 2
matrix

@ ~�fi

@fj
:

We define the ‘‘critical exponents’’ �1;2 to be minus the

eigenvalues of this matrix. They are reported in the last two
columns of Table I, for n ¼ 3; . . . 8. It is important to
realize that even for the GFP the eigenvectors of the
stability matrix are not the operators that appear in the

action but mixings thereof. We do not report the eigenvec-
tors here.
Beyond the values given in Table I, we have checked

numerically the existence of the FP up to n ¼ 200. For
large n one can study the theory analytically, to some
extent. There are four FPs for the system of the fi’s, which
are f1 ¼ 0, f2 ¼ 1 with critical exponents �1 ¼ 6, �2 ¼
12, f1 ¼ 0, f2 ¼ 1=2with critical exponents �1 ¼ 6, �2 ¼
�12, f1 ¼ �6, f2 ¼ 5=2 with critical exponents �1 ¼
�6, �2 ¼ 12, f1 ¼ �6, f2 ¼ 2 with critical exponents
�1 ¼ �6, �2 ¼ �12. The numerical values at finite n do
indeed tend towards these limits for growing n.

TABLE I. Gaussian and non-Gaussian fixed points of the Sn

model at one loop. The first column gives the dimension n. The
second column gives the position of the NGFP in the two-
derivative truncation, using a type III cutoff. The rest of the
table refers to the four-derivative truncation, also using a type III
cutoff. The third column gives the name of the FP. Columns 4, 5,
6 give the position of the NGFP. Columns 7, 8 give the critical
exponents, as defined in the text. The coupling �, not listed, goes
to zero and is marginal in this approximation.

n ~gðIIIÞ� FP ~g� f1� f2� �1 �2

3 8.886 NFP1 6.626 �0:693 0.453 0.094 �0:0121
3 NFP2 6.390 �1:042 0.615 0.103 0.0119

3 GFP1 0 �0:693 0.453 0.094 �0:0121
3 GFP2 0 �1:042 0.615 0.103 0.0119

4 7.255 NFP1 5.877 �0:479 0.398 0.105 �0:0412
4 NFP2 5.442 �1:555 0.852 0.132 0.0392

4 GFP1 0 �0:479 0.398 0.105 �0:0412
4 GFP2 0 �1:555 0.852 0.132 0.0392

5 6.283 NFP1 5.310 �0:400 0.400 0.118 �0:0608
5 NFP2 4.924 �1:875 0.988 0.154 0.0567

5 GFP1 0 �0:400 0.400 0.118 �0:0608
5 GFP2 0 �1:875 0.988 0.154 0.0567

6 5.620 NFP1 4.883 �0:350 0.408 0.131 �0:0780
6 NFP2 4.577 �2:131 1.091 0.171 �0:0717
6 GFP1 0 �0:350 0.408 0.131 �0:0780
6 GFP2 0 �2:131 1.091 0.171 0.0717

6 GFP3 0 �0:814 1.369 �0:161 �0:0539
6 GFP4 0 �2:363 2.091 �0:164 �0:0617

7 5.130 NFP1 4.548 �0:314 0.417 0.143 �0:0939
7 NFP2 4.322 �2:347 1.175 0.185 0.0851

7 GFP1 0 �0:314 0.417 0.143 �0:0939
7 GFP2 0 �2:347 1.175 0.185 0.0851

7 GFP3 0 �2:790 2.130 �0:181 �0:0647
7 GFP4 0 �0:598 1.241 �0:174 �0:0716

8 4.750 NFP1 4.274 �0:286 0.424 0.156 �0:1092
8 NFP2 4.125 �2:535 1.247 0.197 0.0976

8 GFP1 0 �0:286 0.424 0.156 �0:1092
8 GFP2 0 �2:535 1.247 0.197 0.0976

8 GFP3 0 �2:790 2.131 �0:180 0.1023

8 GFP4 0 �0:598 1.247 �0:187 �0:0872
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B. The chiral models

The chiral model with N ¼ 2 is equivalent to the spheri-
cal model with n ¼ 3 (up to the redefinition of the cou-
plings mentioned in the end of Sec. III D) so we need not
discuss this case further. For ease of comparison we just
report the properties of its nontrivial FPs in the parametri-
zation we used for the chiral models:

NFP 1: f1� ¼ �0:173; f2� ¼ 0:113; ~g ¼ 13:25

NFP2: f1� ¼ �0:261; f2� ¼ 0:154; ~g ¼ 12:78:

The critical exponents do not depend on the definition of
the couplings and therefore are the same as in Table I; they
do however depend on the choice of RG parameter and
they differ from those given in [12] by a factor 42, which
is due to the definition of the parameter x there.

In the case N ¼ 3 the system of the fi’s has two FPs at

FP 1: f1� ¼ �0:154; f2� ¼ 0:050; f3� ¼ 0:085;

FP2: f1� ¼ �0:108; f2� ¼ 0:043; f3� ¼ 0:061:

The attractivity properties in the space spanned by the fi’s
are given, as in the spherical case, by studying the modified
flow with parameter ~t. The critical exponents at FP1 are
0.0303 with eigenvector (0.411, 0.630, 0.658); 0.0123 with
eigenvector ð0:515;�0:570; 0:640Þ; 0.00289 with eigen-
vector ð0:869;�0:148;�0:473Þ, whereas at FP2 they are
0.0280 with eigenvector (0.366, 0.618, 0.695); 0.0108 with
eigenvector ð0:513;�0:575; 0:638) and �0:00293 with ei-
genvector ð0:887;�0:125;�0:445Þ. Therefore FP1 is at-
tractive in all three directions, while FP2 is attractive in
two directions. For each of these two FP’s, the beta func-
tion of ~g has two FP’s: the trivial FP, which has always
critical exponents�2, and a nontrivial FP, which is located
at ~g ¼ 11:17 for NFP1 or 11.50 for NFP2, and having
critical exponent 2 in both cases.

We have found no FP’s for N > 3: the system of equa-

tions ~�fi ¼ 0 for i ¼ 1, 2, 3, 4 only has complex solutions.

To cover all of theory space we have checked this state-
ment also in the parametrization of the ‘i and in the
parametrization of ui ¼ 1=‘i. This is true also in the large
N limit. If we keep only the leading terms (of order N2 for
f1 and f2 and of order N for f3 and f4), again the resulting
polynomials do not have any real zero.

V. DISCUSSION

We have calculated the one loop beta functionals of the
NLSM with values in any manifold, in the presence of a
very general class of four-derivative terms. We have then
specialized our results to two infinite families of models:
the OðNÞ models, with values in spheres, and the chiral
models with values in the groups SUðNÞ. Such calculations
had been done before, but since the results are rather
complicated, it is useful to have independent verifications.
Our approach is calculationally very similar to [13], but

after correcting some small errors at the general level, we
find that the FP structure of theOðNÞmodels is completely
different from their findings. On the other hand our results
for the chiral models agree completely with [12] for what
concerns the dimensionless couplings, even though the
calculation was done using very different techniques.
Since SUð2Þ ¼ S3, this provides a check also for our
results for the spheres.
Since our aim is to establish asymptotic safety, or lack

thereof, it is important for us to have also the beta functions
of the dimensionful coupling g, which in the chiral models
is the inverse of the pion decay constant. This had not been
considered at all in [13], but it had been calculated in [12]
for the chiral models. Again we have agreement with the
result of [12], up to a single factor 2 in one term; as
discussed before, since this beta function is scheme depen-
dent, we believe that this is not an error on either side, but
the result of the different way in which the calculation was
done. This difference results in a shift of the FP value of ~g;
for example, in the case of SUð2Þ one would find ~g ¼
19:88 instead of 13.25 for NFP1 and 18.39 instead of
12.78 for NFP2. Such variations by a factor of order 2
are to be expected.
One of the motivations of this work was to use the

NLSM as a toy model for gravity. From this point of
view we have a perfect correspondence of results. If we
use the 1=p2 propagator that comes from the two-
derivative term, both theories are perturbatively unitary
but nonrenormalizable; if on the other hand we use the
1=p4 propagator that comes from the four-derivative terms
both theories are renormalizable (see [26] for gravity and
[27] for the NLSM) but contain ghosts. In the latter case it
had also been established (see [28–31] for gravity and
[12,13] for the NLSM) that the four-derivative terms,
whose couplings are dimensionless, are asymptotically
free. Actually the analogy works even in greater detail.
The coefficient of the square of the Weyl tensor (for
gravity) and the square of h’� (for the NLSM) have at
one loop a beta function that is constant. These coefficients
diverge logarithmically in the UV, so their inverses, which
are the perturbative couplings, are asymptotically free. The
coefficients of the other four-derivative terms have more
complicated beta functions, but overall there is asymptotic
freedom, provided the Gaussian FP is approached from
some special direction. There have been many attempts to
avoid the effects of the ghosts; see [28,32] for gravity and
[12] for the NLSM. In any case, the existence of the ghosts
is only established at tree level. Whether they exist in the
full quantum theory is a deep dynamical question whose
answer is not known.
All these ‘‘old’’ works on higher derivatives theories

concentrated on the behavior of the couplings that multiply
the four-derivative terms; much less attention, if any, was
paid to the coefficient of the two-derivative term, which
has dimension of square of a mass: the inverse of Newton’s
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constant in gravity and the square of the pion decay con-
stant in the chiral NLSM. In several papers this issue was
ignored, or incorrect results were given, because of the use
of dimensional regularization. The correct RG flow of
these couplings is quadratic in k, and is best seen when a
momentum cutoff is used. In [33,34] this point was made
for gravity and it was shown that when this quadratic
running is taken into account the beta function for
Newton’s constant (and for the cosmological constant)
has, in addition to the Gaussian one, also a nontrivial FP.
In this paper we have found that the same is true in a large
class of NLSM. This is crucial for asymptotic safety.

It is somewhat gratifying to see that the FP does not
always exist for all NLSM: in particular, we have seen that
within the one loop approximation, adding the higher
derivative terms destroys the FP that is present in the
two-derivative truncation for the sphere S2 and for the
chiral models with N > 3. If there was any doubt, this
shows that the existence of the FP is not ‘‘built into the
formalism’’ but is a genuine property of the theory. This is
somewhat analogous to the situation when one adds mini-
mally coupled matter fields to gravity [35].

The next step will be to replace the one loop functional
RG equation (12) by its exact counterpart, which only
differs in the replacement of the bare action S by �k in
the right-hand side [20]. There are at least two good
reasons to do this calculation. One of the points of [11]
that needed further clarification was the value of the lowest
critical exponent. In the two-derivative truncation at one
loop it was always 2 at the nontrivial FP. Thus the critical
exponent 	 that governs the rate at which the correlation
length diverges was given by

	 ¼ �
�
d�

dt
j�
��1 ¼ 1

�
¼ 1

2
;

which is the value of mean field theory. Using the ‘‘exact’’
RG truncated at two derivatives gave 	 ¼ 3=8 for theOðNÞ
models, independent of N. One would like to understand
what effect the higher derivative terms have on this ex-
ponent. Since here we restricted ourselves to one loop, we
found again 	 ¼ 1=2, so the calculations of this paper are
of no use in this respect. Another motivation comes from
recent calculations in higher derivative gravity [4] that go
beyond one loop and find that the theory is not asymptoti-
cally free, but rather all couplings reach nonzero values at
the UV FP. It would be interesting to see similar behavior
in (some) NLSM.

Concerning possible direct phenomenological applica-
tions of the NLSM, regarded as an effective field theory, it
is interesting to ask what relation, if any, the UV properties
of the NLSM may have to the properties of the underlying
fundamental theory. Regarding the chiral NLSM as the low
energy approximations of a QCD-like theory, one may note
that there is rough agreement between the range of exis-
tence of the NLSM FP and the ‘‘conformal window’’ for

the existence of an IR FP in the case when the quarks are in
the adjoint or in the symmetric tensor representation [36].
One could get a better understanding of this issue if the
beta functions of the NLSM depended on the number of
‘‘colors’’ of the underlying theory, which in the effective
theory are reflected in the coefficient of the Wess-Zumino-
Witten term [15]. The one loop beta function of the Wess-
Zumino-Witten term is zero [13,37]; this is consistent with
the quantization of the coefficient c. Unfortunately the beta
functions of the remaining couplings are completely inde-
pendent of this coefficient, so the low energy theory seems
to be insensitive to this parameter.
Another possible application is to electroweak chiral

perturbation theory [6]. If the NLSM turned out to be
asymptotically safe in the presence of gauge fields and
fermions, then one may envisage a Higgsless standard
model up to very high energies. This will also require a
separate investigation. A related application of asymptotic
safety to the standard model has been discussed recently in
[38].
To summarize, we believe that the NLSM are interesting

theoretical laboratories in which one may test various
theoretical ideas, and they have also important phenome-
nological applications. The question whether some NLSM
could be asymptotically safe seems to us to be a particu-
larly important one, and to deserve more attention.
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APPENDIX

In [12] the action for the chiral SUðNÞ model is written
in the form:

1

f2

Z
d4x

�
c0 TrL�L

� þ 1

2
Trð@�L�@	L

	 þ @�L	@
�L	Þ

� 1

2
c2 Trð@�L�@	L

	 � @�L	@
�L	Þ

� 1

2
c3 TrðL�L

�L	L
	 þ L�L	L

�L	Þ

� c4 TrðL�L
�ÞTrðL�L

�Þ � c5 TrðL�L
�ÞTrðL�L

�Þ
�
;

(A1)

where L� ¼ U�1@�U. We want to translate this action

into the form (47). Deriving the equation L� ¼
@�’

�La
�ð�iTaÞ we obtain

@�L	 ¼ �iTaðr�@	’
�La

� � @�’
�@	’

�r�L
a
�Þ:

The antisymmetric part of this equation is

@�L	 � @	L� ¼ �½L�; L	�;
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whereas using Killing’s equation, the symmetric part is

@ð�L	Þ ¼ �iTar�@	’
�La

�:

The terms of (A1) have the following translation into our tensorial language:

Z
d4xTrL�L

� ¼ � 1

2

Z
d4x@�’

�@�’�h��;

Z
d4xTr@�L

�@	L
	 ¼ � 1

2

Z
d4xh’�h’�h��;

Z
d4xTr@�L	@

�L	 ¼ � 1

2

Z
d4x

�
r�@	’�r�@	’

�h�� þ 1

4
@�’

�@�’�@	’
�@	’�Tð3Þ

����

�
;

Z
d4xTrL�L

�L	L
	 ¼

Z
d4x@�’

�@�’�@	’
�@	’�

�
1

4N
Tð2Þ
���� þ

1

8
Tð5Þ
����

�
;

Z
d4xTrL�L	L

�L	 ¼
Z

d4x@�’
�@�’�@	’

�@	’�

�
1

4N
Tð1Þ
���� �

1

8
Tð3Þ
���� þ

1

8
Tð4Þ
����

�
;

Z
d4xTrðL�L

�ÞTrðL	L
	Þ ¼ 1

4

Z
d4x@�’

�@�’�@	’
�@	’�Tð2Þ

����;

Z
d4xTrðL�L	ÞTrðL�L	Þ ¼ 1

4

Z
d4x@�’

�@�’�@	’
�@	’�Tð1Þ

����;

where h’� ¼ r�@�’
�. One can further manipulate the third term integrating by parts and commuting covariant

derivatives. One finds

Z
d4xr�@	’�r�@	’

�h�� ¼
Z

d4xðh’�h’�h�� þ @�’
�@�’�@	’

�@	’�R����Þ

and using (43) one can further substitute the Riemann
tensor by Tð3Þ. In the fourth term one can eliminate Tð5Þ.

One has to note that Hasenfratz’s action has to be
compared to minus our action. This is because it appears
with the positive sign in the exponent of the functional
integral [this is consistent with the fact that the ðh’Þ2 term
has a negative coefficient in (A1)]. It is then straightfor-
ward to calculate the following relations between the cou-
plings used in [12] and our couplings:

g2 ¼ f2

c0
; � ¼ f2; f1 ¼ c3

2N
þ c5

2
;

f2 ¼ c4
2
; f3 ¼ 1þ c2

4
; f4 ¼ c3

4
:

With these relations, one can translate his beta functions
and one finds that they agree with those given in Sec. III D,
with a single exception: the term proportional to ~g4 and
containing no fi in �~g2 . We observe that the two polyno-

mials in the c’s in Eq. (39) in [12] are the same, up to an
overall factor 2. As a consequence, when one extracts the
beta function of c0=f

2 ¼ 1=g2 and rewrites it in terms of
the fi’s, the coefficients of ~g

4 and ~g2� are exactly the same.
This differs from the beta function given in (53), where the
two coefficients differ in the last term. We believe that this
difference can be attributed to the different cutoff scheme.
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