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Spherically symmetric oscillatons (also referred to as oscillating soliton stars) i.e. gravitationally bound

oscillating scalar lumps are considered in theories containing a massive self-interacting real scalar field

coupled to Einstein’s gravity in 1þD dimensional spacetimes. Oscillations are known to decay by

emitting scalar radiation with a characteristic time scale which is, however, extremely long, it can be

comparable even to the lifetime of our universe. In the limit when the central density (or amplitude) of the

oscillaton tends to zero (small-amplitude limit) a method is introduced to compute the transcendentally

small amplitude of the outgoing waves. The results are illustrated in detail on the simplest case, a single

massive free scalar field coupled to gravity.
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I. INTRODUCTION

Numerical simulations of Seidel and Suen [1] have
revealed that spatially localized, extremely long living,
oscillating configurations evolve from quite general initial
data in the spherically symmetric sector of Einstein’s grav-
ity coupled to a a free, massive real Klein-Gordon field. For
example, they observed that initially Gaussian pulses
evolve quickly into configurations which appear to be
time-periodic. It has been already noted in Ref. [1], that
the resulting objects may not be strictly time-periodic,
rather they may evolve on a secular time scale many orders
of magnitude longer than the observed oscillation period.
These interesting objects were first baptized ‘‘oscillating
soliton stars’’ in Ref. [1], but somewhat later the same
objects have been referred to as ‘‘oscillatons’’ by the
same authors [2]. This latter name has been by now widely
adopted, and we shall also stick to its usage throughout this
paper. It has been observed in the numerical simulations of
Ref. [1] that oscillatons are stable during the time evolu-
tion. Moreover it has been argued in Ref. [2] that oscil-
latons do form in physical processes through a
dissipationless gravitational cooling mechanism, making
them of great physical importance. For example oscillatons
would be good candidates for dark matter in our Universe.

On the other hand, stimulated by the seminal work of
Dashen, Hasslacher and Neveu in the one-dimensional
�4-theory [3], numerical simulations have revealed that
in an impressive number of scalar field theories spatially
localized structures—oscillons—form from generic initial
data which become very closely time periodic, and live for
very long times [4–12]. These objects oscillate nearly
periodically in time, resembling ‘‘true’’ (i.e. time-periodic)
breathers. An oscillon possesses a ‘‘radiative’’ tail outside
of its core region where its energy is leaking continuously

in form of (scalar) radiation. Therefore a simple approxi-
mate physical picture of a sufficiently small-amplitude
oscillon is the that of a true breather whose frequency is
increasing on a secular time scale since the amplitude of
the outgoing radiation is much smaller than that of the
core. It has been shown in Refs. [13,14], that slowly
radiating oscillons can be well described by a special class
of exactly time-periodic ’’quasibreathers’’ (QB). Being
time periodic, QBs are easier to describe mathematically
by ordinary Fourier analysis than the long time asymptotics
of oscillons. AQB possesses a localized core in space (just
like true breathers) which approximates that of the corre-
sponding oscillon very well, but in addition it has a stand-
ing wave tail whose amplitude is minimized. This is a
physically motivated condition, which heuristically singles
out ‘‘the’’ solution approximating a true breather as well as
possible, for which this amplitude would be identically
zero. The amplitude of the standing wave tail of a QB is
closely related to that of the oscillon radiation, therefore its
computation is of prime interest. Roughly speaking ‘‘half’’
of the standing wave tail corresponds to incoming radiation
from spatial infinity. It is the incoming radiation that
maintains the time periodicity of the QBs by compensating
the energy loss through the outgoing waves. In a series of
papers [14–16] a method has been developed to compute
the leading part of the exponentially suppressed tail am-
plitude of QBs, in a large class of scalar theories in various
dimensions, in the limit when the QB core amplitude is
small. Although oscillons continuously loose energy
through radiation, many of them are remarkably stable.
The longevity and the ubiquity of oscillons make them of
potentially great physical interest [17–21]. Quite impor-
tantly oscillons also appear in the course of time evolution
when other fields, e.g. vector fields are present [22–24].
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There is little doubt that oscillons and oscillatons are
closely related objects.

The basic physical mechanism for the anti-intuitively
slow radiation of oscillons is that the lowest frequency
mode of the scalar field is trapped below the mass threshold
and only the higher frequency modes are coupled to the
continuum.

In this paper we generalize the method of Refs. [14–16]
to compute the mass loss of spherically symmetric oscil-
lations induced by scalar radiation in the limit of small
oscillaton amplitudes, ", in 1þD dimensional spacetimes.
These methods have been succesfully applied to
D-dimensional scalar field theories coupled to a dilaton
field [25]. Numerous similarities exist between coupling a
theory to a dilaton field and to gravitation: the field con-
figurations are of "2 order and the lowest order equations
determining the profiles are the Schrödinger-Newton equa-
tions. The stability pattern is also analogous. Despite these
similarities between the dilaton and the gravitational the-
ory there are some technical and even some conceptual
differences. Since there is no timelike Killing vector nei-
ther for oscillatons nor for the corresponding QBs, already
the very definition of mass and mass loss is less obvious
than in flat spacetime. Another conceptual issue is that the
spacetime of a time-periodic QB is not asymptotically flat,
which is related to the fact that the ‘‘total mass’’ of a QB is
infinite. In the case of spherical symmetry considered in
this paper a suitable local mass function is the Misner-
Sharp energy and the mass loss can be defined with aid of
the Kodama vector. The issue of the precise asymptotics of
spacetimes can be sidestepped in the limit " ! 0 by con-
sidering only a restricted, approximatively flat spacetime
region containing the core of the QB (having a size of order
Oð1="Þ) and part of its oscillating tail. We find that to
leading order in the " expansion the oscillaton core is
determined by the D-dimensional analogues of the
Schrödinger-Newton equations [26–30] independently of
the self-interaction potential. It turns out that exponentially
localized oscillatons exist for 2<D< 6. These findings
show a striking similarity to dilaton-scalar theories as
found in Ref. [25]. In the case of spherically symmetric
oscillatons no gravitational radiation is expected due to
Birkhoff’s theorem. The mass loss of spherically symmet-
ric oscillatons is entirely due to scalar radiation.

The following simple formula gives the mass loss of a
small-amplitude oscillaton in D spatial dimensions:

dM

dt
¼ � c1

mD�3"D�1
exp

�
� c2

"

�
; (1)

where m denotes the mass of the scalar field, c1 is a
D-dependent constant, while c2 depends on both D and
the self-interaction scalar potential. The numerical values
of c1, c2 in the Einstein-Klein-Gordon (EKG) theory for
spatial dimensions D ¼ 3, 4, 5 are given in Table VI. We

also compute and tabulate the most important physical
properties of oscillatons in the EKG theory (their mass as
a function of time, their radii). We would like to stress, that
the method is applicable for oscillatons in scalar theories
with any self-interaction potential developable into power
series.
In the seminal work of Don N. Page [31] both the

classical and quantum decay rate of oscillatons has been
considered for the case of free massive scalars in the EKG
theory (for D ¼ 3). We agree with the overall qualitative
picture of the oscillaton’s mass loss found in Ref. [31],
however, there are also some differences in the quantitative
results. For example, the amplitude of the outgoing wave
(related to

ffiffiffiffiffi
c1

p
) found by our method differs significantly

from that of Ref. [31]. The main source of this discrepancy
is due to the fact that this amplitude is given by an infinite
series in the " expansion, where all terms contribute by the
same order, whereas in the estimate of Ref. [31] only the
lowest order term in this series has been used. Our methods
which are based on the work of Segur-Kruskal [32] avoid
this difficulty altogether, moreover for the class of self-
interaction potentials containing only even powers of the
scalar field, �, the radiation amplitude can be computed
analytically using Borel summation.
We now give a lightning review on previous results

scattered in the literature on oscillatons in 3þ 1 dimen-
sions. For a given scalar field mass, m, there is a one
parameter family of oscillatons, parametrized, for ex-
ample, by the central amplitude of the field, �c. As �c

increases from small values, the mass of the oscillaton,M,
is getting larger, while the radius of the configuration
decreases. For a critical value of the central amplitude,
�crit, a maximal mass configuration is reached. Oscillatons
with central amplitudes �c >�crit are unstable [1]. This
behavior is both qualitatively and quantitatively very simi-
lar to that of boson stars [26,33,34], and also to the behav-
ior of white dwarfs and neutron stars [35]. For reviews of
the vast literature on boson stars see, for example,
Refs. [36,37]. In Refs. [38,39] a one-parameter family of
oscillaton-type solutions in an Einstein-scalar theory with
two massive, real scalar fields has been presented, which
are essentially transitional states between boson stars and
oscillatons.
The interaction of weak gravity axion field oscillatons

with white dwarfs and neutron stars have been discussed in
[40,41], proposing a possible mechanism for gamma ray
bursts [42]. Since for very low mass scalar fields oscilla-
tons may be extremely heavy, it has been suggested that
they may be the central object of galaxies [43], or form the
dark matter galactic halos [44–50].
Qualitatively good results for various properties of

oscillatons has been obtained by Ureña-López [51],
truncating the Fourier mode decomposition of the field
equations at as low order as cosð2!tÞ, where ! is the
fundamental frequency. Then the space and time depen-
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dence of the scalar field separates as �ðt; rÞ ¼ �1ðrÞ�
cosð!tÞ. Oscillatons with nontrivial self-interaction poten-
tials have also been studied in [51], indicating that simi-
larly to boson stars, the maximal mass can be significantly
larger than in the Klein-Gordon case.

The Fourier mode equations have been studied in [52] up
to orders cosð10!tÞ. The obtained value of the maximal
mass by this higher order truncation is 0:607=m in Planck
units. For small-amplitude nearly Minkowskian configura-
tions spatial derivatives are also small, and in Ref. [52]
(and independently in [53]) it has been demonstrated that
such nearly flat oscillatons can be described by a pair of
coupled differential equations, the so-called time indepen-
dent the Schrödinger-Newton equations [26–30]. These
equations also describe the weak gravity limit of boson
stars. For quantum mechanical motivations leading to the
Schrödinger-Newton equations see [54,55].

The time evolution of perturbed oscillatons has been
investigated in detail by [56]. For each mass smaller than
the maximal oscillaton mass there are two oscillaton con-
figurations. The one with the larger radius is a stable S-
branch oscillaton, and the other is an unstable U-branch
oscillaton. Moderately perturbed S-branch oscillatons vi-
brate with a low frequency corresponding to a quasinormal
mode. Perturbed U-branch oscillatons collapse to black
holes if the perturbation increases their mass, otherwise
they migrate to an S-branch oscillaton. Actually, U-branch
oscillatons turn out to be the critical solutions for type I
critical collapse of massive scalar fields [57]. Cor-
responding apparently periodic objects also form in the
critical collapse of massive vector fields [58].

There are also excited state oscillatons, indexed by the
nodes of the scalar field. The instability and the decay of
excited state oscillatons into black holes or S-branch os-
cillatons is described in [59]. The evolution of oscillatons
on a full 3D grid has been also performed in [59], calculat-
ing the emitted gravitational radiation. Since fðRÞ gravity
theories are equivalent to ordinary general relativity
coupled to a real scalar field, oscillatons naturally form
in these theories as well [60]. The geodesics around oscil-
latons has been investigated in [61].

The plan of the paper is the following. In Sec. II the
general formalism concerning a classical real scalar field
coupled to gravitation in D dimensional, spherically sym-
metric spacetimes is set up. In subsection II C the coupled
Einstein-scalar equations are explicited in a spatially con-
formally flat coordinate system. In Sec. III the small-
amplitude expansion is presented and is carried out in
detail. In subsection III C it is shown that in leading order
one obtains the Schrödinger-Newton eqs. inD dimensions.
In subsection III D the next to leading order results are
given. Subsection III E contains an analysis of the singu-
larities in the complexified radial variable. In Sec. IV
the proper mass resp. the total mass of the QB core is
evaluated in subsection IVA resp. subsection IVB. In

subsection IVD a conjecture for a criterion of oscillaton
stability is formulated. In Sec. V the Fourier analysis of the
field equations is related to the small-amplitude expansion,
and the amplitude of the standing wave tail of the QB is
determined using Borel summation techniques. In
subsection VF the mass loss rate of oscillatons in the
EKG theory is computed for D ¼ 3, 4, 5 and for various
values of the mass of the scalar field.

II. SCALAR FIELD ON CURVED BACKGROUND

A. Field equations

We consider a real scalar field � with a self-interaction
potential Uð�Þ in a Dþ 1 dimensional curved spacetime
with metric gab. We use Planck units withG ¼ c ¼ @ ¼ 1.
For a free field with mass m the potential is Uð�Þ ¼
m2�2=2. The total Lagrangian density is

L ¼ LG þ 16�LM; (2)

where the Einstein Lagrangian density is LG ¼ ffiffiffiffiffiffiffi�g
p

R,
and the Lagrangian density belonging to the scalar field is

LM ¼ � ffiffiffiffiffiffiffi�g
p ð12�;a�

;a þUð�ÞÞ: (3)

Variation of the action with respect to � yields the wave
equation

gab�;ab �U0ð�Þ ¼ 0; (4)

while variation with respect to gab yields Einstein equa-
tions

Gab ¼ 8�Tab; (5)

where the stress-energy tensor is

Tab ¼ �;a�;b � gab

�
1

2
�;c�

;c þUð�Þ
�
: (6)

If D ¼ 1 then, by definition, the Einstein tensor is trace-
less, and from the trace of the Einstein equations it follows
that Uð�Þ ¼ 0. Hence we assume that D> 1.
We shall assume that the self-interaction potential,

Uð�Þ, has a minimum Uð�Þ ¼ 0 at � ¼ 0, and expand
its derivative as

U0ð�Þ ¼ X1
k¼1

uk�
k; (7)

where uk are constants. In order to get rid of the 8� factors
in the equations we introduce a rescaled scalar field and
potential by

� ¼ ffiffiffiffiffiffiffi
8�

p
�; �Uð�Þ ¼ 8�Uð�Þ: (8)

Then

�U 0ð�Þ ¼ X1
k¼1

vk�
k; (9)

with
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vk ¼ uk

ð8�Þðk�1Þ=2 : (10)

The mass of the field is m � ffiffiffiffiffi
u1

p ¼ ffiffiffiffiffiffi
v1

p
. If the pair �ðxcÞ

and gabðxcÞ solves the field equations with a potential
�Uð�Þ, then �̂ðxcÞ ¼ �ð�xcÞ and ĝabðxcÞ ¼ gabð�xcÞ, for
any positive constant �, is a solution with a rescaled
potential �2 �Uð�Þ. It is sufficient to study the problem
with potentials satisfying m2 ¼ u1 ¼ v1 ¼ 1, since the
solutions corresponding to an arbitrary potential can be
obtained from the solutions with an appropriate potential
with m ¼ 1 by applying the transformation

�ðxcÞ ! �ðmxcÞ; gabðxcÞ ! gabðmxcÞ: (11)

To simplify the expressions, unless explicitly stated, in the
following we assume m ¼ 1.

B. Spherically symmetricDþ 1 dimensional spacetime

We consider a spherically symmetricDþ 1 dimensional
spacetime with coordinates x� ¼ ðt; r; �1; . . . ; �D�1Þ. The
metric can be chosen diagonal with components

gtt ¼ �A; grr ¼ B; g�1�1 ¼ C;

g�n�n ¼ C
Yn�1

k¼1

sin2�k;
(12)

where A, B, and C are functions of temporal coordinate t
and radial coordinate r. The nonvanishing components of
the Einstein tensor and the form of the wave equation are
given in Appendix A.

A natural radius function, r̂, can be defined in terms of
the area of the symmetry spheres in general spherically
symmetric spacetimes. In the metric (12) it is simply

r̂ ¼ ffiffiffiffi
C

p
: (13)

The Kodama vector [62,63] is defined then by

Ka ¼ �abr̂;b; (14)

where �ab is the volume form in the ðt; rÞ plane. Choosing
the orientation such that �rt ¼

ffiffiffiffiffiffiffi
AB

p
makes Ka future

pointing, with nonvanishing components

Kt ¼ r̂;rffiffiffiffiffiffiffi
AB

p ; Kr ¼ � r̂;tffiffiffiffiffiffiffi
AB

p : (15)

It can be checked that, in general, the Kodama vector is
divergence free, Ka

;a ¼ 0. Since contracting with the

Einstein tensor, GabKa;b ¼ 0, the current

Ja ¼ TabK
b (16)

is also divergence free, Ja;a ¼ 0, it defines a conserved

charge. Integrating on a constant t hypersurface with a
future oriented unit normal vector na, the conserved charge
is

E ¼ 2�D=2

�ðD2Þ
Z r

0
r̂D�1

ffiffiffiffi
B

p
naJadr

¼ 2�D=2

�ðD2Þ
Z r

0

r̂D�1

A
ðTttr̂;r � Ttrr̂;tÞdr: (17)

It is possible to show [62,63], that E agrees with the
Misner-Sharp energy (or local mass) function m̂ [64],
which can be defined for arbitrary dimensions by

m̂ ¼ ðD� 1Þ�D=2

8��ðD2Þ
r̂D�2ð1� gabr̂;ar̂;bÞ: (18)

It can be checked by a lengthy calculation, that the deriva-
tive of the mass function is

m̂ ;a ¼ � 2�D=2r̂D�1

�ðD2Þ
�abJ

b: (19)

For the radial derivative follows that

m̂ ;r ¼ 2�D=2r̂D�1

�ðD2ÞA
ðTttr̂;r � Ttrr̂;tÞ; (20)

which, comparing with (17), gives E ¼ m̂. Since for large r
the function m̂ tends to the total mass, this relation will be
important when calculating the mass loss rate caused by
the scalar radiation in Section VF. The time derivative of
the mass function is

m̂ ;t ¼ 2�D=2r̂D�1

�ðD2ÞB
ðTrtr̂;r � Trrr̂;tÞ: (21)

This equation is according to the expectation, that, because
of the spherical symmetry, the mass loss is caused only by
the outward energy current of the massive scalar field. If at
large distances the metric becomes asymptotically
Minkowskian, A ¼ B ¼ 1, C ¼ r2 and r̂ ¼ r, then using
(6) and (8),

m̂ ;t ¼ 2�D=2rD�1

�ðD2Þ
�;t�;r ¼ 2�D=2rD�1

8��ðD2Þ
�;t�;r: (22)

C. Spatially conformally flat coordinate system

The diffeomorphism freedom of the general spherically
symmetric time-dependent metric form (12) can be fixed in
various ways. The most obvious choice is the use of
Schwarzschild area coordinates by setting C ¼ r2.
However, as it was pointed out by Don N. Page in [31],
for the oscillaton problem it is more instructive to use the
spatially conformally flat coordinate system defined by

C ¼ r2B; (23)

even if some expressions are becoming longer by this
choice. As we will see in Sec. III and in Appendix B, inside
the oscillaton the spheres described by constant
Schwarzschild r coordinates are oscillating with much
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larger amplitude than the constant r spheres in the con-
formally flat coordinate system. In both coordinates, when
the functions A and B tend to 1, the spacetime approaches
the flat Minkowskian metric.

In the spatially conformally flat coordinate system the
Einstein equations take the form

ðD� 1Þ
�
D

4B2
ðB;tÞ2 � A

rD�1BðDþ2Þ=4

�
rD�1B;r

Bð6�DÞ=4

�
;r

�

¼ ð�;tÞ2 þ A

B
ð�;rÞ2 þ 2A �Uð�Þ; (24)

ðD� 1Þ
�ðD� 2Þðr2BÞ;r
4r4A2=ðD�2ÞB2

ðr2A2=ðD�2ÞBÞ;r

� 1

A1=2BðD=4Þ�1

�
BðD=4Þ�1B;t

A1=2

�
;t
�D� 2

r2

�

¼ ð�;rÞ2 þ B

A
ð�;tÞ2 � 2B �Uð�Þ; (25)

�D� 1

2
A1=2

�
B;t

A1=2B

�
;r
¼ �;t�;r; (26)

rB

A1=2

�
A;r

rA1=2B

�
;r
þ ðD� 2ÞrB1=2

�
B;r

rB3=2

�
;r
¼ 2ð�;rÞ2:

(27)

The right-hand sides are equal to 2Gtt, 2Grr, Gtr, and
2ðG�1�1=r

2 �GrrÞ, respectively. The wave equation is then
�;rr

B
��;tt

A
þ �;r

2r2D�2ABD�1
ðr2D�2ABD�2Þ;r

� �;t

2BD

�
BD

A

�
;t
� �U0ð�Þ ¼ 0: (28)

III. SMALL-AMPLITUDE EXPANSION

The small-amplitude expansion procedure has been ap-
plied successfully to describe the core region of one-
dimensional flat background oscillons in �4 scalar theory
[3,32,65]. Later it has been generalized for Dþ 1 dimen-
sional spherically symmetric systems in [14], and to a
scalar-dilaton system in [25]. In this section we generalize
the method for the case when the scalar field is coupled to
gravity.

A. Choice of coordinates

We are looking for spatially localized bounded solutions
of the field equations (5) for which � is small and the
metric is close to flat Minkowskian. We use the spatially
conformally flat coordinate system defined by (23). It turns
out, that under this approximation, all configurations that
remain bounded as time passes are necessarily periodically
oscillating in time. We expect that similarly to flat back-
ground oscillons, the smaller the amplitude of an oscillaton

is, the larger its spatial extent becomes. Numerical simu-
lation of oscillatons clearly support this expectation.
Therefore, we introduce a new radial coordinate � by

� ¼ "r; (29)

where " denotes the small-amplitude parameter. We ex-
pand � and the metric functions in powers of " as

� ¼ X1
k¼1

�2k�2k; (30)

A ¼ 1þ X1
k¼1

�2kA2k; (31)

B ¼ 1þ X1
k¼1

�2kB2k: (32)

Since we intend to use asymptotically Minkowskian coor-
dinates, where far from the oscillaton tmeasures the proper
time and r the radial distances, we look for functions �2k,
A2k, and B2k that tend to zero when � ! 1. One could
initially include odd powers of " into the expansions (30)–
(32), however, it can be shown by the method presented
below, that the coefficients of those terms necessarily
vanish when we are looking for configurations that remain
bounded in time.
The frequency of the oscillaton also depends on its

amplitude. Similarly to the flat background case we expect
that the smaller the amplitude is, the closer the frequency
becomes to the threshold m ¼ 1. Numerical simulations
also show this. Hence we introduce a rescaled time coor-
dinate � by

� ¼ !t: (33)

and expand the square of the " dependent factor ! as

!2 ¼ 1þ X1
k¼1

"2k!2k: (34)

It is possible to allow odd powers of " into the expansion of
!2, but the coefficients of those terms turn out to be zero
when solving the equations arising from the small-
amplitude expansion. There is a considerable freedom in
choosing different parametrizations of the small-amplitude
states, changing the actual form of the function !. The
physical parameter is not " but the frequency of the peri-
odic states that will be given by !. Similarly to the dilaton
model in [25], we will show, that for spatial dimensions
2<D< 6 the parametrization of the small-amplitude

states can be fixed by setting ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
.

B. Leading order results

The field equations we solve are the Einstein equations
(24)–(27), together with the wave equation (28), using the
spatially conformally flat coordinate system C ¼ r2B. The
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results of the corresponding calculations in Schwarzschild
area coordinates C ¼ r2 are presented in Appendix B.
Since we look for spatially slowly varying configurations
with an " dependent frequency, we apply the " expansion
in � and � coordinates. This can be achieved by replacing
the time and space derivatives as

@

@t
! !

@

@�
;

@

@r
! "

@

@�
; (35)

and substituting r ¼ �=".
From the "2 components of the field equations follows

that

�2 ¼ p2 cosð�þ 	Þ; B2 ¼ b2; (36)

where three new functions, p2, 	 and b2 are introduced,
depending only on �. From the "4 part of (26) it follows
that 	 is a constant. Then by a shift in the time coordinate
we set

	 ¼ 0: (37)

This shows that the scalar field oscillates simultaneously,
with the same phase at all radii.

The "4 component of the field equations yield that

A2 ¼ a2; (38)

�4 ¼ p4 cos�þ v2p
2
2

6
½cosð2�Þ � 3�; (39)

B4 ¼ b4 � p2
2

4ðD� 1Þ cosð2�Þ; (40)

where a2, p4, and b4 are three new functions of �. If D �
2, from the "4 equations also follows that

b2 ¼ a2
2�D

; (41)

and that the functions a2 and p2 are determined by the
coupled differential equations

d2a2
d�2

þD� 1

�

da2
d�

¼ D� 2

D� 1
p2
2; (42)

d2p2

d�2
þD� 1

�

dp2

d�
¼ p2ða2 �!2Þ: (43)

If D ¼ 2 then a2 ¼ 0, and there are no nontrivial localized
regular solutions for b2 and p2, so we assume D> 2 from
now. We note that at all orders sin� terms can be absorbed
by a small shift in the time coordinate. After this, no
sinðk�Þ terms appear in the expansion, resulting in the
time reflection symmetry at � ¼ 0.

Since we have already set m2 ¼ u1 ¼ v1 ¼ 1, Eqs. (42)
and (43) do not depend on the coefficients vk of the
potential �Uð�Þ. To order "2 the functions �, A and B are
the same for any potential. This means that the leading

order small-amplitude behavior of oscillatons is always the
same as for the Klein-Gordon case.

C. Schrödinger-Newton equations

Introducing the functions s and S by

s ¼ !2 � a2; S ¼ p2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

D� 1

s
; (44)

Eqs. (42) and (43) can be written into the form which is
called the time-independent Schrödinger-Newton (SN)
equations in the literature [26–30]:

d2S

d�2
þD� 1

�

dS

d�
þ sS ¼ 0; (45)

d2s

d�2
þD� 1

�

ds

d�
þ S2 ¼ 0: (46)

Equations (45) and (46) have the scaling invariance

ðSð�Þ; sð�ÞÞ ! ð
2Sð
�Þ; 
2sð
�ÞÞ: (47)

If 2<D< 6 the SN equations have a family of solutions
with S tending to zero exponentially as � ! 1, and s
tending to a constant s0 < 0 as

s � s0 þ s1�
2�D: (48)

The solutions are indexed by the number of nodes of S. The
nodeless solution corresponds to the lowest energy and
most stable oscillaton. We use the scaling freedom (47)
to make the nodeless solution unique by setting s0 ¼
lim�!1s ¼ �1. At the same time we change the " pa-

rametrization by requiring

!2 ¼ �1 for 2<D< 6; (49)

ensuring that the limiting value of a2 vanishes. Then for
large �

a2 � �s1�
2�D for 2<D< 6; (50)

with only exponentially decaying corrections. Going to
higher orders, it can be shown that one can always make
the choice !i ¼ 0 for i � 3, thereby fixing the " parame-
trization, and setting

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
for 2<D< 6: (51)

ForD ¼ 6 the explicit form of the asymptotically decaying
solutions are known

s ¼ �S ¼ 24�2

ð1þ �2�2Þ2 for D ¼ 6; (52)

where � is any constant. In this case, since both s and S
tend to zero at infinity, we have no method yet to fix the
value of � in (52). Moreover, in order to ensure that ’
tends to zero at infinity we have to set
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!2 ¼ 0 for D ¼ 6: (53)

For D> 6 there are no solutions of the SN equations
representing localized configurations [66].

Motivated by the asymptotic behavior of s, ifD � 2 it is
useful to introduce the variables

� ¼ �D�1

2�D

ds

d�
; 
 ¼ s� �2�D�: (54)

In 2<D< 6 dimensions these variables tend exponen-
tially to the earlier introduced constants

lim
�!1� ¼ s1; lim

�!1
 ¼ s0: (55)

Then the SN equations can be written into the equivalent
form

d�

d�
þ �D�1

2�D
S2 ¼ 0; (56)

d


d�
þ �

D� 2
S2 ¼ 0; (57)

d2S

d�2
þD� 1

�

dS

d�
þ ð
þ �2�D�ÞS ¼ 0; (58)

which is more appropriate for finding high precision nu-
merical solutions. Equation (56) will turn out to be useful
when integrating the mass-energy density in Sec. IVA in
order to determine the proper mass.

D. Higher order expansion

From the "6 components of the field equations follows
the time dependence of A4,

A4 ¼ að0Þ4 þ að2Þ4 cosð2�Þ; (59)

where að0Þ4 and að2Þ4 are functions of �. The functions p4 and

að0Þ4 are determined by the coupled equations

d2að0Þ4

d�2
þD� 1

�

dað0Þ4

d�
¼ 2p2p4ðD� 2Þ

D� 1
þ

�
da2
d�

�
2

þ!2p
2
2 �

2p2
2a2

D� 1
; (60)

d2p4

d�2
þD� 1

�

dp4

d�
¼ p4ða2 �!2Þ þ ðað0Þ4 �!4Þp2

� a2p2ðD� 1Þða2 �!2Þ
D� 2

� Dp3
2

8ðD� 1Þ �
�
5

6
v2
2 �

3

4
v3

�
p3
2:

(61)

We look for the unique solution for which both að0Þ4 and p4

tend to zero as � ! 1. For 2<D< 6 the function p4 goes

to zero exponentially, while for large �

að0Þ4 � 1

2
s21�

4�2D þ s2�
2�D þ s3; (62)

where s1 is defined in (48), and s2 and s3 are some con-

stants. If að0Þ4 and p4 are solutions of (60) and (61), then for

any constant c

�a ð0Þ
4 ¼ að0Þ4 þ c

�
2ða2 �!2Þ þ �

da2
d�

�
; (63)

�p 4 ¼ p4 þ c

�
2p2 þ �

dp2

d�

�
; (64)

are also solutions. This family of solutions is generated by
the scaling freedom (47) of the SN equations. If we have
any solution of (60) and (61) then by choosing c appropri-
ately we can get another solution for which s3 ¼ 0 in (62).
The equation for b4 is

db4
d�

¼ 1

2�D

dað0Þ4

d�
þ 1

4ðD� 2Þ2
da2
d�

�
�
�
da2
d�

þ 4ðD� 1Þa2
�

þ �

2ðD� 1ÞðD� 2Þ
��

dp2

d�

�
2 �p2

2ða2 �!2Þ
�
: (65)

For large � the function b4 tends to zero as

b4 � 6�D

8ðD� 2Þ2 s
2
1�

4�2D þ s2
2�D

�2�D: (66)

The cosð2�Þ part of A4 is determined by

d2að2Þ4

d�2
� 1

�

dað2Þ4

d�
¼ ðD� 2Þða2 �!2Þp2

2

2ðD� 1Þ
� D

2ðD� 1Þ
dp2

d�

�
dp2

d�
þD� 2

�
p2

�
:

(67)

We remind the reader, that for 2<D< 6 the choice !2 ¼
�1, !4 ¼ 0 is natural, while for D ¼ 6 necessarily !2 ¼
0. For a Klein-Gordon field in D ¼ 6 the only nonvanish-
ing coefficient is !4 ¼ �1.
Summarizing the results, the scalar field and the metric

components up to "4 order are

� ¼ "2p2 cos�þ "4
�
p4 cos�þ v2p

2
2

6
½cosð2�Þ � 3�

�
þOð"6Þ; (68)

A ¼ 1þ "2a2 þ "4½að0Þ4 þ að2Þ4 cosð2�Þ� þOð"6Þ; (69)
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B ¼ 1� "2
a2

D� 2
þ "4

�
b4 � p2

2

4ðD� 1Þ cosð2�Þ
�

þOð"6Þ: (70)

Going to higher orders, the expressions get rather com-
plicated. However, it can be seen that for symmetric po-
tentials, when v2k ¼ 0, the scalar field � contains only
cosðk�Þ components with odd k, while A and B only
contains even Fourier components.

Some of the higher order expressions simplifies consid-
erably when considering symmetric potentials with v2k ¼
0. Because the first radiating mode proportional to cosð3�Þ
emerges at "6 order in � in symmetric potentials, we
present its higher order expression for the symmetric case

� ¼ "2p2 cos�þ "4p4 cos�þ "6p6 cos�

þ "6
�

Dp3
2

64ðD� 1Þ þ
v3p

3
2

32
þ p2a

ð2Þ
4

8

�
cosð3�Þ

þOð"8Þ; (71)

where p6 is a function of � determined by lengthy differ-
ential equations arising at higher orders.

For the Klein-Gordon case in D ¼ 3 spatial dimensions

we plot the numerically obtained functions p2, a2, p4, a
ð0Þ
4 ,

að2Þ4 and b4 on Figs. 1 and 2.
Equations (68)–(70) determine a one-parameter family

of oscillating configurations depending on the parameter ".
This family solves the field equations with a scalar field
mass m ¼ 1. By applying the rescaling (11) to the t and r
coordinates, we can obtain one-parameter families of so-
lutions with any scalar mass m.

To "2 order, the metric is static. This is the biggest
advantage of the spatially conformally flat coordinate sys-
tem C ¼ r2B over the Schwarzschild area coordinates C ¼

r2. In the Schwarzschild system the constant r observers
‘‘feel’’ an "2 order small oscillation in the metric (see
Appendix B). The magnitude of the acceleration of the
constant ðr; �1; �2 . . .Þ observers in the general metric (12)
is

a ¼ 1

2A
ffiffiffiffi
B

p dA

dr
; (72)

which has an "3 order oscillating component when using
Schwarzschild coordinates, while in spatially conformally
flat coordinates the temporal change in the acceleration is
only of order "5.
The functionW ¼ ABD�2 is equal to 1 to order "4 in the

conformally flat coordinates. This motivates the metric
form choice

ds2 ¼ �Adt2 þ
�
W

A

�
1=ðD�2Þðdr2 þ r2d�21 þ r2sin2�1d�

2
2

þ . . .Þ; (73)

which has been employed for the D ¼ 3 case in [31].

E. Singularities on the complex plane

As wewill see in Sec. V, in order to determine the energy
loss of oscillatons it is advantageous to extend the func-
tions �, A, and B to the complex plane. In the small-
amplitude expansion formalism the extension of the coef-
ficient functions �k, Ak, and Bk have symmetrically posi-
tioned poles along the imaginary axis, induced by the poles
of the SN equations. We consider the closest pair of
singularities, located at � ¼ �iQD, since these will
provide the dominant contribution to the energy loss. The
numerically determined location of the pole for the
spatial dimensions where there is an exponentially local-
ized core is

-1
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 0  2  4  6  8  10

ρ

p2

a4
(2)

p4

D=3
p2

p4

a4
(2)

FIG. 1. The exponentially decaying functions p2, p4, and að2Þ4

for the small-amplitude expansion of the Klein-Gordon oscilla-
ton in the D ¼ 3 case.
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a4
(0)
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D=3
a2

a4
(0)
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FIG. 2. The functions a2, a
ð0Þ
4 , and b4 for the D ¼ 3 Klein-

Gordon system. These functions tend to zero according to a
power law for � ! 1.
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Q3 ¼ 3:977 36; (74)

Q4 ¼ 2:304 68; (75)

Q5 ¼ 1:235 95: (76)

The leading order behavior of the functions near the
poles can be determined analytically, even if the solution
of the SN equations is only known numerically on the real
axis. Let us measure distances from the upper singularity
by a coordinate R defined as

� ¼ iQD þ R: (77)

Close to the pole we can expand the SN equations, and
obtain that s and S have the same behavior,

s ¼ S ¼ � 6

R2
� 6iðD� 1Þ

5QDR
� ðD� 1ÞðD� 51Þ

50Q2
D

þOðRÞ;
(78)

even though they clearly differ on the real axis. We note
that forD> 1 there are logarithmic terms in the expansion
of s and S, starting with terms proportional to R4 lnR.
According to (41) and (44), the expression (78) determines
the "2 parts of �, A, and B near the pole.

Substituting into (60), (61), (65), and (67), the "4 order

contributions að0Þ4 , p4, b4, and að2Þ4 can also be determined

around the pole. We give the results for the Klein-Gordon
case, when vk ¼ 0 for k > 1:

að0Þ4 ¼ � 9ð25Dþ 208Þ
52ðD� 2ÞR4

þ 324iDðD� 1Þ lnR
35QDðD� 2ÞR3

þ a�3

R3

þO
�
lnR

R2

�
; (79)

p4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

D� 1

s
þ að0Þ4 ¼ 9ð43D� 104Þ

26ðD� 2ÞR4
þ 9iðD� 1Þð3D� 8Þ

5QDðD� 2ÞR3

þO
�
1

R2

�
; (80)

b4 ¼ 9ð333Dþ 832Þ
260ðD� 2Þ2R4

� 324iDðD� 1Þ lnR
35QDðD� 2Þ2R3

� a�3

ðD� 2ÞR3

þ 18iðD� 1Þ
5QDðD� 2ÞR3

þO
�
lnR

R2

�
; (81)

að2Þ4 ¼ � 9ð6�DÞ
5ðD� 2ÞR4

þ 6iðD� 1ÞðD� 6Þ
5QDðD� 2ÞR3

þO
�
1

R2

�
:

(82)

The constant a�3 can only be determined from the specific
behavior of the functions on the real axis, namely, from the
requirement of the exponential decay of p4 for large real �.

IV. PROPER AND TOTAL MASS

A. Proper mass

In this subsection we present the calculation of the
proper mass Mp, which is usually obtained by the integral

of the mass-energy density over a spatial slice of the
corresponding spacetime. In the next subsection the calcu-
lation of the total massM will be performed, by investigat-
ing the asymptotic behavior of the metric components. The
difference Eb ¼ Mp �M defines the gravitational binding

energy, which is expected to be positive.
The mass-energy density is � ¼ Tabu

aub, where the
unit timelike vector ua has the components

ð1= ffiffiffiffi
A

p
; 0; . . . ; 0Þ. In terms of the rescaled scalar field �,

� ¼ 1

8�

�
1

2A

�
d�

dt

�
2 þ 1

2B

�
d�

dr

�
2 þ �Uð�Þ

�
: (83)

The total proper mass in the metric (12) is defined by theD
dimensional volume integral

Mp ¼ 2�D=2

�ðD2Þ
Z 1

0
dr�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BCD�1

p
: (84)

Applying this for the small-amplitude expansion of oscil-
latons in spatially conformally flat coordinates, and using
that � ¼ "r and !2 ¼ 1� "2, we can write

Mp ¼ 2�D=2

8��ðD2Þ
Z 1

0
d��D�1"�Dð1þ"2b2ÞD=2

�
�

1

2ð1þ"2a2Þ
�
"2p2! sin�þ"4p4 sin�

þ"4
v2p

2
2

3
sinð2�Þ

�
2 þ 1

2

�
"3 cos�

dp2

d�

�
2

þ 1

2

�
"2p2 cos�þ "4p4 cos�

þ"4
v2p

2
2

3
ðcosð2�Þ� 3Þ

�
2 þv2

3
ð"2p2 cos�Þ3

�
: (85)

Using (41) and (43), for the proper mass we obtain

Mp ¼ "4�DMð1Þ
p þ "6�DMð2Þ

p þOð"8�DÞ; (86)

where

Mð1Þ
p ¼ �D=2

8��ðD2Þ
Z 1

0
d��D�1p2

2; (87)

Mð2Þ
p ¼ �D=2

8��ðD2Þ
Z 1

0
d��D�1

�
�
2p2p4 � p2

2 �
3D� 4

2ðD� 2Þa2p
2
2

�
: (88)

The result turns out to be time independent to this order.
Although the coefficients vi of the potential also drop out
from (88), the dependence on the form of the potential still
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comes in through (61). The leading order behavior, (87),
only depends on the scalar field mass m, which has been
rescaled to 1 for simplicity. Applying (11) to obtain solu-
tions with m � 1, an m2 factor appears in (83) for the
mass-energy density �. Since the volume element in the
integral contains a m�D factor, in all the presented proper
and total mass formulas an m2�D factor appears.

Using (44), (55), and (56), the leading order coefficient
is

Mð1Þ
p ¼ ðD� 1Þ�D=2

8��ðD2Þ
s1: (89)

The numerically calculated values forMð1Þ
p andMð2Þ

p for the
Klein-Gordon field case in various spatial dimensions are
listed in Table I.

B. Total mass

Since the scalar field tends to zero exponentially, at large
distances the metric should approach the static
Schwarzschild-Tangherlini metric [67]. In Schwarzschild
area coordinates, with C ¼ r2, this metric has the form

ds2 ¼ �
�
1� rD�2

0

rD�2

�
dt2 þ 1

1� rD�2
0

rD�2

dr2 þ r2d�2
D�1;

(90)

while in the spatially conformally flat coordinate system,
C ¼ r2B, it can be written as

ds2 ¼ �
�
4rD�2 � rD�2

0

4rD�2 þ rD�2
0

�
2
dt2

þ
�
1þ rD�2

0

4rD�2

�
4=ðD�2Þðdr2 þ r2d�2

D�1Þ; (91)

where r0 is a constant related to the mass. In general
spherically symmetric spacetimes it is possible to define
the natural radius function r̂ by (13), and the mass function
m̂ by (18). In both the Schwarzschild and conformally flat
coordinates, for the Schwarzschild-Tangherlini metric m̂ is
constant,

m̂ ¼ M ¼ ðD� 1Þ�D=2

8��ðD2Þ
rD�2
0 : (92)

For the small-amplitude expansion of oscillatons in the
spatially conformally flat coordinate system the radius

function is r̂ ¼ r
ffiffiffiffi
B

p
, where B is expanded according to

(32). Using the rescaled radial coordinate � ¼ "r, the mass
function can be expanded as

m̂ ¼ "4�Dm̂ð1Þ þ "6�Dm̂ð2Þ þOð"8�DÞ; (93)

where

m̂ ð1Þ ¼ � ðD� 1Þ�D=2

8��ðD2Þ
�D�1 dB2

d�
; (94)

and

m̂ð2Þ ¼ � ðD� 1Þ�D=2

8��ðD2Þ
�D�1

�
�
dB4

d�
þ �

4

�
dB2

d�

�
2 þD� 4

2
B2

dB2

d�

�
: (95)

The total mass is the limit at r ! 1,

M ¼ "4�DMð1Þ þ "6�DMð2Þ þOð"8�DÞ: (96)

Since B2 ¼ a2=ð2�DÞ, using the asymptotic form (50) of
a2, we get

Mð1Þ ¼ ðD� 1Þ�D=2

8��ðD2Þ
s1; (97)

agreeing with the leading order coefficient of the proper

mass, Mð1Þ
p , given in (89). Using (65) for the derivative of

b4,

Mð2Þ ¼ lim
�!1

ðD� 1Þ�D=2

8��ðD2Þ
�D�1

D� 2

�
�
dað0Þ4

d�
� �

2ðD� 2Þ
�
da2
d�

�
2 � 3

2
a2

da2
d�

�
; (98)

which can be easily calculated numerically, since the ex-
pression in the limit tends to a constant exponentially. The
numerical results for the Klein-Gordon field are presented
in Table I. The proper mass and the total mass agree to
leading order. However, taking into account the next term
in the expansion, it turns out that, as it can be expected, the
gravitational binding energy Eb ¼ Mp �M is positive.

It is instructive to write the expressions for the total mass
in natural units, where the oscillaton mass M is measured
in kilograms while the mass of the scalar fieldm in units of
eV=c2:

MðD¼3Þ ¼ "ð4:66� 5:63"2Þ1020 kg
eV

mc2
; (99)

MðD¼4Þ ¼ ð2:94� 14:1"2Þ1049 kg

�
eV

mc2

�
2
; (100)

MðD¼5Þ ¼ 1

"
ð8:63� 211"2Þ1077 kg

�
eV

mc2

�
3
: (101)

Since Oð"4Þ terms were dropped, these expressions are

TABLE I. Coefficients of the " expansion of the total mass M
and proper massMp for the m ¼ 1 Klein-Gordon case in D ¼ 3,

4, 5 spatial dimensions.

D ¼ 3 D ¼ 4 D ¼ 5

Mð1Þ ¼ Mð1Þ
p 1.752 66 9.065 33 21.7897

Mð2Þ �2:117 42 �43:5347 �533:732
Mð2Þ

p �1:533 19 �39:0020 �555:521
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precise only for small values of ". However, comparing to
the 3þ 1 dimensional numerical results obtained by solv-
ing the Fourier mode equations in [52], it can be inferred
that these total mass expressions give a reasonable estimate
even when " � 0:5.

C. Size of oscillatons

Although oscillatons are exponentially localized, they
do not have a definite outer surface. A natural definition for
their size is to take the radius rn inside which n percentage
of the mass can be found. It is usual to take, for example,
n ¼ 95. The mass inside a given radius r can be defined
either by the integral (84) replacing the upper limit by r, or
by taking the local mass function m̂ in (18). To leading
order in " both definitions give

MðrÞ ¼ ðD� 1Þ�D=2

8��ðD2Þ
�ð"rÞ; (102)

where � has been introduced in (54) as a function of � ¼
"r. The rescaled radius �n can be defined by

�ð�nÞ
�ð1Þ ¼ n

100
: (103)

The numerical values of �n for various n in D ¼ 3, 4, 5
dimensions are listed in Table II. Restoring the scalar field
mass m into the expression, the physical radius is

rn ¼ �n

"m
: (104)

In natural units, measuring mc2 in electron volts and rn in
meters (Roman m),

rn ¼ 1:97� 10�7 m
�n

"

eV

mc2
: (105)

Similarly to the total mass expressions in the previous
subsection, this result is still a reasonable approximation
for as large " values as 0.5.

D. Stability

The stability properties of oscillatons are in many re-
spects very similar to cold neutron and boson stars. Perfect
fluid stars are known to be stable for small �c central
densities. As�c increases, the total massM also increases,
until it reaches a maximal value Mmax, where according to

a theorem in [35], an unstable radial mode sets in. Boson
stars have analogous stability properties [68]. For oscilla-
tons in the EKG system (for D ¼ 3) this behavior has also
been observed in Refs. [1,56]. Oscillatons are closely
related to flat background oscillons, which also behave
very similarly to neutron and boson stars. Since we use a
small-amplitude expansion for oscillons and oscillatons it
is more instructive to use the magnitude of the oscillating
central amplitude �c, instead of the central density �c.
The central density is expected to be a monotonically
increasing function of the central amplitude.
Given the very close analogy with oscillons we formu-

late a general conjecture on the stability of oscillatons. We
recall that in all known examples the stability pattern of
oscillons is the same, namely, if dE=d" > 0 oscillons are
stable, while when dE=d" < 0 oscillons are unstable,
where E ¼ Eð"Þ is the total energy of the oscillon [14–
16,25]. Therefore we conjecture that the same stability
pattern holds true for oscillatons, except that the energy,
E is replaced by the total massM ¼ Mð"Þ of the oscillaton.
In other words if the time evolution (i.e. energy/mass loss)
of an oscillon/oscillaton leads to spreading of the core, the
oscillon/oscillaton is stable, while oscillons/oscillatons are
unstable if they have to contract with time evolution.
Therefore if the conjecture is true, the first two terms in
the expansion ofM enables us to determine the stability of
oscillatons.
Taking into account the first two terms in (96), for the

D ¼ 3Klein-Gordon field the total mass has a maximum at

"max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Mð1Þ

3Mð2Þ

s
� 0:525; (106)

corresponding to the value of the frequency,!min � 0:851.
Although this is just a leading order result, it agrees rea-
sonably well with the frequency 0.864 obtained by the
numerical solution of the Fourier mode equations in [52].
The value of the mass at the maximum is

Mmax ¼ 2
3"maxM

ð1Þ � 0:614; (107)

which is also quite close to the number 0.607 given in [52].
For an axion withm ¼ 10�5 eV=c2 the maximal mass is

Mmax ¼ 1:63 � 1025 kg, which is about 3 times the mass of
the Earth. The radius of this oscillaton, according to the
leading order approximation (105), is r95 ¼ 16:8 cm,
while its Schwarzschild radius is 2.42 cm.
The mass maximum is very important concerning the

stability of oscillatons. According to [1,56], for the Klein-
Gordon field in D ¼ 3 small-amplitude oscillatons with
" < "max are stable, while those with " > "max are un-
stable, presumably having a single decay mode. For D ¼
4 and D ¼ 5 the mass is a monotonically decreasing
function of ", and all oscillatons are expected to be un-
stable. The situation may be totally different for scalar
fields with a nontrivial potential Uð�Þ. For example, for

v2 ¼ 0 and v3 ¼ 4, the coefficient Mð2Þ becomes positive,

TABLE II. The radius inside which given percentage of the
mass is contained for various spatial dimensions.

D ¼ 3 D ¼ 4 D ¼ 5

�50 2.240 1.778 1.317

�90 3.900 3.013 2.284

�95 4.471 3.455 2.652

�99 5.675 4.410 3.478

�99:9 7.239 5.692 4.634
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and there is no maximum on the energy curve in D ¼ 3
dimensions, consequently even large amplitude oscillatons
can be expected to be stable. Using this potential in D ¼ 4
dimensions, for small " the mass will be a monotonically
increasing function, so small-amplitude configurations
should be stable. For D ¼ 5, in this case, there is a mini-
mum in the energy curve, above which stable oscillatons
can be expected.

V. RADIATION LAW OF OSCILLATONS

The methods that we apply in this section for the calcu-
lation of the radiation law of oscillatons have been already
applied for oscillons formed by scalar fields on flat back-
ground. The extension of the Fourier mode equations to the
complex plane has been first used for the one-dimensional
�4 theory by Segur and Kruskal [32]. The Borel summa-
tion method to calculate the small correction near the pole
has been introduced by Pomeau, Ramani and Grammaticos
[69]. The results has been extended to higher dimensional
oscillons in [16] and to a scalar-dilaton system in [25].

A. Fourier expansion

Since all terms in the expansion (30)–(32) are exponen-
tially decaying, the small-amplitude expansion can only be
applied to the core region of oscillatons. It cannot describe
the exponentially small radiative tail responsible for the
energy loss. This is closely related to the fact that the
expansion is not convergent, it is an asymptotic expansion.
Instead of studying a radiating oscillaton configuration
with slowly varying frequency, it is simpler to consider
exactly periodic solutions having a relatively large ampli-
tude core and a very small amplitude standing wave tail.
We Fourier expand the scalar and the metric components as

� ¼ XNF

k¼0

��k cosðk!tÞ; (108)

A ¼ 1þ XNF

k¼0

�Ak cosðk!tÞ; (109)

B ¼ 1þ XNF

k¼0

�Bk cosðk!tÞ; (110)

where ��k
�Ak, and �Bk only depend on r, and solve the

Fourier mode equations obtained from Einstein’s equations
and the wave equation. Although, in principle, the Fourier
truncation order NF should tend to infinity, one can expect
very good approximation for moderate values of NF. We
assume that the frequency is approaching from below the
mass threshold m ¼ 1, and in this context, define the "

parameter by " ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
.

Regularity at the center require finite values for ��k, �Ak,
and �Bk for r ¼ 0, together with

d ��k

dr

��������r¼0
¼ 0;

d �Ak

dr

��������r¼0
¼ 0;

d �Bk

dr

��������r¼0
¼ 0:

(111)

Concerning the boundary conditions at r ! 1, it is a
natural but quite restrictive requirement to assume that
the metric is asymptotically flat, with the t coordinate
tending to the proper time for large radii. This implies
that �Ak ! 0 and �Bk ! 0 for r ! 1. The Fourier compo-
nents of the wave equation (28) for large r decouple, and in
this case can be written as

d2 ��n

dr2
þD� 1

r

d ��n

dr
þ ðn2!2 � 1Þ ��n ¼ 0: (112)

In the relevant frequency range 1=2<!< 1, if n � 2
these equations have oscillatory solutions, behaving
asymptotically as

��n ¼ �ðsÞ
n

rðD�1Þ=2 sinðr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2!2 � 1

p
Þ

þ �ðcÞ
n

rðD�1Þ=2 cosðr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2!2 � 1

p
Þ; (113)

where �ðsÞ
n and �ðcÞ

n are some constants. According to (83),
this oscillating tail has a mass-energy density, �, propor-

tional to r1�D. This implies that if �ðsÞ
n or �ðcÞ

n is nonzero for
any n � 2, the total proper mass of the spacetime is
infinite. The requirement of the vanishing of all these
coefficients together with the central boundary conditions
are clearly too many conditions to satisfy for the given
number of second order differential equations. In general,
regular finite mass exactly periodic solutions are not ex-
pected to exist.

If we require that �ðsÞ
n ¼ 0 and �ðcÞ

n ¼ 0 for all n then all
�n tend to zero exponentially, and we have a finite mass
asymptotically flat configuration. However, in general, this
solution will be singular at the center, hence we name this
solution singular breather (SB). For a given frequency, !,
the singular breather solution is unique by parameter
counting.
Because of their close similarity to oscillatons, it is

important to study another, presumably unique periodic
solution, the so called quasibreather (QB) solution, which
is regular at the center, but which has a minimal energy
density standing wave tail. Our aim is to construct the
quasibreather solution from the singular breather solution.
It is important to point out that the quasibreather picture is
only valid inside some large but finite radius. However
small the energy density of the oscillating tail is, going to
very large distances its contribution to the mass will not be
negligible anymore. Consequently, the assumption that �Ak

and �Bk tends to zero will not remain true for arbitrarily
large values of r, and consequently Eq. (112) will also
change. For sufficiently large values of r, the metric func-
tion A increases until it causes to change the first radiating
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mode (either �2 or �3) from oscillating to exponentially
decaying. Increasing r further, all modes will stop oscillat-
ing one by one. This way we obtain the exactly time-
periodic but infinite mass ‘‘breathers’’ which are described
in details in Sec. IX of the paper of Don N. Page [31]. The
quasibreather can be considered to be the part of such an
infinite mass ‘‘breather’’ containing the core and a large
portion of the tail where the first radiating mode oscillates,
requiring that the mass inside this region is dominated by
that of the oscillon core. Since the core amplitude is of the
order "2, while the tail is exponentially suppressed in ", the
quasibreather picture is valid in a sufficiently large volume.

Since the amplitude of the oscillating tail of the quasi-
breather is very small, apart from a small region around the
center the core of the QB is very close to the corresponding
singular breather solution. In particular, the SB and the QB
solutions have the same " expansions. For the SB solution
the small-amplitude expansion will not be valid in a region
near the center r ¼ 0, while for the QB solution it will fail
for large radii where the oscillating tail becomes dominant.
The size of the region, ð0; rdiffÞ, around r ¼ 0 where the
difference between the SB and the regular core becomes

relevant is rdiff ¼ Oðe�	="Þ (with 	 being a constant),
whereas the size of the SB or QB core is proportional to
1=". Outside of this region, i.e. for r > rdiff the difference
between the SB and the QB will be very small since the
singular mode turns out to be proportional to the tail
amplitude, which is exponentially small in terms of the
small parameter ", while the core amplitude is of order "2.

For potentials Uð�Þ which are symmetric around their
minima, i.e. v2k ¼ 0 for integer k, the Fourier expansion of
the scalar contains only odd, while that of the metric
components only even terms,

�� 2k ¼ 0; �A2kþ1 ¼ 0; �B2kþ1 ¼ 0: (114)

For symmetric potentials the first radiating mode is ��3. In
this section we will concentrate mainly on the Klein-
Gordon scalar field with vk ¼ 0 for k > 1. It is straightfor-
ward to generalize the results for symmetric potentials.

For small-amplitude quasibreather or singular breather
configurations we can establish the connection between the
Fourier expansion (108)–(110) and the small-amplitude
expansion (30)–(32) by comparing to (68)–(71). For sym-
metric potentials we obtain:

�� 1 ¼ "2p2 þ "4p4 þOð"6Þ; (115)

�� 3 ¼ "6
�

Dp3
2

64ðD� 1Þ þ
v3p

3
2

32
þ p2a

ð2Þ
4

8

�
þOð"8Þ; (116)

�A 0 ¼ "2a2 þ "4að0Þ4 þOð"6Þ; (117)

�A 2 ¼ "4að2Þ4 þOð"6Þ; (118)

�B 0 ¼ �"2
a2

D� 2
þ "4b4 þOð"6Þ; (119)

�B 2 ¼ �"4
p2
2

4ðD� 1Þ þOð"6Þ: (120)

B. Expansion near the pole

As " ! 0 the amplitude of all Fourier coefficients tend
to zero. However, extending them to the complex plane, for
small " they all have pole singularities on the imaginary
axis at r ¼ �iQD=", corresponding to the poles of the
Schrödinger-Newton equations at � ¼ �iQD, as it was
discussed in Sec. III E. As " tends to zero, the poles
move further and further away from the real axis, but close
to them the Fourier components ��k, �Ak and �Bk are not
getting small, in fact they have " independent parts. We
introduce a shifted radial coordinate, y, for an ‘‘inner
region’’ around the upper pole by

r ¼ iQD

"
þ y: (121)

The coordinate y is related to the one (R) defined in
Eq. (77) by R ¼ "y. Substituting the small-amplitude ex-
pansion results (78)–(82) into (115)–(120), and taking the
limit " ! 0, it follows that in the Klein-Gordon case, near
the upper pole

�� 1 ¼
�
� 6

y2
þ 999D

52ðD� 2Þy4 þ . . .

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 1

D� 2

s
; (122)

�� 3 ¼
�
� 27ð7D� 12Þ

40ðD� 2Þy4 þ . . .

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 1

D� 2

s
; (123)

�A 0 ¼ 6

y2
� 9ð25Dþ 208Þ

52ðD� 2Þy4 þ . . . ; (124)

�A 2 ¼ � 9ð6�DÞ
5ðD� 2Þy4 þ . . . ; (125)

�B 0 ¼ � 6

ðD� 2Þy2 þ
9ð333Dþ 832Þ
260ðD� 2Þ2y4 þ . . . ; (126)

�B 2 ¼ � 9

ðD� 2Þy4 þ . . . : (127)

We note that since (122)–(127) are expansions in 1=y2,
they are valid for large y values. In contrast, (78)–(82) were
calculated assuming small R. Both of these conditions can
hold simultaneously, since R ¼ "y.
Expressions (122)–(127) can also be obtained by look-

ing for the solution of the Fourier mode equations in the
" ! 0 limit near the pole as a power series expansion in
1=y2,
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�� 2kþ1 ¼
X1

j¼kþ1

c ðjÞ
2kþ1

1

y2j
; (128)

�A 2k ¼
X1

j¼kþ1

�ðjÞ
2k

1

y2j
; (129)

�B 2k ¼
X1

j¼kþ1

�ðjÞ
2k

1

y2j
; (130)

where c ðjÞ
2kþ1, �

ðjÞ
2k , and �ðjÞ

2k are constants. The mode equa-

tions that we have to solve can be obtained from the
Einstein equations (24)–(27) and from the wave equa-
tion (28) by substituting (108)–(110). Equations (24)–
(28) are not independent. The wave equation follows
from the Einstein equations by the contracted Bianchi
identities, and the ðt; rÞ component (26) is a constraint.
The truncation of the Fourier expansion at a finite NF order
makes the mode equations mutually contradictory.
However, if we choose any three field equations from
(24)–(28), the arising mode equations will clearly have
solutions. We have checked that our results for the energy
loss rate of oscillatons are the same for different choices of
the three field equations. We have also tested that the
violation of the mode equations obtained from the other
two field equation tends to zero quickly as NF increases.

Substituting (121) into the field equations (24)–(28) and
taking the " ! 0 limit close to the pole, some terms with
lower powers of r can be neglected. Then, inserting the
1=y2 expansion (128)–(130) into the resulting mode equa-
tions, because of the omission of odd powers of 1=y, the

only ambiguity arises at the choice of the signature of c ð1Þ
1 .

The calculation of (122)–(127) using the Fourier mode
equations is technically more simple than using the
small-amplitude expansion method, and can be done by
algebraic manipulation programs to quite high orders in
1=y.

Apart from an overall factor, the leading order behavior

of the coefficients c ðnÞ
k , �ðnÞ

k and �ðnÞ
k for large n can be

obtained by studying the structure of the mode equations. It

turns out that for large n, c ðnÞ
3 dominates among the

coefficients. For the third Fourier mode of the Klein-
Gordon field,

c ðnÞ
3 ¼ kDð�1Þn ð2n� 1Þ!

8n

�
1þ 3ð9D� 10Þ

2ðD� 2Þn
þ 3ð9D� 10Þð7D� 8Þ

2ðD� 2Þ2n2 þO
�
1

n3

��
; (131)

where kD is a factor depending on D and NF. All other
coefficients grow slower with n asymptotically. Although
the 1=n and 1=n2 correction terms may depend on the
choice of the scalar potential, the leading order behavior
is the same as in (131) for any symmetric potential. The
value of the constant kD will turn out to be crucial for the

determination of the energy loss rate of oscillatons.
Calculating the coefficients up to order n ¼ 100 and taking
into account Fourier modes up to order NF ¼ 6, in the
Klein-Gordon case we obtain

k3 ¼ �0:301; (132)

k4 ¼ �0:134; (133)

k5 ¼ �0:0839: (134)

C. The singular breather solution near the pole

Expansion (128)–(130) gives an asymptotic series rep-
resentation of the Fourier components ��k, �Ak and �Bk. The
results (122)–(127) can be considered as boundary condi-
tions for the Fourier mode equations for

jyj ! 1; ��=2< argy < 0; (135)

ensuring a unique solution for the ‘‘inner problem.’’ This
corresponds to the requirement that � decays to zero
without any oscillating tail for r ! 1 along the positive
half of the real axis, i.e. we consider a singular breather
solution.
The Fourier components of the wave equation (28) can

be written as

d2 ��n

dr2
þD� 1

r

d ��n

dr
þ ðn2!2 � 1Þ ��n ¼ Fn; (136)

where Fn contain nonlinear polynomial terms in ��k, �Ak, �Bk

and their derivatives for k 	 NF. Using the y coordinate
near the pole and taking the " ! 0 limit,

d2 ��n

dy2
þ ðn2 � 1Þ ��n ¼ ~Fn; (137)

where ~Fn denotes the " ! 0 limit of Fn. On the imaginary
axis the 1=y2 expansion gives real valued functions to all
orders. As singular breather solutions of the mode equa-
tions, with boundary conditions (122)–(127) in the region
given by (135), the functions ��SB

n can have small imagi-
nary parts on the imaginary axis, satisfying the left-hand
side of (137) to a good approximation. For symmetric
potentials the first radiating component is ��3. The singular
breather solution can have an exponentially decaying small
imaginary part on the imaginary axis,

Im ��SB
3 ¼ 
3 expð�i

ffiffiffi
8

p
yÞ for Rey ¼ 0; (138)

where 
3 is some constant. On the other hand, since the
quasibreather solution of the mode equations is regular and

symmetric, ��QB
3 has zero imaginary part on the imaginary

axis.
For symmetric potentials the value of 
3 can be obtained

by Borel summing the series (128) for ��3 [69]. The first
step is to define a Borel transformed series by
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VðzÞ ¼ X1
n¼2

c ðnÞ
3

ð2nÞ! z
2n: (139)

Then the Laplace transform of VðzÞ will give us the Borel
summed series of ��SB

3 ðyÞ which we denote by �̂SB
3 ðyÞ,

�̂ SB
3 ðyÞ ¼

Z 1

0
dte�tV

�
t

y

�
: (140)

We are only interested in the imaginary part of �̂SB
3 ðyÞ on

the negative imaginary axis, y ¼ �iyi, where yi > 0 real.
Then the argument of V is z ¼ t=y ¼ it=yi, which is pure
imaginary with positive imaginary part. Since all terms in
(165) contain even powers of z, no individual term gives a

contribution to Im�̂SB
3 on the imaginary axis. The value of

Im�̂SB
3 is determined there by the leading order large n

behavior of the series (139). Using (131) and including a
term proportional to z2,

VðzÞ 
 X1
n¼1

kD
ð�1Þn
2n

�
zffiffiffi
8

p
�
2n ¼ � kD

2
ln

�
1þ z2

8

�
; (141)

where the sign 
 denotes equality up to terms that do not

give contribution to the imaginary part of �̂SB
3 on the

imaginary axis. Transforming the argument of the loga-
rithm into product form, only one of the factors gives a
contribution,

VðzÞ 
 � kD
2

ln

�
1þ izffiffiffi

8
p

�
: (142)

For purely imaginary y,

V

�
t

y

�

� kD

2
ln

�
1� t

yi
ffiffiffi
8

p
�
: (143)

In this case, for t > yi
ffiffiffi
8

p
we have to integrate along the

branch cut of the logarithm function. In order to see how to

go around the singularity at t ¼ yi
ffiffiffi
8

p
we note that accord-

ing to (135), the 1=y2 expansion (128)–(130) has been
applied for y ¼ yr � iyi, where yr and yi are positive and
real. This corresponds to the requirement of exponential
decay for r > 0 along the real r axis. Then

iz ¼ t

y2r þ y2i
ð�yi þ iyrÞ; (144)

which shows that the argument of the logarithm in (142)
has to go around the singularity in the upper half of the
complex plane. This means that we approach the branch
cut of the logarithm at the negative part of the real axis
from above, where its imaginary part is �. Then for purely
imaginary y we can evaluate the imaginary part of the
integral (140) by integrating on the branch cut,

Im �̂SB
3 ðyÞ ¼ �

Z 1

i
ffiffi
8

p
y
dte�t kD�

2
¼ � kD�

2
expð�i

ffiffiffi
8

p
yÞ:

(145)

The logarithmic singularity of Vðt=yÞ does not contribute
to the integral. Comparing with (138),


3 ¼ �1
2kD�: (146)

For asymmetric potentials the leading order radiating
component will be in ��2, and

Im ��SB
2 ¼ 
2 expð�i

ffiffiffi
3

p
yÞ for Rey ¼ 0: (147)

Because the dominant behavior of ��0, it is not possible to
determine the constant 
2 by the Borel summation. Its
value can be calculated by numerical integration of the
Fourier mode equations, following the method presented in
[15,32].
It is reassuring that even though we work with a trun-

cated set of mode equations Birkhoff’s theorem still holds

in the following sense. Neither �ðnÞ
k nor �ðnÞ

k has an appro-

priately singular behavior so that they generate an imagi-
nary correction on the imaginary axis for �Ak and �Bk. The
Borel summation procedure does not produce gravitational
radiation.

D. Construction of the quasibreather

As we have already discussed, both the singular breather
(SB), and the quasibreather (QB) solutions are well ap-
proximated in a large domain by the small-amplitude
expansion. Since the tail is exponentially suppressed in
", apart from a small central region around r ¼ 0, where
the SB solution gets too large, the QB and SB solutions are
extremely close to each other. We denote the difference in
the first radiating Fourier component ��3 of the two solu-
tions by

��w
3 ¼ ��QB

3 � ��SB
3 : (148)

The small function ��w
3 solves the linearization of the wave

equation around the singular breather solution. To leading
order in " this reduces to the flat background wave equa-
tion

d2 ��w
3

dr2
þD� 1

r

d ��w
3

dr
þ 8 ��w

3 ¼ 0: (149)

The general solution of (149) can be written as

��w
3 ¼

ffiffiffi
24

p ffiffiffiffi
�

p
rD=2�1

½�DYD=2�1ð
ffiffiffi
8

p
rÞ þ �DJD=2�1ð

ffiffiffi
8

p
rÞ�;
(150)

where J and Y are Bessel functions of the first and second
kinds, and �D, �D are constants. The asymptotic behavior
of the Bessel functions is

J
ðxÞ �
ffiffiffiffiffiffiffi
2

�x

s
cos

�
x� 
�

2
� �

4

�
; (151)
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Y
ðxÞ �
ffiffiffiffiffiffiffi
2

�x

s
sin

�
x� 
�

2
� �

4

�
; (152)

for argx < � and jxj ! 1. The constants �D and �D

describe the amplitude of the standing wave tails in ��w
3 ,

since for large distances from the center,

��w
3 � 1

rðD�1Þ=2

�
�D sin

� ffiffiffi
8

p
r� ðD� 1Þ�

4

�

þ �D cos

� ffiffiffi
8

p
r� ðD� 1Þ�

4

��
: (153)

Since the SB solution is exponentially decaying, this will
also be the tail of the QB configuration.

The second term in (150) gives a purely real contribution
to ��w

3 on the imaginary axis. However, converting (152)

into exponential form,

Y
ðxÞ � 1ffiffiffiffiffiffiffiffiffi
2�x

p
�
exp

�
ix� i�

4
ð2
þ 3Þ

�

þ exp

�
�ixþ i�

4
ð2
þ 3Þ

��
; (154)

we see that the first term in (150) yields an exponentially
behaving imaginary part along the imaginary axis. Close to
the upper pole at iQD=", using the coordinate y defined in
(121), to leading order in " we obtain that

Im ��w
3 ¼ �D

2

�
"

QD

�ðD�1Þ=2
exp

� ffiffiffi
8

p
QD

"
� i

ffiffiffi
8

p
y

�
; (155)

for Rey ¼ 0. Since our aim is to obtain a nonsingular QB
solution which is symmetric for r ! �r for real r, (155)
must cancel the exponential behavior of Im ��SB

3 given by

(138). This fixes the amplitude �D,

�D ¼ �2
3

�
QD

"

�ðD�1Þ=2
exp

�
�

ffiffiffi
8

p
QD

"

�
: (156)

Substituting the value of 
3 from (146), obtained by the
Borel summation,

�D ¼ kD�

�
QD

"

�ðD�1Þ=2
exp

�
�

ffiffiffi
8

p
QD

"

�
: (157)

For any value of �D the second term in (150) gives a
regular symmetric contribution to ��w

3 , which does not

change the behavior of the imaginary part on the real
axis. However, as it is apparent from (153), any nonzero
�D necessarily increases the tail amplitude, and conse-
quently the energy density in the tail as well. Hence, in
order to obtain the minimal tail quasibreather, we set

�D ¼ 0: (158)

The standing wave tail of the quasibreather in the
asymptotic region is given by the first term of (150),

�QB ¼ ffiffiffi
2

4
p ffiffiffiffi

�
p �D

rD=2�1
YD=2�1ð

ffiffiffi
8

p
rÞ cosð3�Þ

� �D

rðD�1Þ=2 sin

� ffiffiffi
8

p
r� ðD� 1Þ�

4

�
cosð3�Þ: (159)

Subtracting the regular solution involving the Bessel func-
tion J
 with a phase shift in time, we cancel the incoming
radiating component, and obtain the radiative tail of the
oscillaton,

�osc ¼ ffiffiffi
2

4
p ffiffiffiffi

�
p �D

rD=2�1
½YD=2�1ð

ffiffiffi
8

p
rÞ cosð3�Þ

� JD=2�1ð
ffiffiffi
8

p
rÞ sinð3�Þ�

� �D

rðD�1Þ=2 sin

� ffiffiffi
8

p
r� ðD� 1Þ�

4
� 3�

�
: (160)

Equations (159) and (160) are valid for symmetric poten-
tials. In both cases, the amplitude of the tail of � at large r
is given by �D. According to (8), the physical amplitude is

�D=
ffiffiffiffiffiffiffi
8�

p
. Since the transformation (11) changes the coor-

dinates, �D scales asmð1�DÞ=2 with the scalar field massm.

E. Tail amplitude

The scalar field tail calculated in the previous subsection
is so small that it is not surprising that it has not been
detected by numerically solving the Fourier mode equa-
tions in [1,52]. In order to relate the magnitude of the
oscillating tail to the central amplitude, we represent �
in the core region by � ¼ "2p2 cos�, and in the tail by
(159). The tail starts to dominate at a radius r ¼ rt where

�ð� ¼ 0; rÞ ¼ "2p2ð"rÞ ¼ "2Sð"rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 1

D� 2

s
(161)

equals to �Dr
ð1�DÞ=2. Since s � �1þ s1�

2�D for large �,
the asymptotic behavior of S in the relevant dimensions is

SD¼3ð�Þ ¼ Ste
���s1=2�1

�
1� s1ðs1 � 2Þ

8�
þO

�
1

�2

��
;

(162)

SD¼4ð�Þ ¼ St
e��

�3=2

�
1� 4s1 � 3

8�
þO

�
1

�2

��
; (163)

SD¼5ð�Þ ¼ St
e��

�2

�
1þ 1

�
� s1

4�2
þO

�
1

�4

��
; (164)

where the constants s1 and St are given in Table III. The

TABLE III. The numerical values of the constants s1 and St in
3, 4, and 5 spatial dimensions.

D ¼ 3 D ¼ 4 D ¼ 5

s1 3.505 7.695 10.40

St 3.495 88.24 23.39
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values of rt and the amplitude of the tail at that radius,

�t ¼ �Dr
ð1�DÞ=2
t =

ffiffiffiffiffiffiffi
8�

p
for several " are given in Table IV.

The tail amplitude should be compared to the central
amplitude

�c ¼ "2�1c; �1c ¼ Scffiffiffiffiffiffiffi
8�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 1

D� 2

s
; (165)

where the constants Sc and �1c are given in Table V. The
radius rt where the tail starts to dominate is much larger
than the characteristic radius of the core, which can be
defined as the radius rh where � ¼ �c=2. Clearly, rh ¼
�h=", where �h is the value of � for which S ¼ Sc=2. The
value of �h for various spatial dimensions D is also given
in Table V. Clearly, there is only some chance to numeri-
cally observe the tail for as large " values as 0.5, which for
D ¼ 3 is close to the maximum value "max � 0:525. It can
also be observed from Table IV, that for larger spatial
dimensions the radiation is significantly stronger. It would
be reasonable to first make the numerical analysis for D ¼
5, since then the tail has the largest amplitude. Even if the
Klein-Gordon oscillatons are unstable in D ¼ 5, as we
have seen in Sec. IVB, there are scalar potentials, for
which large amplitude oscillatons are stable. Since the
exponent in (157) is potential independent, in general, we
expect to get a tail amplitude of similar magnitude as for
the Klein-Gordon field.

F. Mass loss rate

Since at large distances from the center the mass func-
tion m̂ agrees with the total mass M, the mass change rate

of the oscillaton can be calculated from the energy current
carried by the wave (160) using (22). Averaging for an
oscillation period,

dM

dt
¼ � c1

mD�3"D�1
exp

�
� c2

"

�
; (166)

where the D dependent constants are

c1 ¼ 3
ffiffiffi
2

p
k2DQ

D�1
D

�D=2þ1

4�ðD2Þ
; c2 ¼ 2

ffiffiffi
8

p
QD: (167)

The numerical values of c1 and c2 for various spatial
dimensions are listed in Table VI. The values of c2 are
the same for any symmetric potential, but the numbers
given for c1 are valid only for the Klein-Gordon field.
The higher " is, the more chance we have to observe the

presumably tiny energy loss. As we have seen in
subsection IVB, for D ¼ 3 spatial dimensions oscillons
are stable for " < "max � 0:525. The total mass is maximal
at "max. Restoring the scalar field mass m into the expres-
sions, the maximal mass value is Mmax ¼ 0:614=m.
Substituting into (166), for the maximal mass Klein-
Gordon oscillaton we get�

1

M

dM

dt

�
M¼Mmax

¼ �4:3� 10�17m: (168)

This expression is valid in Planck units. Expressing M in
kilograms, and mc2 in electron volts the maximal oscilla-
ton mass is

Mmax ¼ 0:614mPEP=m ¼ 1:63� 1020 kg
eV

mc2
; (169)

where the Planck mass is mP ¼ 2:18� 10�8 kg and the

TABLE IV. The radius rt where the oscillating tail starts to dominate, and its amplitude �t

there.

D ¼ 3 D ¼ 4 D ¼ 5

" rt �t rt �t rt �t

0.1 1160 8:96� 10�52 648 2:76� 10�32 346 4:42� 10�20

0.2 302 4:63� 10�27 168 1:06� 10�17 92.6 6:01� 10�12

0.3 140 9:28� 10�19 78.2 9:45� 10�13 45.0 3:83� 10�9

0.4 81.6 1:40� 10�14 46.4 3:07� 10�10 27.9 1:03� 10�7

0.5 54.3 4:68� 10�12 31.5 1:03� 10�8 19.8 7:56� 10�7

0.6 39.2 2:30� 10�10 23.2 1:09� 10�7 15.1 2:87� 10�6

0.7 29.9 3:76� 10�9 18.0 5:91� 10�7 12.2 7:42� 10�6

0.8 23.8 3:08� 10�8 14.6 2:12� 10�6 10.3 1:51� 10�5

TABLE V. The numerical values of the constants Sc, �1c, and
�h, which determine the central amplitude �c and the character-
istic size rh.

D ¼ 3 D ¼ 4 D ¼ 5

Sc 1.021 3.542 14.02

�1c 0.288 0.865 3.229

�h 2.218 1.357 0.763

TABLE VI. The constants c1 and c2 in the mass loss rate
expression (166) for D ¼ 3, 4, 5 spatial dimensions.

D ¼ 3 D ¼ 4 D ¼ 5

c1 30.0 7.23 0.720

c2 22.4993 13.0372 6.991 59
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Planck energy is EP ¼ 1:22 � 1028 eV. Expressing t in
seconds, since tp ¼ 5:39� 10�44 s, for the maximal

mass configuration we get�
1

M

dM

dt

�
M¼Mmax

¼ � 0:066

s

mc2

eV
: (170)

Note that we only determined the leading order result for
the radiation amplitude. We saw hints that the small-
amplitude results give sensible answers for moderate "
values, however we do not have a good control over non-
leading terms in the radiation amplitude. In general for
such high " values we expect to have the same exponential
factor, but with a different prefactor c1 [15,16,25]. The
order of magnitude should be nevertheless correct.

According to (96), for D ¼ 3 spatial dimensions, to
leading order the total mass is proportional to the ampli-

tude.M ¼ "Mð1Þ=m, where from Table I,Mð1Þ ¼ 1:752 66.
Substituting into (166), for the Klein-Gordon case this
yields

dM

dt
¼ � c3

m2M2
exp

�
� c4
mM

�
: (171)

where

c3 ¼ 92:2; c4 ¼ 39:4337: (172)

Expression (171) has the same form as the classical mass
loss formula (122) of [31], although the constant corre-
sponding to c3 is much larger there, it is 3 797 437.776.
This means that the amplitude of the radiating tail of the
scalar field� is overestimated by a factor 202.9 in [31]. In
order to understand the reason for this large difference, and
why it is necessary to use our more complicated approach
to obtain a correct mass loss rate, we first describe the
method of [31] in our formalism.

For a D ¼ 3 Klein-Gordon system let us consider the
third Fourier component (136) of the wave equation (28) in
the ! ! 1 limit. Taking the results (115)–(120) of the
small-amplitude expansion, and substituting into the non-
linear terms on the right-hand side of (136), we obtain an
inhomogeneous linear differential equation for ��3,

d2 ��3

dr2
þ 2

r

d ��3

dr
þ 8 ��3 ¼ PðrÞ: (173)

Here the function PðrÞ is given by the small-amplitude
expansion, in a power series form in ",

PðrÞ ¼ X1
k¼3

P2kðrÞ"2k: (174)

For theD ¼ 3Klein-Gordon system the leading order term
is

P6ðrÞ ¼ 3
16p

3
2ð"rÞ þ p2a

ð2Þ
4 ð"rÞ: (175)

Equation (173) with PðrÞ ¼ "6P6ðrÞ, but setting að2Þ4 ¼ 0,
corresponds to Eq. (52) of [31]. Since there the Fourier

modes are defined in terms of exponentials instead of
cosine functions, the coefficient of the p3

2 term is 3=4 in

[31] instead of 3=16. The term containing að2Þ4 is missing

there because of the assumption that the gtt ¼ �A metric
component is time independent. However, at "4 order
either gtt becomes oscillatory, or the spatial metric ceases
to be conformally flat.
The oscillating tail responsible for the radiation loss in

the ��3 mode can be estimated by integrating (173) using
the Green function method,

��3ðrÞ ¼ cosð ffiffiffi
8

p
rÞffiffiffi

8
p

r

Z r

0
�r sinð ffiffiffi

8
p

�rÞPð�rÞd�r

þ sinð ffiffiffi
8

p
rÞffiffiffi

8
p

r

Z 1

r
�r cosð ffiffiffi

8
p

�rÞPð�rÞd�r: (176)

The oscillaton core is exponentially localized, hence in the
tail region it is a very good approximation to write

�� 3ðrÞ ¼ ��
cosð ffiffiffi

8
p

rÞ
r

; (177)

where the constant determining the amplitude is

�� ¼ 1ffiffiffi
8

p
Z 1

0
r sinð ffiffiffi

8
p

rÞPðrÞdr: (178)

Since the functions describing the oscillaton by the "
expansion are symmetric around r ¼ 0, and since the
sine function can be written as the difference of two
exponentials,

�� ¼ 1

2i
ffiffiffi
8

p
Z 1

�1
r expð ffiffiffi

8
p

irÞPðrÞdr: (179)

The functions in the small-amplitude expansion depend
directly on the rescaled radial coordinate � ¼ "r, so it is
natural to write the integral into the form

�� ¼ 1

2i
ffiffiffi
8

p
"2

Z 1

�1
� exp

� ffiffiffi
8

p
i�

"

�
P

�
�

"

�
d�: (180)

This can be replaced by a contour integral around the upper
plane, and can be approximated by taking into account the
pole which is closest to the real axis. The position of the
closest pole is the same as that of the SN equations (45) and
(46), it is at � ¼ iQ3 on the imaginary axis. Let us first
calculate the contribution from the leading P6 term, given

by (175). Then, since for three spatial dimensions p2 ¼ffiffiffi
2

p
S, using (78) and (82), the behavior near the pole is

P

�
�

"

�
� "6P6

�
�

"

�
� � 35

ffiffiffi
2

p
"6

5R6
; (181)

where R ¼ iQ3 � �. The omission of the term containing

að2Þ4 from (175) results in a value which is 5=3 times that of
(181). The residue can be calculated by integrating by parts
5 times,
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�� ¼ � 2334
ffiffiffi
2

p
�Q3

52"
exp

�
�

ffiffiffi
8

p
Q3

"

�
: (182)

This amplitude is much larger than the amplitude �3

calculated by the Borel summation method in (157),

��

�3
¼ � 2434

ffiffiffi
2

p
52k3

� 121:8: (183)

If we omit the term containing að2Þ4 from (175), we have a

5=3 factor, and get ��=�3 ¼ 202:9, which is the ratio of the
tail amplitude of [31] to our value, as we have mentioned
after Eq. (172).

The fundamental problem with the above calculated tail
amplitude �� is that it is just the first term of an infinite
series, of which all terms give contributions which are the
same order in ". This can be illustrated by calculating the
contribution of the next term in PðrÞ. Although the small-
amplitude expansion yields a rather complicated expres-
sion for P8ðrÞ, it contains terms proportional to p3

2a2,

p4a
ð2Þ
4 , and p2a2a

ð2Þ
4 , which have eighth order poles.

When calculating the integral (180) one has to integrate
by parts 7 times, so the result will have the same " order as
the earlier result calculated from the P6ðrÞ term. Even if we
could calculate higher order contributions, we have no
reason to expect that the series converges, and even if it
would be convergent it may not give a correct result for the
mass loss. This has already been demonstrated for the
simpler system of a real scalar field with a nontrivial
interaction potential on flat Minkowski background. It
was first pointed out in [70] that there are too many
boundary conditions to satisfy when solving the Fourier
mode equations in order to find periodic localized breather
solutions. In [70] the energy loss rate of the long living
oscillon configurations was estimated by a method analo-
gous to that of [31]. However, calculating higher order
contributions, it turned out that the method gives an in-
correct nonzero result even for the periodic sine-Gordon
breather. Moreover, the expansion is not convergent for the
�4 scalar theory. The proper approach to calculate the
lifetime of oscillons has been worked out by [32,69], using
complex extension and Borel summation. As a result of the
above arguments, the correct value of c3 in the mass loss
rate expression (171) for the D ¼ 3 Klein-Gordon field is
c3 ¼ 92:2.

Although the expression (171) is correct for small values
of M, since it is based on the assumption that M depends
linearly on ", one should not apply it to mass values close
to Mmax. For example, substituting the value of the maxi-
mal mass Mmax ¼ 0:614=m into (171), we obtain�

1

M

dM

dt

�
M¼Mmax

¼ �5:0� 10�26m; (184)

which is 9 magnitudes smaller than the maximal mass loss
rate obtained in (168). The reason for this huge difference

is that according to the linear expressionM ¼ "Mð1Þ, to the

mass value Mmax ¼ 0:614=m belongs an " value of 0.350.
At that " we obviously get a significantly lower radiation
than at "max � 0:525, because of the exponential depen-
dence. Since expression (168) does not involve this ap-
proximation, we expect it to give a more reliable result.

G. Time dependence

Instead of using (171) to determine the time dependence
of the oscillaton mass, in order to obtain results that are
valid for larger mass values, we work out a method involv-
ing a higher order approximation for the " dependence of
the mass. Since the first two terms of (96) determine the
mass maximum to a good precision, we expect it to be a
reasonable approximation for close to maximal " values.
Including the scalar field mass m, we use

M ¼ "4�Dm2�DðMð1Þ þ "2Mð2ÞÞ: (185)

Taking the time derivative and comparing with (166),

dt

d"
¼ �"2

m
ð�1 þ �2"

2Þ exp
�
c2
"

�
; (186)

where

�1 ¼ 4�D

c1
Mð1Þ; �2 ¼ 6�D

c1
Mð2Þ: (187)

This can be integrated in terms of the exponential integral
function,

t� t0 ¼� "

120m
½20�1ðc22 þ c2"þ 2"2Þ

þ�2ðc42 þ c32"þ 2c22"
2 þ 6c2"

3 þ 24"4Þ�

� exp

�
c2
"

�
þ c32
120m

ð20�1 þ�2c
2
2ÞEi

�
c2
"

�
: (188)

Taking the expansion of the result, for small ",

t� t0 ¼ "4

m

�
�1

c2
þ 4�1

c22
"þ 20�1 þ �2c

2
2

c32

�
�
"2 þ 6"3

c2
þOð"4Þ

��
exp

�
c2
"

�
: (189)

Although the correction from the subleading term Mð2Þ
only appears in the third term in the bracket, its influence
for " � 0:5 is not negligible. It can be also seen that for
D ¼ 4 we have �1 ¼ 0, and (189) starts with an "6 term.
The elapsed time as a function of the oscillaton mass can be
obtained by expressing " from (185) and substituting into
(189).
For D ¼ 3 spatial dimensions it is natural to start with a

maximal mass configuration M ¼ Mmax, and wait for the
mass to decrease until the ratio M=Mmax reaches a given
value. Since the elapsed time t is inversely proportional to
the scalar field massm, in Table VII we list the product tm.
Next we address the question that how much of its mass

an initially maximal mass oscillaton loses during the age of
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the universe, which we take to be 1:37� 1010 years. In
Table VIII we list the resulting oscillaton masses in units of
solar masses (M�), as a function of the scalar field mass in
eV=c2 units. In order to facilitate comparison, we have
chosen the same scalar field masses as in Eq. (178) of [31].
The first two orders of the small-amplitude expansion
yielded mMmax ¼ 0:614 in Planck units for the maximal
mass of the oscillaton. Taking the scalar mass in
electron volts, this corresponds to Mmax ¼ 8:20�
10�11M� eV=ðmc2Þ, which was used in Table VIII. The
value mMmax ¼ 0:607 from the numerical solution of the
Fourier mode equations calculated in [51] corresponds to
Mmax ¼ 8:11� 10�11M� eV=ðmc2Þ in natural units,
which is the value used in [31]. Comparing our
Table VIII to the numbers in (178) of [31], after compen-
sating for the shift in the initial mass, it is apparent, that for
small scalar field masses, i.e. for m 	 10�10 eV=ðc2Þ,
oscillatons decay more slowly in [31]. The reason for this
is that [31] uses a linear dependence of the mass on the
small parameter, and consequently underestimates the ra-
diation rate close to the maximum mass, similarly as we

did in (184). For m � 10�5 eV=ðc2Þ oscillatons radiate
faster in [31], which is a consequence of the much larger
value of the constant c3 in the mass loss law (171) used
there. In spite of the differences, the overall picture re-
mains essentially the same. For all scalar field masses that
appear physically reasonable, a maximal mass oscillaton
loses a significant part of its mass during the lifetime of the
universe. This mass decrease is greater than 10% if m>
4:57 � 10�12 eV=ðc2Þ, but it remains below 50% if m<
1:85� 1015 eV=ðc2Þ. The above results support the possi-
bility that provided a scalar field exist in Nature, at least
some of the dark matter content of our Universe would be
in the form of oscillatons.

VI. CONCLUSIONS

We have derived an infinite set of radial ODEs determin-
ing the spatial field profiles of bounded solutions of time-
dependent, spherically symmetric Einstein-scalar field
equations in the limit when the scalar field amplitude tends
to zero. The lowest order equations are nothing but the D-
dimensional generalization of the Schrödinger-Newton
(SN) eqs. The SN eqs. admit globally regular, exponen-
tially decreasing solutions for spatial dimensions 2<D<
6. The eqs. corresponding to higher orders in the expansion
are linear inhomogenous ODEs. The class of solutions we
are interested in are oscillatons, which loose slowly their
mass by scalar radiation. In the small-amplitude expansion
we have obtained an asymptotic series for the spatially well
localized core of oscillatons and related their radiation
amplitude to that of the standing wave tail of exactly
time-periodic quasibreathers. For the class of symmetric
scalar potentials we have determined the amplitude of the
standing wave tail of time-periodic quasibreathers analyti-
cally adapting the method of Segur-Kruskal and using
Borel summation. We have explicitly computed the mass
loss rate for the Einstein-Klein-Gordon system in D ¼ 3,
4, 5.
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APPENDIX A: EINSTEIN TENSORAND THEWAVE
EQUATION

The components of the Einstein tensor in the general
spherically symmetric coordinate system (12) are

Gtt ¼ ðD� 1Þ
�
B;tC;t

4BC
� A

4C;r

�ðC;rÞ2
BC

�
;r

þ ðD� 2Þ A

2C

�
1þ ðC;tÞ2

4AC
� ðC;rÞ2

4BC

��
; (A1)

TABLE VII. The time necessary for the oscillaton mass to
decrease to M from the value Mmax at t ¼ 0. The value of tm
is given in Planck units, and also when the time is measured in
years and the scalar mass in electron volts.

Mmax�M
Mmax

" tm t
year

mc2

eV

0.01 0.482 5:35� 1016 1:12� 10�6

0.1 0.383 3:00� 1021 6:26� 10�2

0.2 0.320 1:50� 1026 3:12� 103

0.3 0.269 4:42� 1031 9:22� 108

0.31884 0.260 6:57� 1032 1:37� 1010

0.4 0.224 3:99� 1038 8:32� 1015

0.5 0.182 1:22� 1048 2:55� 1025

0.6 0.144 1:28� 1062 2:67� 1039

0.7 0.107 1:94� 1085 4:04� 1062

TABLE VIII. Mass M of an initially maximal mass oscillaton
after a period corresponding to the age of the universe for various
scalar field masses. The decrease in " from "max ¼ 0:525, and
the relative mass change rate ðMmax �MÞ=Mmax is also given.

mc2

eV "max � " M
M�

Mmax�M
Mmax

10�35 5:09� 10�20 8:20� 1024 1:41� 10�38

10�30 5:09� 10�15 8:20� 1019 1:41� 10�28

10�25 5:09� 10�10 8:20� 1014 1:41� 10�18

10�20 5:08� 10�5 8:20� 109 1:40� 10�8

10�15 0.0704 7:99� 104 0.0258

10�10 0.163 7:14� 10�1 0.129

10�5 0.223 6:30� 10�6 0.232

1 0.266 5:58� 10�11 0.319

105 0.297 5:00� 10�16 0.390

1010 0.322 4:52� 10�21 0.449

1015 0.342 4:12� 10�26 0.498
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Grr ¼ ðD� 1Þ
�
A;rC;r

4AC
� B

4C;t

�ðC;tÞ2
AC

�
;t

� ðD� 2Þ B

2C

�
1þ ðC;tÞ2

4AC
� ðC;rÞ2

4BC

��
; (A2)

Gtr ¼ �ðD� 1Þ
�

A

4
ffiffiffiffi
C

p
�
C;t

A
ffiffiffiffi
C

p
�
;r
þ B

4
ffiffiffiffi
C

p
�
C;r

B
ffiffiffiffi
C

p
�
;t

�
;

(A3)

G�1�1 ¼
C

4A;r

�ðA;rÞ2
AB

�
;r
� C

4B;t

�ðB;tÞ2
AB

�
;t

� ðD� 2Þ
�
1þ 1

4BC;t

�
BðC;tÞ2

A

�
;t

� 1

4AC;r

�
AðC;rÞ2

B

�
;r

þ 1

2
ðD� 5Þ

�
1þ ðC;tÞ2

4AC
� ðC;rÞ2

4BC

��
; (A4)

G�n�n ¼ G�1�1

Yn�1

k¼1

sin2�k: (A5)

The wave equation (4) takes the form

�;rr

B
��;tt

A
þ �;r

2ACD�1

�
ACD�1

B

�
;r
� �;t

2BCD�1

�
BCD�1

A

�
;t

� �U0ð�Þ ¼ 0: (A6)

APPENDIX B: SMALL-AMPLITUDE EXPANSION
IN SCHWARZSCHILD COORDINATES

In the main part of the paper we have used the spatially
conformally flat coordinate system C ¼ r2B. In this ap-

pendix we present the results of the " expansion in C ¼ r2

Schwarzschild area coordinates, in order to compare and to
point out the disadvantages. The time dependence of the
scalar field � and the metric components A and B up to "2

order are

� ¼ "2p2 cos�þOð"4Þ; (B1)

A ¼ 1þ "2a2 þ "2að2Þ2 cosð2�Þ þOð"4Þ; (B2)

B ¼ 1þ "2b2 þOð"4Þ; (B3)

where p2, a2, a
ð2Þ
2 , and b2 are functions of �. The functions

a2 and p2 are again determined by the coupled differential
equations (42) and (43), resulting in the Schrödinger-
Newton equations. However, b2 is determined as

b2 ¼ �

D� 2

da2
d�

; (B4)

instead of (41). The most important difference is the ap-
pearance of the cosð2�Þ term in (B2), causing an "2 order
oscillation in the metric component gtt. In spatially con-
formally flat coordinates there are only "4 order oscillating
terms in the metric components. The amplitude of the
oscillation is determined by the field equations as

að2Þ2 ¼ �a2 � b2: (B5)

Substituting into the expression (72) of the magnitude of
the acceleration of constant ðr; �1; �2 . . .Þ observers, to
leading order we get

a ¼ "3

2

�
da2
d�

þ dað2Þ2

d�
cosð2�Þ

�
: (B6)
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124033 (2004).
[48] X. Hernández, T. Matos, R.A. Sussman, and Y. Verbin,

Phys. Rev. D 70, 043537 (2004).
[49] F. S. Guzmán and L.A. Ureña-López, Astrophys. J. 645,
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