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The ultraviolet/infrared (UV/IR) mixing of noncommutative field theories has been recently shown to

be a generic feature of translation-invariant associative products. In this paper we propose to take into

account the quantum corrections of the model to modify in this way the noncommutative action. This idea

was already used to cure the UV/IR mixing for theories on Moyal space. We show that in the present

framework also, this proposal proves successful for curing the mixing. We achieve this task by explicit

calculations of one and higher loops Feynman amplitudes. For the sake of completeness, we compute the

form of the new action in the matrix base for the Wick-Voros product.
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I. INTRODUCTION AND MOTIVATION

Noncommutative geometry [1] is an appealing frame-
work for the quantization of gravity. At the Planck scale,
the quantum nature of the underlying space-time replaces a
local interaction by a specific nonlocal effective interaction
in the ordinary Minkowski space [2].

Noncommutative quantum field theories (for general
reviews, see [3,4]) can be interpreted as limits of matrix
models or of string theory models. The first use of non-
commutative geometry in string theory was in the formu-
lation of open string theory [5]. Noncommutativity is here
natural just because an open string has two ends and an
interaction which involves two strings joining at their end
points shares all the formal similarities to noncommutative
matrix multiplication. In this context, one also has the
Seiberg-Witten map [6], which maps the noncommutative
vector potential to a conventional Yang-Mills vector po-
tential, explicitly exhibiting the equivalence between these
two classes of theories.

Probably the simplest context in which noncommutativ-
ity arises is in a limit in which a large background anti-
symmetric tensor potential dominates the background
metric. In this limit, the world-volume theories of
Dirichlet branes become noncommutative [7,8]. Noncom-
mutativity was also recently proved to arise as some limit
of loop quantum gravity models. There, the effective dy-
namics of matter fields coupled to three-dimensional quan-
tum gravity is described after integration over the
gravitational degrees of freedom by some noncommutative
quantum field theory [9]. In a different context, some three-
dimensional noncommutative space emerging in the con-
text of three-dimensional Euclidean quantum gravity was
also studied in [10].

In condensed matter physics, noncommutative theories
can be of particular interest when describing effective

nonlocal interactions, as is the case, for example, of the
fractional quantum Hall effect. where different authors
proposed that a good description of this phenomenon can
be obtained using noncommutative rank 1 Chern-Simons
theory [11].
Nevertheless, when going from commutative to non-

commutative theories, locality is lost and one can wonder,
in this situation, if renormalizability can be restored.
Indeed, when describing theories on the noncommutative
Moyal space (the most studied noncommutative space), a
new type of nonlocal divergence occurs, the UV/IR mixing
[12]. This new divergence is nonlocal and cannot be ab-
sorbed by counterterms at the level of the two-point
function.
Despite this important difficulty, solutions exist for re-

normalizability to be restored. This is achieved for the �4

theory by modifying the propagation part of the initial
action, such that this new type of divergence is cured. A
first type of modification adds a harmonic oscillator term in
the propagator [13]. A different type of modification was
proposed in [14], where the quantum correction 1=p2 was
included in the bare action in momentum space. The
physical interpretation of this model in the long distance
regime was studied in [15]. Such a modified scalar propa-
gator appears also in recent work on non-Abelian gauge
theory in the context of the Gribov-Zwanziger result [16].
Both these noncommutative models were proved renorma-
lizable at any order in perturbation theory, but the latter is
also manifestly translation invariant. Several field theoreti-
cal properties have been further investigated, for both these
noncommutative models (see [17–29] and references
therein). Furthermore, some algebraic geometrical proper-
ties of the parametric representation of the Grosse-
Wulkenhaar models have been investigated in [30].
A part from the Moyal product, other noncommutative

products have been investigated to construct noncommu-
tative field theories on flat space-time. One of them is the
Wick-Voros (WV) product [31] which corresponds to nor-
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mal ordering in deformation quantization [32], as opposed
to symmetric ordering which is instead related to the
Moyal product. Recently, a scalar �4 theory was studied,
with this kind of noncommutativity [33]. Computing the
nonplanar tadpole Feynman amplitude, it was shown that
the UV/IR mixing appears in this framework as well,
although the propagator and the vertex have different forms
than in the Moyal case. This result was extended to generic
translation-invariant products on flat space-time [34],
showing in a one-loop calculation that the UV/IR mixing
stays unmodified for the whole class of products.

In this paper we propose to modify the Euclidean action
of scalar field theories with quartic interaction on non-
commutative Rd, with generalized translation-invariant
star products, along the lines of [14], in order to cure the
UV/IR mixing. Namely, we compute the one-loop quan-
tum correction for the propagator and we modify the scalar
action accordingly. We then compute, for the modified
action, the one-loop quantum corrections for the propaga-
tor and for the vertex and we show that the mixing has
disappeared when inserting the modified nonplanar tad-
poles into ’’bigger’’ nonplanar graphs.

At tree level we show that, for the new parameter lying
in a certain range determined by the noncommutativity
scale, the propagator may be decomposed as a sum of
Klein-Gordon (KG) propagators, some of which with
negative sign. In a commutative setting this is a signal of
illness of the theory since, when performing a Wick rota-
tion to the Minkowski space, these new fields lead to
negative norm states, which in turn can be rephrased into
loss of unitarity of the S matrix. Whether or not the same
conclusions can be drawn for our model is an interesting
open problem, mainly because the Minkowskian analogue
of an Euclidean theory is not uniquely defined in the NC
setting, but also because there is no general agreement on
the definition of particle states, commutation relations, and
the S matrix formalism itself (cf. [33,35] and references
therein). We will come back to this argument in the paper.

Quantum field theories (QFT) with the WV product
(which, as already stated, are a particular class of the field
theories we treat here) have already been investigated in
the literature [36]. This product has been studied within the
coherent states framework [37] and in relation to matrix
models and Chern-Simons theory [38,39]. Black holes
have also been defined using such a noncommutative prod-
uct [40]. Finally, let us also state that a different approach
for studying QFTwith WV product has been undertaken in
[41].

From a mathematical point of view, translation-invariant
? products on the (hyper)plane are all equivalent to the
Moyal product in the sense of formal series [42] as they all
share the same underlying Poisson bracket. Nevertheless,
they are not a priori physically equivalent, as they yield
QFTs with different quantum actions. Furthermore, one
cannot relate these QFTs by simple field redefinitions, as
we will show in the sequel.

The paper is structured as follows. In the next section we
recall the definition and some basic properties of
translation-invariant generalizations of the Moyal product
on Euclidean Rd. The results of [34] are recalled, showing
the appearance of the UV/IR mixing. In Sec. III we write
the action of the modified model we propose. We also
derive the associated Feynman rules, namely, the modified
propagator and modified vertex. We also discuss the issue
of ghost states in a Minkowskian formulation.
We then compute the one-loop quantum corrections for

the propagator and the vertex of the proposed model. This
allows one to show that inserting nonplanar tadpoles into
some higher loop graphs leads to IR convergent Feynman
amplitudes, thus curing the problem of the UV/IR mixing.
In Sec. IV we recall the matrix basis for the WV product
and we compute the expression of the modified action in
this basis. Finally, the last section presents some conclu-
sions and perspectives.

II. TRANSLATION-INVARIANT PRODUCTS

In this section we review translation-invariant star prod-
ucts on the space Rd, as derived in [34]. As we will see,
examples of such products are the Moyal product and the
less known WV one (or normal ordered product). For the
present purposes we present the products in terms of their
integral kernel in Fourier space, although other forms are
available. A generic star product onRd may be represented
as

ð� ? c ÞðxÞ ¼ 1

ð2�Þd=2
Z

ddpddqddkeip�x

� ~�ðqÞ ~c ðkÞKðp; q; kÞ; (2.1)

where K can be a distribution and ~�ðqÞ is the Fourier
transform of f ¼ �. The product of d vectors is under-
stood with the Minkowskian or Euclidean metric: p � x ¼
pix

i. The usual pointwise product is also of this kind for
Kðp; q; kÞ ¼ �dðk� pþ qÞ. Translation invariance re-
quires that the product obey

T bð�Þ ?T bðc Þ ¼ T bð� ? c Þ; (2.2)

where T bðfÞðxÞ ¼ fðxþ bÞ represents the translation by
the vector b. At the level of Fourier transform we have

gT b�ðqÞ ¼ eibp ~�ðqÞ: (2.3)

It may be seen that, for the product (2.1) to be invariant, the
kernel must be of the form

Kðp; q; kÞ ¼ e�ðp;qÞ�ðk� pþ qÞ; (2.4)

where � is a generic function of p and q, further con-
strained by associativity and cyclicity. We therefore con-
sider products that can be expressed as
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ð�? c ÞðxÞ ¼ 1

ð2�Þd=2
Z

ddpddqeip�x ~�ðqÞ ~c ðp�qÞe�ðp;qÞ:
(2.5)

Except for the commutative case, d has to be even because
of translation invariance (besides degenerate cases, where
one of the dimensions commutes with the other ones).

Let us also emphasize here that translation invariance
requires as well the commutator of coordinates to be
constant, as in the Moyal case. We explicitly show this at
the end of this section, in Eq. (2.31).

When � ¼ 0, one has the usual pointwise product. One
then has two important examples of noncommutative as-
sociative products which are of the form above. They are
both borrowed by ordinary phase space quantization and
correspond to different ordering choices. One is the Moyal
product, quite well studied in the literature. It corresponds
to symmetric ordering in deformation quantization of
phase space (Weyl quantization) and in Fourier transform
it acquires the form

ð� ?M c ÞðxÞ ¼ 1

ð2�Þd=2
Z

ddpddq ~�ðqÞ ~c ðp� qÞ

� eip�xei=2pi��
ijqj ; (2.6)

thus giving

�Mðp; qÞ ¼ � i

2
��ijqipj: (2.7)

We have denoted by � the d� d block-diagonal antisym-
metric matrix

� ¼
0 1
�1 0

:
:

0
BBB@

1
CCCA

and by � some constant noncommutativity parameter.
The other example is the WV product. It corresponds to

normal ordering in deformation quantization of phase
space and in Fourier transform it reads

ð� ?WV c ÞðxÞ ¼ 1

ð2�Þd=2
Z

ddpddq ~�ðqÞ ~c ðp� qÞ

� eip�xe��q��ðpþ�qþÞ (2.8)

with

pi� ¼ pi
1 � ipi

2ffiffiffi
2

p ; i ¼ 1; . . . ; d=2: (2.9)

The function � is therefore given by

�WVðp; qÞ ¼ ��q� � ðpþ � qþÞ: (2.10)

Further restrictions on K come from the associativity re-
quirement which reads

Z
ddkKðp; k; qÞKðk; r; sÞ ¼

Z
ddkKðp; r; kÞKðk; s; qÞ:

(2.11)

This is nothing but the usual cocycle condition in the
Hochschild cohomology. For more details on cohomolog-
ical aspects we refer the interested reader to [34]. In terms
of �, Eq. (2.11) reads

�ðp; qÞ þ �ðq; rÞ ¼ �ðp; rÞ þ �ðp� r; q� rÞ: (2.12)

From this cocycle relation then follow

�ðp; pÞ ¼ �ð0; 0Þ ¼ �ðp; 0Þ �ð0; pÞ ¼ �ð0;�pÞ
�ðp; qÞ ¼ ��ðq; pÞ þ �ð0; q� pÞ (2.13)

and

�ðpþ q; pÞ þ �ð�p� q;�qÞ
þ �ð0; pþ qÞ � �ð0; pÞ � �ð0; qÞ ¼ 0: (2.14)

The second relation of (2.13) ensures also the trace prop-
erty. We have indeed

Z
ddx� ? c ¼

Z
ddxddpddqe�ðp;qÞeip�x ~�ðqÞ ~c ðp� qÞ

¼
Z

ddqe�ð0;qÞ ~�ðqÞ ~c ð�qÞ

¼
Z

ddxc ? �: (2.15)

For the product to be commutative, � has to satisfy the
condition

�ðp; qÞ ¼ �ðp; p� qÞ; (2.16)

which may be regarded as a coboundary condition (see
again [34]). Finally, let us notice that the Moyal and WV
products are related by the following relation:

�Mðp; qÞ ¼ �WVðp; qÞ � �

2
q � ðp� qÞ: (2.17)

As already stated above, translation-invariant products
have been introduced in [34] in the context of noncommu-
tative scalar field theories with quartic interaction, on Rd

with Minkowskian metric. Here we choose to work with
the Euclidean metric. We keep the notation d for the
number of space-time dimensions; nevertheless, when ex-
plicit divergence analysis is performed, we refer to the case

d ¼ 4:

The action reads

S ¼
Z

ddx

�
1

2
ð�@�� ? @��þm2� ? �Þ

þ �

4!
� ? � ? � ? �

�
: (2.18)

In momentum space the propagator is thus
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Gð2Þ
0 ðpÞ ¼ e��ð0;pÞ

p2 þm2
(2.19)

whereas for the vertex we have

V? ¼ V0e
�ðk1þk2;k1Þþ�ðk3þk4;k3Þþ�ð0;k1þk2Þ; (2.20)

and we have denoted by V0 the ordinary commutative
vertex

V0 ¼ �

4!
ð2�Þd�d

�X4
a¼1

ka

�
: (2.21)

Interestingly, a propagator of the form (2.19) with the
function � specified in (2.10) was already found in [43]
in a different approach.

To obtain the four-point correlation function at tree level
we just attach to the vertex four propagators. We thus have
(up to a constant)

Gð4Þ
0 ¼e�ðk1þk2;k1Þþ�ðk3þk4;k3Þþ�ð0;k1þk2Þ�

P
4
a¼1

�ð0;kaÞQ
4
a¼1ðk2aþm2Þ �

�X4
a¼1

ka

�
:

(2.22)

Let us now make the following important remark. In
order to obtain the usual Feynman rules of a Moyal QFT,

one can try by reabsorbing the phase e��ð0;pÞ of (2.19) by a
proper field redefinition. Nevertheless, this would not re-
produce the vertex form of Moyal QFT. We thus conclude
that, by a simple field redefinition one does not have
equivalence between the general class of QFTs we deal
with in this paper and the Moyal one. In [33] it was shown
that an equivalence between Moyal and WVMinkowskian
QFTs can be established at the level of the Smatrix only by
implementing the appropriate twisted Poincaré symmetry
for each of them.

Before going further, we also give some explanations on
the planarity of the Feynman graphs used in this work. As
in the Moyal case, the vertex has a symmetry under cyclic
permutation of the incoming/outgoing fields at some ver-
tex. Furthermore, one can also use some matrix base to
reexpress these products (for the WV case, see Sec. IV).
For all these reasons, an appropriate way to represent
Feynman graphs is through ribbon graphs. If the genus of
the manifold on which the respective graph is denoted is
vanishing, the respective graph is planar. Furthermore,
another important notion is the one of faces broken by
external legs. In the rest of the paper, by a slight abuse of
language we will call nonplanar graphs also the planar
graphs with more than one face broken by external legs.

Consider now the two graphs of Figs. 1 and 2.
For the planar case of Fig. 1, the correction is obtained

using three propagators of the form (2.19), one with mo-
mentum p, one with momentum�p, one with momentum
q, and the vertex (2.20) with assignments k1 ¼ �k4 ¼ p
and k2 ¼ �k3 ¼ q and, of course, the integration in q. We
have (up to a constant)

Gð2Þ
1;P ¼ e��ð0;pÞ

ðp2 þm2Þ2
Z

ddq
e�ðp;qÞ

ðq2 þm2Þ ; (2.23)

where we have used the fact that the three exponential
factors of the vertex combine with two out of three ex-
ponential factors of the propagators to yield

�ðp; qÞ ¼ �ðpþ q; pÞ þ �ð�p� q;�qÞ þ �ð0; pþ qÞ
� �ð0; qÞ � �ð0; pÞ: (2.24)

Using the cocycle condition (2.14), we have then

�ðp; qÞ ¼ 0: (2.25)

Notice that, with respect to the commutative case, the only

correction is in the factor e��ð0;pÞ which is the correction of
the free propagator. The ultraviolet divergences here are
thus identical to the commutative and to the Moyal case.
Consider now the nonplanar case in Fig. 2. The structure

is the same as in the planar case, but this time the assign-
ments are

k1 ¼ �k3 ¼ p and k2 ¼ �k4 ¼ q: (2.26)

We have (up to a constant)

Gð2Þ
1;NP ¼

Z
ddq

e��ð0;pÞþ�ðpþq;pÞ��ðpþq;qÞe�ðp;qÞ

ðp2 þm2Þ2ðq2 þm2Þ ; (2.27)

with the same notation as above. Therefore �ðp; qÞ ¼ 0
and the one-loop corrections to the propagator in the non-
planar case can be rewritten as

Gð2Þ
1;NP ¼

e��ð0;pÞ

ðp2 þm2Þ2 ;
Z

ddq
e!ðp;qÞ

ðq2 þm2Þ ; (2.28)

where we have introduced the antisymmetric function

!ðp; qÞ ¼ �ðpþ q; pÞ � �ðpþ q; qÞ: (2.29)

For the Moyal product this term is the oscillating phase.
For general translation-invariant products this function has

p

q

FIG. 1. The planar tadpole graph.

p

q

FIG. 2. The nonplanar tadpole graph.
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been computed explicitly in [34], using the properties of
the function �. It does not depend on the specific
translation-invariant product but only on the cohomology
class of �. Except for numerical factors, one has, for all
translation-invariant products,

!ðp; qÞ ¼ ipi��
ijqj ¼ 2�Mðp; qÞ: (2.30)

Details on the derivation may be found in [34]. The func-
tion �ð0; pÞ which appears in (2.28) is not integrated in the
loop, therefore it does not influence the convergence prop-
erties of the graphs.

In fact the function ! is nothing but the Poisson struc-
ture of the underlying classical space, the germ of defor-
mation of the commutative product towards the star
product. It determines the noncommutativity of space-
time coordinates. A straightforward calculation gives

xi ? xj � xj ? xi ¼ � @2�

@pi@qj
ð0; 0Þ þ @2�

@pj@qi
ð0; 0Þ

¼ !ij ¼ i��ij: (2.31)

Using (2.30), one can prove that the Feynman integral
(2.28) is UV finite but has a

C1

ð�pÞ2 þm2C2 logð�pÞ2 þ FðpÞ (2.32)

behavior in the IR regime of the external momentum p. We
have denoted by C1 and C2 some constants and by FðpÞ
some analytic function at p ¼ 0 (see [14] for a detailed
analysis).

III. THE PROPOSED MODEL AND QUANTUM
CORRECTIONS—CURING THE UV/IR MIXING

In this section we write the action for the proposed
model in the noncommutative setting described previously.
We then compute quantum corrections of the modified
model (one and higher number of loops) which show the
way in which the UV/IR is manifestly cured.

As already stated in the Introduction, the modification
we propose for the model of the previous section is dictated
by the quantum corrections. Thus, we add to the action the
supplementary term:

�S½�� ¼ a

2�2

Z
ddxð@�Þ�1� ? ð@�Þ�1�: (3.1)

The complete action, in coordinate space, reads then

S ¼
Z

ddx

�
1

2

�
@�� ? @��þ a

�2
@�1
� � ? @�1

� �

þm2� ? �

�
þ �

4!
� ? � ? � ? �

�
; (3.2)

with

@�1
� �ðxÞ ¼

Z
d�x0�ðx0Þ: (3.3)

The supplementary term is better understood in momentum
space. Observing that for the star product (2.5)

Z
ddxfðxÞ ? gðxÞ ¼

Z
ddp~fðpÞ~gð�pÞe�ð0;pÞ; (3.4)

we have

�S½�� ¼ a

2�2

Z
ddp

e�ð0;pÞ

p2
~�ðpÞ ~�ð�pÞ: (3.5)

This leads to a modification of the propagator (2.19) in the
form

Gð2Þ
0 ðpÞ ¼ e��ð0;pÞ

p2 þm2 þ a
ð�pÞ2

: (3.6)

Note that, as in [14] the new parameter a is taken to be
positive [such that the propagator (3.6) is positively de-
fined]. The vertex contribution remains the same as in
(2.20) [since the term (3.5) is only quadratic in the field].
A few remarks are needed here. The first one is related to

the possibility of decomposing the propagator (3.6) as a
sum of conventional Klein-Gordon propagators. We use
the formula

1

Aþ B
¼ 1

A
� 1

A
B

1

Aþ B
; (3.7)

for

A ¼ p2 þm2; B ¼ a

�2p2
: (3.8)

Thus, the propagator (3.6) writes

e��ð0;pÞ

p2 þm2
� e��ð0;pÞ

p2 þm2

a

�2p2ðp2 þm2Þ þ a

¼ e��ð0;pÞ

p2 þm2
� e��ð0;pÞ

p2 þm2

a

�2ðp2 þm2
1Þðp2 þm2

2Þ
; (3.9)

where �m2
1 and �m2

2 are the roots of the denominator of
the second term in the left-hand side considered as a
second order equation in p2, namely,

m2
1 ¼

�2m2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4m4 � 4�2a

p

2�2

m2
2 ¼

�2m2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4m4 � 4�2a

p

2�2

(3.10)

with

0< a< �2m4=4: (3.11)

Also

m2 >m2
2 >

m2

2
>m2

1 > 0: (3.12)

Note that this decomposition was already made (for the
Moyal case) in [24]. We now go further and decompose the
second term on the right-hand side of (3.9); after some
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algebra this finally leads to rewrite the propagator (3.6) as
an alternate sum,

Gð2Þ
0 ðpÞ ¼ a=�2

m2
2 �m2

1

�
1

m2
1ðp2 þm2

2Þ
� 1

m2
2ðp2 þm2

1Þ
�
:

(3.13)

In similar situations, in the commutative framework (for
example QFT with higher derivatives) an equivalent de-
scription is introduced in terms of KG fields. The ones
responsible for the negative propagators are the ghost
fields. They lead, when analytically continuing the model
to the Minkowskian setting, to states of negative norm.
They are not independent fields, therefore one could resort
to the original formulation in terms of one field (for scalar
theories as the one considered here) but this usually causes
the loss of unitarity for the S matrix.

Some care is needed in order to extend this analysis to
our model. First of all, we notice that it is only applicable
when the parameter a is smaller than �2m4=4 [see Eq.
(3.11)]: for a greater than this value the two masses be-
come complex valued.

On a more general footing, we have two main differ-
ences between commutative and noncommutative field
theory: one is that the Minkowskian version of a NC field
theory is not uniquely defined. Important features, such as
the UV/IR mixing of the Euclidean formulation may be
completely absent in some Minkowskian formulations
[44]. The second important point is that the very concept
of particle state is in general not well defined in a nonlocal
theory. This remark is particularly relevant for our model,
where the asymptotic regime is not attained for small
noncommutativity [15].

However, let us stick to the usual Wick rotation. Then, it
was shown in [45] that perturbative nonunitarity manifests
as soon as time-space noncommutativity is present, inde-
pendently from the details of the model, although a more
careful analysis indicates that unitarity can be restored
[46]. Later on, it has been argued with a nonperturbative
study [47] that unitarity loss is a direct consequence of the
UV/IR mixing. What is the interplay between that kind of
nonunitarity, which is somehow inherent to NC theories
with UV/IR mixing, and the one we are facing here where
the modification to the kinetic term was introduced pre-
cisely to cancel the mixing, is a delicate issue. In order to
see the consequences of the ghost fields appearing in (3.13)
, one should carefully define the Smatrix in the appropriate
Minkowski formulation, and then study its properties. This
is an interesting problem which deserves further
investigation.

Let us also make a second remark with respect to the
Euclidean theory treated here. Even though, for massive
theories, the quantum correction of the propagator (2.32)
has subleading logarithmic divergence, one does not need
to take it into consideration when proposing a model which

may be perturbatively renormalizable. We will come back
to this point at the end of the next section.
Since we have modified the propagator (2.19) to (3.6) but

not the vertex (2.20), the one-loop corrections to the propa-
gator represented by the graphs of Figs. 1 and 2 may be
derived as in (2.23) and (2.27) and we find, respectively,

Gð2Þ
1;P ¼ e��ð0;pÞ

ðp2 þm2 þ a
�2p2Þ2

Z
ddq

e�ðp;qÞ

ðq2 þm2 þ a
�2q2

Þ ;

(3.14)

Gð2Þ
1;NP ¼

e��ð0;pÞ

ðp2 þm2 þ a
�2p2Þ2

Z
ddq

e!ðp;qÞþ�ðp;qÞ

ðq2 þm2Þ þ a
�2q2

(3.15)

with �ðp; qÞ ¼ 0.
Let us consider now the one-loop correction to four-

point functions. For the planar case in Fig. 3 we have

Gð4Þ
1;P ¼ �2

8
Gð4Þ

0

Z
ddqddk

�ðK � q� kÞe�ðq;kÞ
ðq2 þm2 þ a

�2q2
Þðk2 þm2 þ a

�2k2
Þ ;

(3.16)

with G4
0 the four-points Schwinger function at tree level,

given by (2.22), while �ðq; kÞ ¼ 0 [with � defined in
(2.24)]. Note that we have also denoted by K the total
incoming momentum.
For the nonplanar case, one possible graph is shown in

Fig. 4. We have then

Gð4Þ
1;NP ¼

�2

8
~G4
0

Z
ddqddk

�ðK � q� kÞe!ðq;kÞþ�ðk;qÞ

ðq2 þm2 þ a
�2q2

Þðk2 þm2 þ a
�2k2

Þ ;

(3.17)

with !ðq; kÞ defined in (2.29) and (2.30) while the remain-
ing exponential factors rearrange in such a way to yield
�ðk; qÞ vanishing. The other nonplanar graphs are obtained
similarly, with a relabeling of the external paths.
For d ¼ 4, the last integral behaves like a logarithm in

the external momenta. Indeed, this can be seen from the
fact that, in the UV regime of the loop momentum q, the
corrections in a=ð�2q2Þ are neglectable. Solving the �
function, the integral (3.17) behaves like

K

q

k

FIG. 3. Planar one-loop four-point graph of incoming momen-
tum K.
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Z
d4q

e!ðq;kÞ

q4
: (3.18)

Because of the form (2.30) of the factor !ðq; kÞ, one can
easily obtain the logarithm behavior in the external mo-
menta. Nevertheless, these logarithms are harmless for
perturbative renormalization. We will come back to this
point at the end of this section.

Let us now compute some two-loop contributions to the
four-point Schwinger function. The first of them is the one
due to the graph in Fig. 5. This graph is obtained by
inserting the nonplanar tadpole (3.15) of momentum p
into the planar graph in Fig. 3. One has

Gð4Þ
2;P ¼ Gð4Þ

0

Z
d4p

e!ðp;qÞþ�ðp;qÞ

p2 þm2 þ a
�2p2

�
Z

ddqd4k
�ðK � q� kÞe�ðq;kÞ

ðq2 þm2 þ a
�2q2

Þ2ðk2 þm2 þ a
�2k2

Þ ;

(3.19)

and� ¼ 0. Let us emphasize that again, the cancellation of
the exponentials in � is obtained thanks to the cocycle
condition (2.14). It is this cancellation that makes the
Feynman integrals have the same behavior as in the
Moyal case. Let us now investigate the behavior of the
Feynman amplitude of the more general graph obtained
from inserting a chain of N nonplanar tadpoles in the
planar graph of Fig. 3 (see Fig. 6).

The integral to investigate writes indeed

Z YN
i¼1

ddpi

e!ðpi;qÞþ�ðpi;qÞ

p2
i þm2 þ a

�2p2
i

�
Z

ddqddk

�
1

q2 þm2 þ a
�2q2

�
Nþ1 �ðK � q� kÞe�ðq;kÞ

k2 þm2 þ a
�2q2

(3.20)

with �ðpi; qÞ ¼ �ðq; kÞ ¼ 0. This is the generalization of
the Feynman amplitude (3.19). Let us now have a closer
look at the structure of the divergences of this general
integral. For d ¼ 4, when performing the integrations in
the momenta pi (i ¼ 1; . . . ; N) and placing ourselves in the
IR regime of the momentum q, each of these integrals leads
to a 1=�2q2 behavior (as proved above). The integral (3.20)
thus becomes

Z
d4q

�
1

�2q2

�
N
�

1

q2 þm2 þ a
�2q2

�
Nþ1

� 1

ðq� KÞ2 þm2 þ a
�2ðq�KÞ2

: (3.21)

Note that if a ¼ 0 this integral is IR divergent for N > 1
(for N ¼ 1 the mass m prevents the divergence to appear).
Nevertheless, if a � 0, in the IR regime of q the dominant
term is the a=�2q2 in the propagators and the integral leads
to an IR finite behavior.
Let us now discuss the appearance of some logarithmic

divergences at the level of the two- and four-point func-
tions, logarithms on the external momenta of the respective
graph. These divergences are harmless when dealing with
perturbative renormalizability. To illustrate this, let us
consider the example of Fig. 7, where one has to deal
with a chain of N nonplanar bubble graphs inserted into
some ‘‘bigger’’ nonplanar graph. Since, as already ex-
plained above, the correction proposed here in the propa-
gator is irrelevant in the UV regime (where this analysis is
now performed), the Feynman integral gives the same
behavior as in a commutative theory, namely,

K

q

k

FIG. 4. A nonplanar one-loop four-points graph of total in-
coming momentum K.

K

k

q

p

FIG. 5. A two-loop graph obtained by inserting into the bubble
graph of Fig. 3 a nonplanar tadpole of momentum p.

k

K

q

FIG. 6. A nonplanar graph obtained from the insertion into the
bubble graph of Fig. 3 of a chain of nonplanar tadpoles of
momenta pi (i ¼ 1; . . . ; N).
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Z
d4p

1

ðp2 þm2Þ3 log
N p2

m2
� N!: (3.22)

This is a (large) finite number which appears as a difficulty
in summing perturbation theory—the renormalon problem
(see for example [48]). The situation is analogous for the
nonplanar tadpoles insertions. These logarithms should
however be taken into consideration when defining a
model which is requested to be nonperturbatively renor-
malizable. Let us also remark that, in [14], these logarithm
divergences have not appeared because of the use of some
appropriate scale decomposition (the multiscale analysis
being used there for the proof of perturbative
renormalization).

IV. THE MODIFIED ACTION FOR THE WV
PRODUCT IN THE MATRIX BASIS

For the WV product it is possible to rewrite the model in
a suitably defined matrix basis. The basis is a variation of
the one described in [49] for the Moyal product and it was
introduced, up to our knowledge, in [38] where the WV
product was used onR2 to build a fuzzy version of the disk.
In the following we review the derivation of the matrix
basis as in [38] and we adapt it to the present notation; we
then derive the model under consideration in the matrix
basis. It is convenient to consider the plane as a complex

space with z ¼ ðxþ iyÞ= ffiffiffi
2

p
. The quantized versions of z

and �z are the usual annihilation and creation operators, a ¼
ðx̂þ iŷÞ= ffiffiffi

2
p

and ay ¼ ðx̂� iŷÞ= ffiffiffi
2

p
with a slightly unusual

normalization, so that their commutation rule is

½a; ay� ¼ �: (4.1)

Given the function �ð�z; zÞ consider its Taylor expansion:

�ð�z; zÞ ¼ X1
m;n¼0

�
Tay
mn �zmzn: (4.2)

To this function we associate the operator

��ð�Þ :¼ �̂ ¼ X1
m;n¼0

�Tay
mn ayman: (4.3)

We have thus ‘‘quantized’’ the plane using a normal order-
ing prescription. The map �� is invertible. It can be
efficiently expressed defining the coherent states:

ajzi ¼ zjzi: (4.4)

One then has

��1
� ð�̂Þ ¼ �ð�z; zÞ ¼ hzj�̂jzi: (4.5)

The maps� and��1 yield a procedure of going back and
forth from functions to operators. Moreover, the product of
operators being noncommutative, a noncommutative ?
product between functions is implicitly defined as

ð� ? �0Þð�z; zÞ ¼ ��1ð�ð�Þ�ð�0ÞÞ: (4.6)

It is possible to see that the WV product (2.8) is exactly of
this form, namely,

ð� ?WV c Þð�z; zÞ ¼ hzj�̂ ĉ jzi: (4.7)

There is another useful basis on which it is possible to
represent the operators and hence the functions—the ma-
trix basis. As we already stated above, it is similar to the
one introduced for the Moyal product in [49] and subse-
quently used in [13]. Consider the number operator

N ¼ aya; (4.8)

and its eigenvectors which we indicate by jni:
Njni ¼ n�jni: (4.9)

We can then express the operators within a density matrix
notation:

�̂ ¼ X1
m;n¼0

�mnjmihnj: (4.10)

Applying the dequantization map (4.5) to �̂, we associate
to it

p

pp

FIG. 7. Insertion of a chain of the bubble graph into some bigger graph.
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�ðz; �zÞ ¼ hzj�jzi ¼ X1
m;n¼0

�mnhzjmihnjzi

:¼ X1
m;n¼0

�mnvmnðz; �zÞ (4.11)

to be compared with (4.2), the same function in a different
basis. Observing that

hzjni ¼ e�ð�zz=2�Þ �zffiffiffiffiffiffiffiffiffiffi
n!�n

p ; (4.12)

we have

vnmð�z; zÞ ¼ e�ð�zz=2�Þ �znzmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!m!�nþm

p : (4.13)

The elements of the density matrix basis have a very simple
multiplication rule:

jmihnjpihqj ¼ �npjmihqj; (4.14)

this leads to

vmnð�z; zÞ ?WV vpqð�z; zÞ ¼ �npvmqð�z; zÞ: (4.15)

Moreover, one has

Z
d2zvnmð�z; zÞ ¼ �nm��: (4.16)

The functions vnmð�z; zÞ thus form an orthogonal basis in
the noncommutative algebra of functions on the plane, with
the WV product, the matrix basis [in analogy with its
operator counterpart, (4.14)]. The connection between the
expansions (4.3) and (4.10) is given by

a ¼ X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þ�p jnihnþ 1j (4.17)

ay ¼ X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þ�p jnþ 1ihnj: (4.18)

Thus, looking at their symbols

z ¼ hzjajzi ¼ X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þ�p
vnnþ1ð�z; zÞ

�z ¼ hzjayjzi ¼ X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þ�p
vnþ1nð �z; zÞ;

(4.19)

we then have

�
Tay
mn ¼ Xminfm;ng

l¼0

ð�1Þl �m�l;n�l

l!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm� lÞ!ðn� lÞ!�mþn

p : (4.20)

In the density matrix basis, using (4.13), the product (2.8)
[or (4.7)] simplifies to an infinite row by column matrix
multiplication:

ð� ?WV c Þmn ¼ X1
k¼1

�mkc kn: (4.21)

Using the expansion (4.11) and (4.16) it is easy to see that

Z
d2z�ð�z; zÞ ¼ ��Tr� ¼ ��

X1
n¼0

�nn; (4.22)

where we have introduced the infinite matrix � with en-
tries f�ijg.
Let us generalize this basis to higher (even) dimensions.

In d dimensions we need d=2 copies of the WV plane, with
d=2 pairs of complex coordinates zi, �zi. As for the Moyal
hyperplane, coordinates describing different two-planes,
commute among themselves. We define

v ~m ~nð �z1; . . . ; �zd=2; z1; . . . ; zd=2Þ
¼ hz1; . . . zd=2jm1; . . . ; md=2i

� hn1; . . . ; nd=2jz1; . . . zd=2i ¼ �d=2
i¼1v

i
mini (4.23)

with

vi
mini ¼ hzijmiihnijzii ¼ e�ð�zizi=2�Þ �zmi

i zniiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni!mi!�

niþmi

p : (4.24)

The functions v ~m ~n form an orthogonal basis in the algebra
of noncommutative functions on the hyperplane, as it may
be easily checked that

v ~m ~n ?WV v ~p ~q ¼ v ~m ~q�~n ~p: (4.25)

Moreover, one has

Z
ddzv ~m ~n ¼ ð��Þd=2� ~m ~n: (4.26)

The field � is therefore expanded as

�ð�z; zÞ ¼ X1
mi;ni¼0
i¼1;...;d

� ~m ~nv ~m ~nðz; �zÞ: (4.27)

Moreover, one has

�ð�z; zÞ ?WV c ð�z; zÞ ¼ X
� ~m ~nc ~n ~qv ~m ~q (4.28)

and also

Z
ddz�ð �z; zÞ ¼ ð��ÞdX� ~m ~n� ~m ~n: (4.29)

Having established this basis it is now possible to express
the action of our model (3.2) in matrix notation. The mass
and the interaction terms are just row by column multi-
plication. We have

m2

2

Z
ddz� ?WV �þ �

4!

Z
ddz� ?WV � ?WV � ?WV �

¼ ð��Þd=2
�
�2

2

X
� ~m ~n�~n ~q� ~m ~q

þ �

4!

X
� ~m ~n�~n ~q�~q ~p� ~p ~r� ~m ~r

�
: (4.30)
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Let us consider the kinetic term. We first observe that

1

2

Z
ddz@�� ?WV @�� ¼

Z
ddz

X
i

@zi� ?WV @�zi�

(4.31)

and

@zi� ¼ 1

�
½�zi; ��?WV

(4.32)

@�zi� ¼ 1

�
½zi; ��?WV

: (4.33)

Equations (4.17) and (4.18), suitably generalized to the d
case, imply in turn that zi and �zi are expanded in the matrix
basis as

zi ¼
X
~n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðni þ 1Þ�

q
vi
niniþ1�j�iv

j
njnj (4.34)

�z i ¼
X
~n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðni þ 1Þ�

q
vi
niþ1ni

�j�iv
j
njnj : (4.35)

We then have

@zi� ¼ 1

�

X
~m ~n

� ~m ~nð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi þ 1

p
vi
miþ1ni

� ffiffiffiffiffi
ni

p
vi
mini�1Þ�j�iv

i
mini

@ �zi� ¼ 1

�

X
~m ~n

� ~m ~nð ffiffiffiffiffiffi
mi

p
vi
mi�1ni

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ 1

p
vi
miniþ1Þ�j�iv

i
mini :

(4.36)

The kinetic term (4.31) becomes

ð��Þdffiffiffi
�

p X
~m ~n
~p ~q

� ~m ~n� ~p ~q

X
i

ð�miqi�nipi
ð�mi � ni � 1Þ

þ �miþ1qi�nipi�1

ffiffiffiffiffiffiffiffiffi
qipi

p

þ �ni�1pi
�miqiþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqi þ 1Þðpi þ 1Þ

q
Þ�j�i�mjqj�njpj

:

(4.37)

Let us consider now the supplementary term we have
added in (3.2):

1

�d

Z
ddz

�Z
ddz0�ð �z0; z0Þ

�
?WV

�Z
ddz0�ð �z0; z0Þ

�
:

(4.38)

To compute the two indefinite integrals above, we use the
Taylor expansion (4.3). We thus arrive at the following
expression:

1

�d

X
~m ~n
~r ~s

�Tay
~m ~n�

Tay
~r ~s �i

1

ðmi þ 1Þðni þ 1Þðri þ 1Þðsi þ 1Þ

�
Z

ddz�zmþ1
i znþ1

i ?WV �zrþ1
i zsþ1

i : (4.39)

We then use the matrix basis to evaluate the star product
and we obtain

1

�d

X
~m ~n
~r ~s

�
Tay
~m ~n�

Tay
~r ~s

X
~p

Z
ddz�i

�zpiþmi
i zpiþni�riþsi

i e�ðð�ziziÞ=�Þ

ðmi þ 1Þðni þ 1Þðri þ 1Þðsi þ 1Þ

� ðpi þ ni þ 1Þ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpi þmi þ 1Þ!ðpi þ ni � ri þ si þ 1Þ!�miþniþriþsiþ4
p

pi!ðpi þ ni � riÞ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpi þmiÞ!ðpi þ ni � ri þ siÞ!�2piþmiþni�riþsi

p : (4.40)

The integral may be easily performed and, after some algebra, we obtain for the supplementary term the expression

X
~m ~n
~r ~s

�Tay
~m ~n�

Tay
~r ~s

X
~p

�i

ðpi þmi þ 1Þ!ðpi þ ni þ 1Þ!�ri�mi�pi

ðmi þ 1Þðni þ 1Þðri þ 1Þðsi þ 1Þpi!ðpi þ ni � riÞ!�miþri;niþsi : (4.41)

Finally, using (4.20) to rewrite the coefficients �Tay, we getX
~m ~n
~r ~s ~p

�i

ðpi þmi þ 1Þ!ðpi þ ni þ 1Þ!�ri�mi�pi

ðmi þ 1Þðni þ 1Þðri þ 1Þðsi þ 1Þpi!ðpi þ ni � riÞ!�miþri;niþsi

� Xminf ~m; ~ng

~l¼0

Xminf ~r;~sg

~k¼0

�j

ð�1Þljþkj��mj�rj� ~m�~l ~n�~l�~r� ~k ~s� ~k

lj!kj!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmj � ljÞ!ðnj � ljÞ!ðrj � kjÞ!ðsj � kjÞ!

q ; (4.42)

where, with an abuse of notation,
Pminf ~m; ~ng

~l¼0
stands for

Pminfmi;nig
li¼0

i¼1;...;d

. Finally, summing all the contributions that we obtain from

(4.30), (4.31), and (4.42), the complete action (3.2) of our model with supplementary term is rewritten in the matrix basis as
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S½�� ¼ ð��Þd=2
�
m2

2

X
� ~m ~n�~n ~q� ~m ~q þ �

4!

X
� ~m ~n�~n ~q�~q ~p� ~p ~r� ~m ~r

�
þ ð��Þd=2ffiffiffi

�
p X

~m ~n
~p ~q

� ~m ~n� ~p ~q

X
i

ð�miqi�nipi
ð�mi � ni � 1Þ:

þ�miþ1qi�nipi�1

ffiffiffiffiffiffiffiffiffi
qipi

p þ�ni�1pi
�miqiþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqi þ 1Þðpi þ 1Þ

q
Þ�j�i�mjqj�njpj

þX
~m ~n
~r ~s ~p

�i

ðpi þmi þ 1Þ!ðpi þ ni þ 1Þ!�ri�mi�pi

ðmi þ 1Þðni þ 1Þðri þ 1Þðsi þ 1Þpi!ðpi þ ni � riÞ!

��miþri;niþsi

Xminf ~m; ~ng

~l¼0

Xminf ~r;~sg

~k¼0

�j

ð�1Þljþkj��mj�rj� ~m�~l ~n�~l�~r� ~k ~s� ~k

lj!kj!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmj � ljÞ!ðnj � ljÞ!ðrj � kjÞ!ðsj � kjÞ!

q : (4.43)

V. CONCLUSION AND PERSPECTIVES

In this paper we have proposed a solution for curing the
UV/IR mixing which appears when implementing field
theories using a translation-invariant product on R4. This
solution generalizes the one proposed in [14] for curing the
UV/IR mixing on Moyal space. We explicitly compute the
one-loop Feynman amplitudes of the proposed model, as
well as higher loop amplitudes of some graphs obtained by
an insertion of nonplanar tadpoles. Our result is mainly due
to the cocycle condition (2.13).

An immediate perspective is to obtain a proof of the
perturbative renormalization of the proposed model at any
order in perturbation theory. This could be achieved by
investigating the general form of the factor generalizing the
Moyal oscillating phase of some Feynman amplitude.

As already stated in this paper, the noncommutative
products that we have worked here are equivalent in the
formal series sense of Kontsevich. We thus explicitly show
that an important field theoretical result—curing the UV/

IR mixing—can be obtained applying the same recipe as in
Moyal field theory. It is interesting to further understand
the explicit relation between this formal series equivalence
of the noncommutative products and the equivalence of the
Euclidean field theories thus implemented.
Nevertheless, as already argued in [33], when doing

Minkowskian field theory, the situation is manifestly dif-
ferent, because the different factors on the external propa-
gator can lead to a different Smatrix form, unless properly
implementing the quantum symmetry of the model as a
twisted symmetry.
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(2008).
[20] A. Tanasa and F. Vignes-Tourneret, arXiv:0707.4143.
[21] A. de Goursac, A. Tanasa, and J. C. Wallet, Eur. Phys. J. C

53, 459 (2008).

CURING THE UV/IR MIXING FOR FIELD THEORIES . . . PHYSICAL REVIEW D 81, 065008 (2010)

065008-11



[22] A. Tanasa, arXiv:0711.3355.
[23] A. Tanasa, J. Phys. Conf. Ser. 103, 012012 (2008).
[24] J. B. Geloun and A. Tanasa, Lett. Math. Phys. 86, 19

(2008).
[25] A. Tanasa, J. Phys. A 42, 365208 (2009).
[26] J. Magnen, V. Rivasseau, and A. Tanasa, Europhys. Lett.

86, 11001 (2009).
[27] A. Tanasa, Romanian J. Phys. 53, 1207 (2008).
[28] T. Krajewski, V. Rivasseau, A. Tanasa, and Z. Wang,

arXiv:0811.0186.
[29] A. Tanasa and D. Kreimer, arXiv:0907.2182.
[30] P. Aluffi and M. Marcolli, arXiv:0807.1690.
[31] A. Voros, Phys. Rev. A 40, 6814 (1989); M. Bordemann

and S. Waldmann, Lett. Math. Phys. 41, 243 (1997);
arXiv:q-alg/9605012; M. Bordemann and S. Waldmann,
Commun. Math. Phys. 195, 549 (1998); arXiv:q-alg/
9607019.

[32] F. Bayen, Lect. Notes Phys. 94, 260 (1979).
[33] S. Galluccio, F. Lizzi, and P. Vitale, Phys. Rev. D 78,

085007 (2008).
[34] S. Galluccio, F. Lizzi, and P. Vitale, J. High Energy Phys.

09 (2009) 054.
[35] P. Aschieri, F. Lizzi, and P. Vitale, Phys. Rev. D 77,

025037 (2008).
[36] M. Chaichian, A. Demichev, and P. Presnajder, Nucl.

Phys. B567, 360 (2000).
[37] A. B. Hammou, M. Lagraa, and M.M. Sheikh-Jabbari,

Phys. Rev. D 66, 025025 (2002); A. Pinzul and A.
Stern, J. High Energy Phys. 03 (2002) 039; 11 (2001)
023; G. Alexanian, A. Pinzul, and A. Stern, Nucl. Phys.

B600, 531 (2001); M. Daoud, Phys. Lett. A 309, 167
(2003).

[38] F. Lizzi, P. Vitale, and A. Zampini, J. High Energy Phys.
08 (2003) 057; 09 (2005) 080.

[39] A. P. Balachandran, K. Gupta, and S. Kürkçüoǧlu, J. High
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