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Despite suggestions to the contrary, we show in this paper that the usual dispersive form of the

electromagnetic energy density must be used to derive the Lifshitz force between parallel dielectric media.

This conclusion follows from the general form of the quantum vacuum energy, which is the basis of the

multiple-scattering formalism. As an illustration, we explicitly derive the Lifshitz formula for the

interaction between parallel dielectric semispaces, including dispersion, starting from the expression

for the total energy of the system. The issues of constancy of the energy between parallel plates and of the

observability of electrostrictive forces are briefly addressed.
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I. INTRODUCTION

Recent years have yielded considerable progress in
understanding quantum vacuum or Casimir energies,
both theoretically and experimentally. For a very recent
review, see Ref. [1]. However, there are controversial
aspects, both having to do with the concept of zero-point
energy applied to a single system, or to the Universe as a
whole [2], and with including thermal corrections and their
observability in experiment [1]. The latter question refers
to how the electric properties of materials depend on
(imaginary) frequencies, that is, upon dispersion.

In this paper, we address the latter issue. In a recent
paper [3], we had proposed, following a suggestion of
Lifshitz [4], that the usual dispersive term in the electro-
magnetic energy for a given frequency [5],
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(we ignore the magnetic susceptibility; that is, we set � ¼
1), should not be included. However, the usual derivations
of the Lifshitz interaction between dielectric slabs are not
based on the total energy. For example, in Ref. [6] the
Lifshitz formula is derived from the pressure, or equiva-
lently the spatial components of the stress tensor, and also
from the variational principle enunciated in Ref. [7]. It is
also easy to obtain this same result using the recently
repopularized multiple-scattering approach to Casimir en-
ergies [8,9]. Equivalently, the multiple-reflection expan-
sion yields the Lifshitz formula immediately [10].

In this article, we derive the Lifshitz energy directly
from Eq. (1.1). We first see, in Sec. II, how dispersion is
incorporated in a general formulation. This demonstrates
that the dispersive form of the energy is required. Then,
after giving the form of the Green’s dyadic in Sec. III, in
Sec. IV we will explicitly derive the Lifshitz formula from
Eq. (1.1), and will see manifestly that the dispersive term
provides the Jacobian of the required transformation of
coordinates necessary to obtain the necessary log det
form. In the conclusions, we also bring up the related
possibility of measuring electrostrictive effects in liquids.
The Appendix points out that the well-known constancy of
the energy density between parallel perfectly conducting
plates does not hold for dielectric plates (that is, if regions
1 and 2, defined in Sec. III, are constituted of dielectric
material), or even if a dispersive medium exists between
metallic plates.

II. GENERAL FORMULATION

Let us start from Eq. (1.1), and consider the quantum
vacuum energy associated with electromagnetic field fluc-
tuations:

E ¼ 1
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The expectation values appearing here are given by the
electromagnetic Green’s dyadic,

hEðrÞEðr0Þi ¼ 1

i
�ðr; r0Þ; (2.2a)

hHðrÞHðr0Þi ¼ � 1

i

1

!2
r� �ðr; r0Þ � rQ 0; (2.2b)

and so inserting these into the energy expression (2.1),
integrating by parts, and using the differential equation
satisfied by the Green’s dyadic,

� r� r� �þ!2"� ¼ �!21; (2.3)
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we obtain the expression for the energy
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We can obtain this same result starting from the standard
trace-log formula:
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where from Eq. (2.3)

��1 ¼ 1

!2
r� r��"; (2.6)

and where Tr includes the trace over spatial coordinates.
The final form in Eq. (2.5) is exactly the result (2.4) derived
from the expectation value of the classical electromagnetic
energy (1.1).

To conclusively demonstrate that the dispersive term
must be included, we derive the variational principle
used to obtain the Lifshitz formula in Ref. [7]. This de-
pends upon the variational statement

�� ¼ �����1� ¼ ��"�: (2.7)

Also, using the differential equation for the Green’s dyadic,
we find
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Therefore, the "-variation of Eq. (2.4) yields
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which, upon integration by parts, yields the variational
principle used in Refs. [6,7]:

�E ¼ i

2

Z d!
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See also Ref. [11].

III. GREEN’S DYADIC FOR PARALLEL SLABS

In this and the following section, we supply an explicit
derivation of the Casimir-Lifshitz interaction between par-
allel dielectric slabs (of infinite thickness). Specifically,

consider a dielectric function in the following form:

"ðrÞ ¼
8<
:
�1; z < 0;
�3; 0< z < a;
�2; a < z:

(3.1)

Then, the Green’s dyadic can be written as a transverse
Fourier transform,

� ðr; r0Þ ¼
Z ðdk?Þ

ð2�Þ2 e
ik?�ðr�r0Þ?gðz; z0;k?; !Þ; (3.2)

where the reduced Green’s dyadic has the form [6,7],
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Here, we have dropped �-function terms, we have denoted
" ¼ "ðzÞ, "0 ¼ "ðz0Þ, and we have chosen the coordinate
system so that k? ¼ kx̂. Here, the transverse electric (TE
or H) and transverse magnetic (TM or E) (relative to the z
axis) Green’s functions satisfy the differential equations�
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We will solve these equations in each of the three regions
given in Eq. (3.1), subject to boundary conditions between
the regions that gH and @zg

H are continuous, and that gE

and ð1="Þ@zgE are continuous. These boundary conditions
reflect the underlying requirement that the transverse parts
ofE andH are continuous, while the normal component of
D ¼ "E is continuous (there are no surface charges or
currents). It is a straightforward calculation to find the
Green’s functions in each region. We display the results
for the only situation we need in the following, when z and
z0 are both in the same regions. Below the first interface, z,
z0 < 0,

gHðz; z0Þ ¼ 1

2�1

½e��1jz�z0j þ r1e
�1ðzþz0Þ�; (3.5a)
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d
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where �2
a ¼ k2 þ �2"aði�Þ, a ¼ 1, 2, 3, and we have made

a Euclidean rotation,! ¼ i� . Here, we have introduced the
abbreviation

d ¼ �3 þ �2
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e2�3a � 1: (3.6)

Similarly, above the second interface, z, z0 > a,
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r2 ¼ �2 � �3

�2 þ �3

þ 4�2�3

�2
3 � �2

2

1

d
: (3.7b)

In the intermediate region, a > z, z0 > 0,
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The transverse magnetic Green’s function gE is obtained
from the above by replacing �a ! �a=�a except in the
exponents.

The fact that gðz; zÞ depends on z implies, in general,
that the mean-squared electric and magnetic fields also
depend on position, as does the energy density. This seems
to contradict the fact that for parallel conducting plates the
energy density is constant in each region [3,12]. We shall
show, in fact, in the Appendix that the electromagnetic
energy density between perfectly conducting plates is in-
deed constant, provided the intervening medium is
nondispersive.

IV. LIFSHITZ ENERGY

The Casimir-Lifshitz energy per unit area for the situ-
ation of parallel slabs described by the dielectric function
(3.1) is [1,6]
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and the TM reflection coefficients are obtained by replac-
ing �a ! �0

a ¼ �a=�a. In this section, we rederive this
result from Eq. (2.4).

A. TE contribution to the energy

The TE part of the energy can be written as
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In each region, the dispersive term is necessary to change
variables from � to �a. In the first region, omitting infinite
terms which contain no reference to the separation a
between the regions, we find rather immediately (we as-
sume, as usual, �2�að�Þ ! 0 as � ! 0)
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where the partial derivative means that �2 and �3 are not
altered, and
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Similarly, in region 2,
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The intermediate region involves a slightly more involved
calculation, but the result has the same form (after we omit
a constant term in the force):
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where now the derivative acts also on the exponent in �TE.
In this way, we obtain exactly the expected TE contribu-
tion:
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which is just the first term in Eq. (4.1).

B. TM contribution to energy

The TM contribution requires a somewhat more elabo-
rate calculation. The TM contribution to the trace of the
Green’s dyadic is
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This differential structure has different forms depending on
whether it acts on the pure exponential terms in gE, or on
the hyperbolic cosine in Eq. (3.8), namely, in the first case,
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and in the second case,
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Except for that last exceptional case, combining this trace
term with the dispersive term in the energy gives
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Thus, in region 1, the contribution to the TM energy is
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where �TM differs from �TE by replacing �a by �0
a ¼

�a=�a except in the exponents, that is, rTE ! rTM.
Similarly, in region 2,
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In region 3, however, we have to take into account the
special case (4.11). It is most convenient then to regard �3

and �0
3 as independent, in which case we can write
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Thus, the total TM contribution is
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The first term here is actually zero, because the differential
operator annihilates �TM, since

�0
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and so we obtain exactly the Lifshitz result

E TM ¼ 1
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Z 1

0
kdk
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V. CONCLUSIONS

Ordinarily one calculates the Casimir-Lifshitz free en-
ergy directly from the pressure, or from an equivalent
variational approach. Therefore, it was not obvious how
the dispersive term present in the energy in order to have
the required balance between energy and momentum, as in
the electromagnetic energy-momentum tensor, plays a
role. Earlier we had suggested [3] that such a term simply
be omitted. However, we now see that the dispersive term
is precisely what is needed to achieve agreement between
the different formulations of the energy, and that the dis-
persive term provides the Jacobian factor necessary to
derive the Lifshitz free energy from the expectation value
of the electromagnetic energy.

The following point, related to the possibilities of ex-
perimental observations, should be noticed: As we have
seen, a characteristic property of dispersion is that the
factor dð"!Þ=d! occurs in the energy and not in the
pressure or the stress. This has a bearing on the famous
Abraham-Minkowski energy-momentum problem. As it is
known, an important experiment in this area is the Jones-
Richards radiation pressure experiment [13], showing how
the effective pressure against a mirror immersed in a liquid

varies with respect to the refractive index (cf. also the
follow-up experiment of Jones and Leslie [14]). The
book by Jones [15] contains a nice exposition of these
very accurate experiments. The electrostrictive forces do
not contribute to the radiation pressure.
Does this imply that electrostrictive forces in a liquid are

generally nonobservable? Not quite so, although a diffi-
culty is that at thermal equilibrium, the electrostrictive
forces give rise to elastic pressures in the liquid, acting in
the opposite direction. There are ways to overcome this
difficulty, however. One option is to proceed as in the
Goetz-Zahn nonequilibrium experiment [16,17]; cf. also
the detailed discussion on this experiment in Ref. [18],
p. 149. One applies an electric field with high frequency !
between two condenser plates in a liquid, and measures the
attractive force between the plates for instance by means of
a piezoelectric transducer. The point is that ! must be so
high that the elastic pressure does not have time to built
itself up. The critical parameter here is thus the velocity of
sound in the liquid.
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APPENDIX: CONSTANCY OF ENERGY FOR
CONDUCTING PLATES

Consider the case of parallel perfect conducting plates
separated by a nondispersive medium with dielectric con-
stant �. The TE Green’s function is [obtained by taking
�1;2 ! 1 in Eq. (3.8)]

gH ¼ 1

2�

�
e��jz�z0j

þ 2 cosh�ðz� z0Þ � e�ðzþz0Þ � e��ðzþz0�2aÞ

e2�a � 1

�
;

(A1)

where �2 ¼ k2 þ �2�. The TE energy density is given by

uTE ¼ 1
2�hE2

yi þ 1
2hH2

x þH2
z i; (A2)

where
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hH2
x þH2

z i ¼
Z 1

�1
d�

2�

Z ðdk?Þ
ð2�Þ2 ð@z@z0 þ k2ÞgHðz; z0Þjz0¼z:

(A3b)

Then, we easily see that
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The TMGreen’s function for perfectly conducting plates
has a similar form,

gE ¼ 1

2�0

�
e��jz�z0j

þ 2 cosh�ðz� z0Þ þ e�ðzþz0Þ þ e��ðzþz0�2aÞ

e2�a � 1

�
; (A5)

and the corresponding energy density is
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The z-dependent terms exactly cancel between
Eqs. (A4) and (A6) and the remaining terms are equal,
and sum to the usual Casimir energy density,
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This cancellation, resulting in the constancy of the en-
ergy density, is rather special, however. It does not occur if
dispersion is present, d�=d� � 0, in which case the local
energy density has the nonconstant form
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The cancellation also cannot occur for dielectric media
constituting regions 1 and 2, since the TE and TM reflec-
tion coefficients are then different. Nevertheless, we note
that the z integral of the spatially varying part of the energy
density is a constant, independent of a, and so does not
contribute to the force on the plates. This is just as it occurs
for a nonconformally coupled massless scalar field con-
fined between Dirichlet plates.
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