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A novel formalism for the evaluation of the Casimir-Polder potential in an arbitrary gauge of vector

potentials is introduced. The ground state energy of a neutral atom in the presence of an infinite two-

dimensional plane with Chern-Simons interaction is derived at zero temperature. The essential feature of

the result is its dependence on the antisymmetric part of a dipole moment correlation function.
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I. INTRODUCTION

Casimir-Polder effect was predicted theoretically in
1948 [1]. Casimir and Polder found the energy of a neutral
point atom in its ground state in the presence of a perfectly
conducting infinite plate. In the case of a perfectly con-
ducting plate one can say that the interaction of a fluctuat-
ing dipole with the electric field of its image yields the
Casimir-Polder potential.

In response to the external electromagnetic field the
atom emits the electromagnetic field propagating from
the atom. This electromagnetic field propagates to the
plate, reflects from the plate so that the boundary condi-
tions on the plate are satisfied, and returns to the atom. The
equation for normal modes of the system can be written if
one determines the reflection matrices of the plate and the
atom. The ground state energy of the system can be defined
then as the sum of the eigenfrequencies of the normal
modes of the system. This sum can be evaluated by making
use of the argument principle if the equation for normal
modes of the system is substituted into it [2–4].

An equivalent mathematical description is the use of
Green’s functions of the system. This technique was first
applied to the Casimir effect by Lifshitz [5]. An alternative
derivation of the Lifshitz formula in the framework of
scattering technique was first given by Renne [6].
Recently, various scattering techniques were applied to
the evaluation of the Casimir energy for different geome-
tries (see Refs. [4,7–13] for details).

The Casimir-Polder effect was studied theoretically for
various geometries: two parallel plates [14], a wedge [15],
a dielectric ball [16], and other geometries. The first ex-
perimental measurements of the Casimir-Polder effect
were performed in the wedge geometry [17]. One can
find a review of the results in [18]. Scattering techniques
for the Casimir-Polder effect in terms of reflection matrices
were recently developed in the Refs. [19,20].

In this paper we present a novel theoretical formalism
for the Casimir-Polder effect by making use of Green’s
functions technique. In this formalism the atom is de-

scribed by the neutral point dipole source. We assume
that the atom creates a dipole field in response to the
external electric field, we do not consider the contribution
of higher multipoles. The point source interacts with vector
potentials of the electromagnetic field in a gauge invariant
way. Our formalism for the Casimir-Polder effect is appli-
cable in an arbitrary gauge of vector potentials.
In the Casimir-Polder effect the correlations of sponta-

neous dipole moments at different moments of time are
important. Because of the fluctuation-dissipation theorem
they are related to the polarizability of the atom in an
external electric field. In the most general case the polar-
izability of the atom includes frequency dependent sym-
metric and antisymmetric parts [21,22]. The contribution
of the antisymmetric part of the atomic polarizability to the
Casimir-Polder energy was equal zero in the Casimir sys-
tems that were considered in literature before [23,24]. In
the current paper we present an example of the Casimir-
Polder system where the contribution of the antisymmetric
part of the atomic polarizability is different from zero and
leads to a measurable effect.
Boundary Chern-Simons terms in the Casimir effect

were considered in Refs. [25,26]. In this paper we derive
the zero temperature formula (29) for the Casimir-Polder
interaction of a neutral polarizable atom in the presence of
an infinite two-dimensional plane characterized by the
Chern-Simons action. Outside the plane the standard ac-
tion for the potentials of the electromagnetic field is con-
sidered. A distinctive feature of our main result (29) is its
dependence on the antisymmetric part of the atomic polar-
izability. The result for the potential may be applied for the
experimental studies of the Casimir-Polder effect for two-
dimensional materials such as graphene [27,28] or quan-
tum Hall effect systems.
We adopt Heaviside-Lorentz units and put @ ¼ c ¼ 1.

II. MODEL

In our model the interaction of the plane surface with a
quantum electromagnetic field A� is described by the

action

SðAÞ ¼ �1
4F��F

�� þ SdefðAÞ; (1)
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where F�� ¼ @�A� � @�A� and

SdefðAÞ ¼ a
Z

����3A�ðxÞ@�A�ðxÞ�ðx3Þdx: (2)

We will use Latin indices for the components of
4-tensors with numbers 0, 1, 2, and also with the following
notations:

Plmð ~kÞ ¼ glm � klkm= ~k2; Llmð ~kÞ ¼ �lmn3kn=j ~kj;
~k2 ¼ k20 � k21 � k22;

(3)

where j ~kj ¼
ffiffiffiffiffi
~k2

p
, and g—metric tensor. The atom is mod-

eled as a localized electric dipole at the point ðx1; x2; x3Þ ¼
ð0; 0; lÞ, which is described by the current J�ðxÞ:

J0ðxÞ ¼
X3
i¼1

piðtÞ@i�ðx1Þ�ðx2Þ�ðx3 � lÞ; (4)

JiðxÞ ¼ � _piðtÞ�ðx1Þ�ðx2Þ�ðx3 � lÞ; i ¼ 1; 2; 3: (5)

The condition of the current conservation holds:

@�J
� ¼ 0;

piðtÞ is a function with a zero average and the pair corre-
lator

hpjðt1Þpkðt2Þi ¼ �i
Z þ1

�1
e�i!ðt1�t2Þ

2�
�jkð!Þd!; (6)

where �jkð!Þ for !> 0 coincides with the atomic polar-

izability. The aim of our paper is to calculate the interac-
tion energy E of the atom with a plane, and we will use the
following representation for the energy:

E ¼ i

T

��
ln
Z

expðiSðAÞ þ JAÞDA

� ln
Z

expðiSðAÞÞDA

�
ðaÞ

�
; (7)

f� � �gðaÞ means that the a ¼ 0 value of the a-dependent
function has to be subtracted: ffðaÞgðaÞ � fðaÞ � fð0Þ.

III. PROPAGATOR OF THE ELECTROMAGNETIC
FIELD

Integrals in the right-hand side of (7) are gauge invariant,
and there are no restrictions on gauge fixing in them. To
perform the calculations it is convenient to choose the
Coulomb like gauge @0A

0 þ @1A
1 þ @2A

2 ¼ 0. In this
gauge the action SðAÞ can be written as follows [29]:

SðAÞ ¼ 1

2

Z
~AðxÞK ~AðxÞdx

¼ 1

2

Z
f ~A�ð ~k; x3ÞK? ~Að ~k; x3Þ

� A�
3ð ~k; x3Þ ~k2A3ð ~k; x3Þgd ~kdx3: (8)

Here,

K? ¼ �P½@23 þ ~k2� � 2ij ~kjaL�ðx3Þ; (9)

P and L is a brief way of writing Plm and Llm. Our model of
a two-dimensional plane is translation invariant along the
coordinates x0, x1, x2. This is why for the propagator

Dðx; yÞ ¼ iK�1ðx; yÞ
it is convenient to use the Fourier integral representation

Dðx; yÞ ¼ 1

ð2�Þ3
Z

Dð ~k; x3; y3Þei ~kð ~x� ~yÞd ~k

for which Dð ~k; x3; y3Þ can be found. We denote gqðzÞ the
Green’s function of a differential operator @2z þ q2:

½@2z þ q2�gqðz� z0Þ ¼ �ðz� z0Þ; (10)

gqðzÞ � �i
eijqjjzj

2jqj : (11)

By making use of the tensors P��, L�� introduced in (3),

we define

G��ð ~q; x3; y3Þ � �i

�
gj ~qjðx3 � y3ÞP��

� a2P�� þ aL��

1þ a2
gj ~qjðx3Þgj ~qjðy3Þ

gj ~qjð0Þ
�
: (12)

With the help of identities

P2 ¼ P; L2 ¼ �P2; LP ¼ PL ¼ L (13)

it is easy to check the equality

K?Gð ~k; x3; y3Þ ¼ i�ðx3 � y3ÞP:
Hence, in a selected gauge the propagator D��ð ~k; x3; y3Þ
has the form

D33ð ~k; x3; y3Þ ¼ �i�ðx3 � y3Þ
j ~kj2 ;

Dl3ð ~k; x3; y3Þ ¼ D3mð ~k; x3; y3Þ ¼ 0;

Dlmð ~k; x3; y3Þ ¼ Glmð ~k; x3; y3Þ

¼ Plmð ~kÞP 1ð ~k; x3; y3Þ þ Llmð ~kÞP 2ð ~k; x3; y3Þ
2j ~kj½1þ a2� ;

(14)

where l, m ¼ 0, 1, 2, and

P 1ð ~k; x3; y3Þ ¼ a2eij ~kjðjx3jþjy3jÞ � ð1þ a2Þeij ~kjjx3�y3j;

P 2ð ~k; x3; y3Þ ¼ aeij ~kjðjx3jþjy3jÞ: (15)
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After the integration over the photon field we obtain�
ln

�R
expfiSðAÞ þ iJAgDAR

expfiSðAÞgDA

��
ðaÞ

¼ � 1

2
JfDgðaÞJ; (16)

where fDgðaÞ ¼ D�Dja¼0. Thus, for the energy E, which
is defined by the right-hand side of (7), we obtain the
following expression:

E ¼ �i
hJfDgðaÞJi

2T
; (17)

which we are planning to evaluate now.

IV. POTENTIAL OF THE INTERACTION

Because of (14) the propagator fDgðaÞ has the form
fDg33ðaÞð ~k; x3; y3Þ ¼ fDgl3ðaÞð ~k; x3; y3Þ ¼ fDg3mðaÞð ~k; x3; y3Þ ¼ 0;

fDglmðaÞð ~k; x3; y3Þ ¼
Plmð ~kÞa2 þ Llma

2j ~kj½1þ a2� eij ~kjðjx3jþjy3jÞ;

l; m ¼ 0; 1; 2: (18)

The potential Vðl; aÞ of interaction of the Chern-Simons
plane and the electric dipole piðtÞ described by the current
defined in (4) and (5) can be written as follows:

Vðl; aÞ � � i

2
JfDgðaÞJ

¼ � i

4ð2�Þ3½1þ a2�

�
Z

d ~kdtdt0
eiðk0ðt�t0Þþ2lj ~kjÞ

j ~kj F ða; ~k; t; t0Þ: (19)

We introduced the notation

F ða; ~k; t; t0Þ ¼ a2
�X2
i¼1

piðtÞki þ p3ðtÞj ~kj
	�X2

i¼1

piðt0Þki � p3ðt0Þj ~kj
	
P00ð ~kÞ � i

X2
j¼1

_pjðtÞ
�X2
i¼1

piðt0Þki � p3ðt0Þj ~kj
	

� ½a2Pj0ð ~kÞ þ aLj0ð ~kÞ� þ i

�X2
i¼1

piðtÞki � p3ðtÞj ~kj
	X2
j¼1

_pjðt0Þ½a2P0jð ~kÞ þ aL0jð ~kÞ�

þ X2
i;j¼1

_piðtÞ _pjðt0Þ½a2Pijð ~kÞ þ aLijð ~kÞ�: (20)

Because of a definition (3)

P00ð ~kÞ ¼ � k2P
~k2
; kP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

q
; P0ið ~kÞ ¼ Pi0ð ~kÞ ¼ � k0ki

~k2
; i � 0;

so integrating by parts the time t we can make the substitutions _pðtÞ ! �ik0pðtÞ, _pðt0Þ ! ik0pðt0Þ in (19), and due to
independence of pðtÞ from the momentum k we can also make the following substitutions in the integral:

X2
i;j¼1

piðtÞpjðt0Þkikj ! k2P
2

X2
i¼1

piðtÞpiðt0Þ;
�X2
i¼1

piðtÞki
	
p3ðtÞj ~kj ! 0:

As a result the function F ða; ~k; t; t0Þ (20) in the integral (19) is changed to

Gða; ~k; t; t0Þ ¼ �a2
�X2
i¼1

piðtÞpiðt0Þ k
2
P

2
� p3ðtÞp3ðt0Þj ~kj2

	
k2P
~k2
þ a2k2Pk

2
0

~k2

X2
j¼1

pjðtÞpjðt0Þ � ½ ~pðtÞ � ~pðt0Þ�3 ak
2
Pk0

j ~kj

þ a2k20
X2
j¼1

pjðtÞpjðt0Þ
�
�1� k2P

2 ~k2

	
þ ½ ~pðtÞ � ~pðt0Þ�3 ak

3
0

j ~kj

¼ a2
�X2
i¼1

piðtÞpiðt0Þ
�
k2P
2
� k20

	
þ k2Pp3ðtÞp3ðt0Þ

�
þ ak0j ~kj½ ~pðtÞ � ~pðt0Þ�3: (21)

Now we perform the Fourier transformation of piðtÞ, p�
i ðk0Þ ¼ pið�k0Þ, then (19) can be written
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Vðl; aÞ ¼ � i

4ð2�Þ3½1þ a2�
Z

d ~k
ei2lj ~kj

j ~kj H ða; ~kÞ; (22)

where

H ða; ~kÞ ¼ a2
�X2
i¼1

piðk0Þp�
i ðk0Þ

�
k2P
2
� k20

	

þ k2Pp3ðk0Þp�
3ðk0Þ

�
þ ak0j ~kj½ ~pðk0Þ

� ~p�ðk0Þ�3: (23)

This result can be simplified after performing in (22) the
integration over k1, k2. Our task is to integrate the expres-
sion of the form Fðk2PÞ over k1, k2. The following formula
is valid:

Z þ1

�1

Z þ1

�1
Fðk2PÞdk1dk2 ¼ �

Z 1

0
FðkÞdk:

The three integrals need to be evaluated:

I1ð�; k0Þ �
Z þ1

�1

Z þ1

�1
ei�j ~kjk2Pdk1dk2

j ~kj ;

I2ð�; k0Þ �
Z þ1

�1

Z þ1

�1
ei�j ~kjdk1dk2

j ~kj ;

I3ð�; k0Þ �
Z þ1

�1

Z þ1

�1
ei�j ~kjdk1dk2:

We get

I1ð�; k0Þ ¼ �
Z þ1

0

ei�
ffiffiffiffiffiffiffiffiffi
k2
0
�	

p
	d	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 � 	
q ¼ �jk0j3

Z þ1

0

ei�jk0j
ffiffiffiffiffiffiffi
1�	

p
	d	ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 	
p

¼ 2�
ei�jk0j

ffiffiffiffiffiffiffi
1�	

p
ð2iþ 2�jk0j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	

p þ i�	jk0j2Þ
�3










þ1

0
¼ �2�i

ei�jk0j2ð1� i�jk0jÞ
�3

;

I2ð�; k0Þ ¼ �
Z þ1

0

ei�
ffiffiffiffiffiffiffiffiffi
k2
0
�	

p
d	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 � 	
q ¼ �jk0j

Z þ1

0

ei�jk0j
ffiffiffiffiffiffiffi
1�	

p
	d	ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 	
p ¼ 2�i

ei�jk0j
ffiffiffiffiffiffiffi
1�	

p

�










þ1

0
¼ �2�i

ei�jk0j

�
;

I3ð�; k0Þ ¼ �
Z þ1

0
ei�

ffiffiffiffiffiffiffiffiffi
k2
0
�	

p
d	 ¼ �jk0j2

Z þ1

0
ei�jk0j

ffiffiffiffiffiffiffi
1�	

p
d	 ¼ 2�i

ei�jk0j
ffiffiffiffiffiffiffi
1�	

p
ðiþ �jk0j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	

p Þ
�2










þ1

0

¼ �2�i
ei�jk0jðiþ �jk0jÞ

�2
:

Thus, we derive the potential of interaction of the electric dipole with a plane:

Vðl; aÞ ¼ a2Q1ðlÞ þ aQ2ðlÞ
128�2½1þ a2�l3 ; (24)

where

Q1ðlÞ ¼ �
Z þ1

�1
e2iljk0j

�
ð1� 2iljk0j � 4l2jk0j2Þ

X2
i¼1

piðk0Þp�
i ðk0Þ þ 2ð1� 2iljk0jÞp3ðk0Þp�

3ðk0Þ
�
dk0; (25)

Q2ðlÞ ¼ i
Z þ1

�1
e2iljk0jð1� 2iljk0jÞð�2ljk0jÞ"ðk0Þ½ ~pðk0Þ � ~p�ðk0Þ�3dk0; (26)

and here "ðk0Þ ¼ k0=jk0j. The functions Q1, Q2 can also be written as integrals over the positive frequencies

Q1ðlÞ ¼ �2
Z 1

0
e2il!

�
ð1� 2il!� 4l2!2ÞX2

i¼1

pið!Þp�
i ð!Þ þ 2ð1� 2il!Þp3ð!Þp�

3ð!Þ
�
d!; (27)

Q2ðlÞ ¼ 2
Z 1

0
e2il!ð1� 2il!Þð�2il!Þ½ ~pð!Þ � ~p�ð!Þ�3d!: (28)

By making use of (6), (17), (19), and (24) and rotating the contour to the imaginary axis we obtain the ground state energy
of a neutral atom in the presence of a plane with Chern-Simons interaction:
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E ¼ � 1

64�2l3
a2

1þ a2

�Z þ1

0
d!e�2!l2ð1þ 2!lÞ�33ði!Þ þ

Z þ1

0
d!e�2!lð1þ 2!lþ 4!2l2Þð�11ði!Þ þ �22ði!ÞÞ

	

þ 1

64�2l2
a

1þ a2

Z þ1

0
d!e�2!l2!ð1þ 2!lÞð�12ði!Þ � �21ði!ÞÞ: (29)

It is worth discussing physical consequences following
from (29). The expression (29) yields the well known
Casimir-Polder potential [1] in the limit a ! þ1. The
part of the formula (29) with diagonal matrix elements of
matrix �jkði!Þ is equal a2=ð1þ a2Þ times the Casimir-
Polder interaction of a neutral atom with a perfectly con-
ducting plane. The last line of the formula (29) is odd in a
and contains the antisymmetric combination of off-
diagonal elements of the atomic polarizability. When one
can neglect the contribution of off-diagonal elements of the
atomic polarizability (see a discussion below) the Casimir-
Polder interaction of an atom with a Chern-Simons plane is
a fraction a2=ð1þ a2Þ of the corresponding Casimir-
Polder interaction with a perfectly conducting plane.

It is interesting to analyze the contribution from the off-
diagonal elements of the atomic polarizability to the po-
tential (29) in more detail. The atomic polarizability can be
expressed in terms of dipole matrix elements [30]:

�jkð!Þ ¼ X
n

�h0jdjjnihnjdkj0i
!n0 �!� i�

þ h0jdkjnihnjdjj0i
!n0 þ!� i�

	
; (30)

!n0 is a transition energy between the excited state jni of
the atom and its ground state j0i, ~d is a dipole moment
operator in the Schrodinger representation. The symmetric
�S
jkð!Þ and antisymmetric �A

jkð!Þ parts of �jkð!Þ ¼
�S
jkð!Þ þ �A

jkð!Þ can be written as follows:

�S
jkð!Þ ¼ X

n

2!n0 ReM
n
jk

!2
n0 �!2

¼ �S
kjð!Þ; (31)

�A
jkð!Þ ¼ X

n

2i! ImMn
jk

!2
n0 �!2

¼ ��A
kjð!Þ; (32)

Mn
jk � h0jdjjnihnjdkj0i: (33)

From (32) and (33) it follows that the contribution of
�A
jkð!Þ to the potential (29) is different from zero when

matrix elements of a dipole moment operator have imagi-
nary parts.
Consider the system with a nonzero �A

jkð!Þ and assume

for simplicity the one mode model of the atomic polar-
izability with a characteristic frequency !10. Then
�A
12ð!Þ ¼ i!C2=ð2ð!2

10 �!2ÞÞ, where C2 is a real con-

stant. In the limit of large separations !10l � 1 we obtain
from (29)

Ej!01l�1 ¼ � a2

1þ a2
�11ð0Þ þ �22ð0Þ þ �33ð0Þ

32�2l4

� a

1þ a2
C2

32�2!2
10l

5
: (34)

At large enough separations the first term in (34) always
dominates. Assuming for simplicity �11ð0Þ ¼ �22ð0Þ ¼
�33ð0Þ ¼ C1=ð3!10Þ, C1 is a positive constant, one can

see from (34) that if the condition jajC1

jC2j < 1 holds then for

separations l & jC2j
jajC1!10

the term with off-diagonal elements

of the atomic polarizability [the second term in (34)]
dominates.
In the limit of short separations (b � !10l � 1) we

obtain from (29)

Ej!01l�1 ¼ � 1

64�2l3
a2

1þ a2

Z þ1

0
d!ð�11ði!Þ þ �22ði!Þ þ 2�33ði!ÞÞ � C2

32�2l3
a

1þ a2

�
1� �

2
bþ 2b2 � �

2
b3 þ . . .

	

’ � 1

32�2l3

�
a2

1þ a2
C1

�

3
þ a

1þ a2
C2

	
for b ! 0: (35)

From (35) it follows that if the condition jajC1

jC2j
�
3 < 1 holds,

then the term with off-diagonal elements of the atomic
polarizability dominates in (29) in the limit of short sepa-
rations. Thus, if we consider the one mode model for the

atomic polarizability and the criterion jaj & jC2j
C1

holds, then

the antisymmetric part of the atomic polarizability plays a
dominant role in the interaction of the atom with the
Chern-Simons plane.

V. CONCLUSIONS

In the framework of quantum electrodynamics we con-
sider a model with the Chern-Simons action on a two-
dimensional plane having one dimensionless parameter
a, which describes properties of the material. The formula
(29) for the energy of interaction of a neutral atom (mole-
cule) with fluctuations of vacuum of the photon field in the
presence of a two-dimensional plane with Chern-Simons
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interaction is derived. In the limiting case a ! þ1 the
result coincides with the Casimir-Polder result for the
energy of interaction of a neutral atom with a perfectly
conducting plane. The essential feature of the result (29) is
the term depending on the antisymmetric part of a dipole
correlation function for finite values of the parameter a, we
derive a criterion of its dominance in terms of imaginary
and real parts of dipole matrix elements of the atom and the
parameter a of the Chern-Simons surface term.

We expect quantum Hall effect systems and graphene to
be the most promising known materials for the measure-
ments of the potential derived in this paper. The Casimir-
Polder effect provides a recipe for direct measurements of
the parameter a in such materials, which can be relevant

for better understanding of quantum dynamics in these
systems. The measurements of the antisymmetric part of
the atomic polarizability by means of the Casimir-Polder
effect can be an independent possibility for study of anti-
symmetric parts of atomic polarizabilities in various
atomic and molecular systems.
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