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We investigate the production and possible detection of gravitational waves stemming from the

electroweak phase transition in the early universe in models of minimal walking technicolor. In particular

we discuss the two possible scenarios in which one has only one electroweak phase transition and the case

in which the technicolor dynamics allows for multiple phase transitions.
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I. INTRODUCTION

Recent progress in the understanding of the phase dia-
gram of generic asymptotically free gauge theories [1–6]
has led to a renewed interest in this class of models [7,8].
For a recent review of the latest developments see [1].
Explicit examples of technicolor models, not in conflict
with electroweak precision tests, have been put forward in
[2–4,9,10]. The simplest incarnations of these models are
known as (ultra)minimal walking technicolor models [2–
4,10,11] and indicated in short by MWTand UMT, respec-
tively. The principal feature is that the gauge dynamics is
such that one achieves (near) conformal dynamics for a
small number of flavors and colors. It has been shown that
one can construct cold dark matter candidates via either the
lightest technibaryon, here termed technicolor interacting
massive particles [10–18], or new heavy leptons naturally
associated to the technicolor theory [19–21]. The techni-
color interacting massive particle is naturally of asymmet-
ric dark matter type [12–14], meaning that its relic density
does not have a thermal origin. Within the (U)MWT mod-
els such a relic density has been estimated in [10,11,15].
Weak isotriplet technicolor interacting massive particles
have been shown to be interesting candidates of dark
matter in [22].

Another interesting cosmological arena is the tempera-
ture driven electroweak phase transition within technicolor
theories [23–26]. We have investigated in much detail this
phase transition for the MWT and UMT models using the
low effective Lagrangian approach. We discovered that
there is a sizable region of the low energy effective theo-
ries’ parameters yielding a sufficiently strong first order
electroweak phase transition to drive, in principle, electro-
weak baryogenesis. We have also discovered quite a rich
phase diagram in the case of the UMTmodel [25] and more
generally whenever several underlying matter representa-
tions are simultaneously present in the technicolor dynam-
ics [24]. An interesting problem is if such a transition is
observable via detecting the cosmological gravitational

waves (GWs) produced at the transition itself. We will
describe the topic of GWs in more detail in the next
section. Whether or not these waves are observable de-
pends on the strength of the electroweak phase transition.
We will investigate this issue using the two concrete mod-
els discussed above. To be able to study the production of
GWs, we need to use a slightly improved treatment of the
phase transition compared to our earlier work. We confirm
the results of [23,25], and find that the MWT model
Lagrangian can support a sufficiently strong electroweak
phase transition leading to an observable signal at the Big
Bang Observer (BBO) [27]. An interesting feature of the
UMT model is the presence of multiple electroweak phase
transitions arising at different temperatures. This is due to
the interplay between two distinct chiral phase transitions,
one directly responsible for the electroweak symmetry
breaking and the other decoupled from the standard model
(SM). However, we find that the planned experiments
searching for GWs will have hard times discovering the
signal originating from this model and more sensitive ones
are needed.
It is, however, possible to increase the strength of the

first order phase transition by considering partially gauged
technicolor models [3,4]. They have, by construction, a
large number of techniflavors but only two of them are
gauged under the electroweak symmetry. This choice re-
duces the contribution to the electroweak precision pa-
rameters, while the large number of techniflavors
enhances the strength of the first order phase transition.
The nonrenormalizable axial anomalous contributions to
the effective low energy potential is partially responsible
for increasing the strength of the transition when increas-
ing the number of techniflavors. We will, however, inves-
tigate the spectrum of gravitational waves associated to the
electroweak phase transition stemming from generic mod-
els of partially gauged technicolor elsewhere. For other
simple models which predict potentially strong GWs, see,
for example, [28,29].
Summarizing, we investigate in detail the MWT and

UMT models, at the effective Lagrangian level, and show
that the MWT can lead to detectable gravitational waves
while the UMT cannot.
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II. GRAVITATIONALWAVES PRODUCTION
SETUP

In this section we lay the basics of the GW production
from strong first order phase transitions and we present the
relevant parameters of our theories needed for the calcu-
lation of the gravitational signal.

First of all, let us review how a first order phase tran-
sition takes place in the early universe and why it can
produce GWs. In a first order phase transition there are
two distinct minima separated by a potential barrier. The
phase transition can be thought to start taking place at the
moment where the two vacua are at the same energy level.
Immediately after, the true-vacuum state to be lowers its
potential level compared to the one of the false vacuum and
therefore despite the existence of the barrier, quantum
mechanically, there is a finite probability for the system
to pass from the false to the true vacuum. The phase
transition occurs through nucleation of bubbles of the
true vacuum [30]. (For a nice exposition see [31].) The
nucleation is possible due to quantum tunneling and ther-
mal fluctuations. The bubbles of the true vacuum expand
until they cover the whole space, which means that the
phase transitions have been concluded. For the production
of GWs a quadrupole moment is required, and since the
bubbles are spherical, and therefore have no quadrupole, it
seems at first sight that no production can take place.
However, there are at least two different ways of producing
GWs from bubbles. The first one is when bubbles collide.
Apparently in this case the spherical symmetry is de-
stroyed and GWs are produced. The second source of
GW production is due to turbulence of the plasma because
of the bubble’s motion.

For a given theory, there are basically two parameters
that determine the signal of the GWs produced [32–34].
The first one � is defined as the ratio of the latent heat � of
the phase transition at the bubble nucleation temperature
over the energy density of the false vacuum. Practically, the
latent heat is the energy released as the system tunnels
from the false to the true vacuum. It is given by

� ¼ ��V � T�s ¼ ��V þ T
@V

@T
; (1)

where V is the potential. Since we are interested in theories
where the phase transition takes place around the electro-
weak scale (� 250 GeV), the energy density is dominated
by the radiation part. The parameter� practically measures
how strong the phase transition is. As we shall discuss later
on, large �, i.e., strong first order phase transition, leads to
enhanced amplitude for the GW and therefore better de-
tectability. From this point of view, theories with strong
phase transitions are more interesting.

If roughly speaking � affects the amplitude of the GWs,
the second model dependent parameter, �, determines the
characteristic frequency. This is because ��1 corresponds
to the rate of change of the nucleation probability and

therefore has units of inverse time. This means that ��1

is approximately the duration of the phase transition, and
provided we know the velocity of the bubble expansion, it
determines the size of the bubble (having ignored the initial
size which is negligible compared to the final). Let us see
this explicitly. The bubble nucleation rate at nonzero tem-
perature is given by

� ’ T4e�SE ; (2)

where SE ¼ S3=T and

S3 ¼
Z

dr4�r2
�
1

2

�
d�

dr

�
2 þ Vð�; TÞ

�
(3)

is the Euclidean three-dimensional action. � is the bubble
profile. We are looking for a least action solution which has
an Oð3Þ symmetry. The equation of motion exhibiting
manifestly this symmetry and dictated by the minimization
of the Euclidean action is

d2�

dr2
þ 2

r

d�

dr
� dVð�; TÞ

d�
¼ 0; (4)

where r is the radial coordinate. The boundary conditions
are d�ðr ¼ 0Þ=dr ¼ 0, i.e., we require the solution to be
smooth at the center of the created bubble, and �ðr ¼
1Þ ¼ 0, meaning that far away from the bubble the system
is still in the false vacuum. If one imagines � to be the
position of a particle and r to be the time, the above
equation corresponds to the equation of motion of a parti-
cle within a potential �Vð�Þ with unit mass and a Stokes
type of drag force proportional to the velocity given by the
second term of the equation above. In general, the bounce
solution cannot be found analytically due to the complexity
of the equation. However, within the thin wall approxima-
tion a closed solution has been found. The thin wall ap-
proximation is valid when the difference in the height of
the two minima is small compared to the barrier. Let us call
�e the ‘‘escape point’’, i.e., the value of �ðr ¼ 0Þ of the
solution of Eq. (4). In the particular case where the two
minima are almost degenerate, �e should be very close to
the true minimum to reduce the work done against the drag
force: The particle starts from a nearly flat point in the
potential and therefore it would take some time (r in this
particular case) to build up its velocity, and then go down-
hill fast in order to come at rest again at the false minimum.
Practically, this means that within this approximation, the
friction term of Eq. (4) can be safely ignored and an
analytical result can be obtained. It also means that the
change from one minimum to the other happens ‘‘fast’’ and
the profile of� is quite sharp. This justifies the name ‘‘thin
wall.’’ Generally, if one is not sure whether or not the thin
wall approximation is valid, a numerical solution of Eq. (4)
is needed. The standard way of finding this numerical
solution (which is the one we also used in order to get
our results) is by guessing the value of the �e. We know
that �e should be between the two minima. If our guessed
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value of �e is closer to the true minimum that in reality,
solving Eq. (4) with the boundary conditions �ðr ¼ 0Þ ¼
�trial

e and d�ðr ¼ 0Þ=dr ¼ 0 will ‘‘overshoot’’ the solu-
tion, meaning that after some r the solution will start going
to �1. On the other hand, if �trial

e is closer to the false
minimum than the actual�e, the trial solution will ‘‘under-
shoot’’ the real solution, meaning that it will never reach
the false vacuum.

Having introduced the Euclidean action, � is defined as
the time derivative of the action�dSE=dt, evaluated at the
nucleation temperature that we shall introduce shortly. In
the early universe the expansion parameter a� T�1 and
therefore the Hubble parameter H ¼ ð1=aÞda=dt ¼
�ð1=TÞdT=dt. Consequently

�

H
¼ T

dSE
dT

¼ T
dðS3=TÞ

dT
: (5)

It is understood that everything is evaluated at the nuclea-
tion temperature. This temperature is defined as the tem-
perature where the rate of bubble nucleation per Hubble
volume and time is approximately one. This means

� ’ H4 ! T ln
T

mPl

’ �S3
4
; (6)

where mPl is the Planck mass and we used H ’ T2=mPl.
The above equation gives the bubble nucleation tempera-
ture. We shall denote this temperature by T� and the value
of the Hubble parameter at nucleation by H� below. Recall
that S3 is known once we have found the bounce solution,
and substitute it in Eq. (3).

The parameters � and � are the essential input parame-
ters we need from the specific model under investigation.
The strength and the frequency of the gravitational signal
produced by the first order phase transition are encoded in
these two parameters. Let us review the basic arguments of
how GWs are produced due to bubble collisions in a more
quantitative way, following the scaling argument presented
in [32]. GWs are produced through quadrupole (or higher
moment) emission. For the quadrupole, the GW power is

P ¼ ðG=5ÞhðQ:::TijÞ2i, where G is the Newton constant and

Qij is the quadrupole moment of the transverse and trace-

less part of the energy-momentum tensor. Note the depen-
dence of the power on the triple derivative of the
quadrupole with respect to time, something which is also
true in electromagnetism. The quadrupole moment has
dimensions of mass times distance squared and therefore
dimension analysis dictates that the triple derivative would
have the units of kinetic energy over time. Not all the
energy gained from tunneling from the false to the true
vacuum is in the form of kinetic energy. If k is the fraction
of the latent heat in the form of kinetic energy (the rest
being heat), Ekin � k��radðvb=�Þ3. As we have already
mentioned the latent heat is ��rad, and we also have multi-
plied by the volume of the bubble �ðvb=�Þ3 where vb is
the velocity of the bubble walls. From Friedmann’s equa-

tion we know that H2� �G�crit, and therefore we can trade
G for H�. In addition, �crit ¼ ð1þ �Þ�rad. Using all of the
above and keeping in mind that EGW ¼ P=�, we get that
�GW � ðH�=�Þ2k2�2v3

b=ð1þ �Þ2. This is as good as di-

mension analysis can get us.
The GW production due to bubble collisions was first

studied in [33,35–37]. These calculations were based on
numerical simulations of bubbles colliding using the so-
called envelope approximation, which consists of consid-
ering only the nonoverlapping regions of the collided
bubbles as sources of GW production. In such case [33]

�collh
2 ’ 1:1� 10�6k2

�
H�
�

�
2
�

�

�þ 1

�
2 v3

b

0:24þ v3
b

�
�
100

g�

�
1=3

; (7)

where g� is the number of relativistic degrees of freedom at
the nucleation temperature. Assuming a detonation, the
bubble wall velocity is given approximately by [38]

vbð�Þ ¼ 1=
ffiffiffi
3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2�=3

p
1þ �

: (8)

In addition [33]

kð�Þ ’ 1

1þ 0:715�

�
0:715�þ 4

27

ffiffiffiffiffiffi
3�

2

s �
: (9)

The peak frequency is

fcoll ’ 5:2� 10�6

�
�

H�

��
T�

100 GeV

��
g�
100

�
1=6

Hz: (10)

Analysis of two-bubble collisions suggests that the spec-
trum rises as f2:8, and f�1:8, below and above the peak
frequency, respectively [35].
The subject of the GW production from first order phase

transitions is still a field of active research and of continu-
ous developments. The authors of [39] developed a differ-
ent modeling of the problem. Instead of performing
numerical simulations of colliding bubbles, they consid-
ered the bubble wall velocity as a random variable.
Although in this approach the collisions are not formulated
in a deterministic way, the advantage is that the envelope
approximation in this case is not implemented. The spec-
trum is

�0
collh

2 ’ 9:8� 10�8v4
f

ð1� s3Þ2
ð1� s2v2

fÞ4
�
H�
�

�
2
�
100

g�

�
1=3

;

(11)

where vf ¼ ðvb � 1=
ffiffiffi
3

p Þ=ð1� vb=
ffiffiffi
3

p Þ, and s ¼
1=ðvb

ffiffiffi
3

p Þ. The peak frequency is

f0coll ’ 1:12� 10�5 �

H�
T�

100 GeV

�
g�
100

�
1=6 1

vb

Hz: (12)

Away from the peak frequency, the spectrum is multiplied
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by a factor 2:5f3r=ð1þ 0:5f2r þ f4:8r Þ, where fr ¼
f=ð0:87f0collÞ. Finally, new numerical simulations have

been done recently with multicolliding bubbles [40] sug-
gesting that the GW spectrum decreases like f�1 rather
than f�1:8. This calculation gives

�00
collh

2 ’ 1:84� 10�6k2
�
H�
�

�
2
�

�

�þ 1

�
2 v3

b

0:42þ v2
b

�
�
100

g�

�
1=3

; (13)

with peak frequency

f00coll ¼ 1:65� 10�5

�
�

H�

��
T�

100 GeV

��
g�
100

�
1=6

� 0:62

1:8� 0:1vb þ v2
b

Hz: (14)

The spectrum (according to this calculation) rises as f3 for
frequencies below the f00 and falls off as f�1 for frequen-
cies larger than f00.

As we have mentioned, the second source of GWs
during a first order phase transition can be turbulence.
When bubbles collide, the plasma is stirred up and devel-
ops the characteristics of a fully developed turbulence.
This means that a cascade of eddies is created in the
plasma. Large eddies (of the size of the system or the
stirring source) are formed and after a few revolutions,
they break down to smaller eddies until their size becomes
equal to the damping scale. Fluid (nonrelativistic) turbu-
lence has been found experimentally to agree with
Kolmogorov’s stochastic description. This description has
been implemented in calculations of GW production due to
turbulence [34,41–43], although the fluid in this case is
relativistic. Although in all these calculations, the
Kolmogorov spectrum is used in order to model turbu-
lence, there is a sort of different philosophy between, for
example, [41,42]. In the former, GWs inherit directly the
frequency of the eddies, while in the latter GWs inherit the
wave number of the eddies. It is easy to see that the two
approaches are not equivalent. The characteristic fre-
quency of the eddies is !l ¼ vs=l (with vs being the
velocity of the fluid in the eddy and l the characteristic
length of it). In the first approach, the GWs peak at the
frequency of the largest eddy which is !L ¼ vs=L (with L
being the size of the stirring source). On the other hand, the
wave number of the stirring source is k� 1=L. If the GWs
inherit the wave number instead of the frequency of the
eddies (as in the second approach), the GW spectrum
(because its dispersion relation is ! ¼ jkj) peaks at fre-
quencies! ¼ 1=L � vs=L ¼ !L (since vs � 1). Here we
follow the approach presented in [44] for the GW produc-
tion due to first order phase transitions in the early uni-
verse. In this framework the GWs inherit the wave number
spectrum. However, we have also checked that very similar
results are obtained when adopting the framework dis-

cussed in [43,45]. The GW density for vs < 0:5 is

�turbh
2 ¼ 6:7� 10�6v4

sv
2
b

�
H�
�

�
2

�
�
100

g�

�
1=3

8>>><
>>>:
ð 1
4v2

s
Þð ffpÞ3; f < 2vsfp

ð ffpÞ; 2vsfp < f < fp

ð ffpÞ�8=3; fp < f;

and for vs > 0:5 is

�turbh
2 ¼ 6:7� 10�6v4

sv
2
b

�
H�
�

�
2
�
100

g�

�
1=3

�
�
1

4v2
s

�
8>>>><
>>>>:

ð ffpÞ3; f < fp

ð ffpÞ�2; fp < f < 8v3
sfp

4v2
sð ffpÞ�8=3; 8v3

sfp < f;

where

vs ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k�

4=3þ k�

s
: (15)

The peak frequency fp is [44]

fturb ’ 8� 10�6 1

vb

�
�

H�

��
T�

100 GeV

��
g�
100

�
1=6

Hz: (16)

III. GRAVITATIONALWAVES FROM MINIMAL
WALKING TECHNICOLOR

The new dynamical sector we consider, which underlies
the Higgs mechanism, is an SU(2) technicolor gauge the-
ory with two adjoint technifermions [2]. The two adjoint
fermions may be written as

Qa
L ¼ Ua

Da

� �
L
; Ua

R; Da
R; a ¼ 1; 2; 3; (17)

with a being the adjoint color index of SU(2). The left-
handed fields are arranged in three doublets of the SUð2ÞL
weak interactions in the standard fashion. The condensate
is h �UUþ �DDi which correctly breaks the electroweak
symmetry. The model as described so far suffers from the
Witten topological anomaly [46]. However, this can easily
be addressed by adding a new weakly charged fermionic
doublet which is a technicolor singlet [3].
In [9] we constructed the effective theory for MWT

including composite scalars and vector bosons, their self-
interactions, and their interactions with the electroweak
gauge fields and the SM fermions. We have also used the
Weinberg modified sum rules [47] to constrain the low
energy effective theory. This extension of the SM was
thereby shown to pass the electroweak precision tests.
Near the finite temperature phase transition the relevant
degrees of freedom are the scalars and hence we will not
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consider the vector spectrum or that of the composite
fermions.

The relevant effective theory for the Higgs sector at the
electroweak scale consists, in our model, of a composite
Higgs and its pseudoscalar partner, as well as nine pseu-
doscalar Goldstone bosons and their scalar partners. These
can be assembled in the matrix

M ¼
�
�þ i�

2
þ ffiffiffi

2
p ði�a þ ~�aÞXa

�
E; (18)

which transforms under the full SU(4) group according to

M ! uMuT; with u 2 SUð4Þ: (19)

The Xa’s, a ¼ 1; . . . ; 9, are the generators of the SU(4)
group which do not leave the vacuum expectation value
(VEV) of M invariant.

The electroweak subgroup can be embedded in SU(4), as
explained in detail in [48]. The new Higgs Lagrangian is

L Higgs ¼ 1
2 Tr½D�MD�My� �V ðMÞ þLETC; (20)

where the potential reads

V ðMÞ ¼ �m2

2
Tr½MMy� þ 	

4
Tr½MMy�2

þ 	0 Tr½MMyMMy� � 2	00½DetðMÞ
þ DetðMyÞ�; (21)

and LETC contains all terms which are generated by the
extended technicolor (ETC) interactions, and not by the
chiral symmetry breaking sector.

We explicitly break the SU(4) symmetry in order to
provide mass to the Goldstone bosons which are not eaten
by the weak gauge bosons. Assuming parity invariance,

L ETC ¼ m2
ETC

4
Tr½MBMyBþMMy� þ � � � ; (22)

where the ellipses represent possible higher dimensional
operators, and B is a constant matrix [9] that commutes
with the SUð2ÞL � SUð2ÞR � Uð1ÞV generators.

The potential V ðMÞ is SU(4) invariant. It produces a
VEV which parametrizes the techniquark condensate, and
spontaneously breaks SU(4) to SO(4). In terms of the
model parameters the VEV is

v2 ¼ h�i2 ¼ m2

	þ 	0 � 	00 ; (23)

while the Higgs mass is

M2
H ¼ 2m2: (24)

The linear combination 	þ 	0 � 	00 corresponds to the
Higgs self-coupling in the SM. The three pseudoscalar
mesons ��, �0 correspond to the three massless
Goldstone bosons which are absorbed by the longitudinal
degrees of freedom of theW� and Z boson. The remaining
six uneaten Goldstone bosons are technibaryons, and all

acquire tree-level degenerate masses through (not yet
specified) ETC interactions [49]:

M2
�UU

¼ M2
�UD

¼ M2
�DD

¼ m2
ETC: (25)

The remaining scalar and pseudoscalar masses are

M2
� ¼ 4v2	00; M2

A� ¼ M2
A0 ¼ 2v2ð	0 þ 	00Þ (26)

for the technimesons, and

M2
~�UU

¼ M2
~�UD

¼ M2
~�DD

¼ m2
ETC þ 2v2ð	0 þ 	00Þ; (27)

for the technibaryons. Reference [51] provides further in-
sight into some of these mass relations.

A. Effective potential for MWT

The electroweak phase transition is studied by using the
effective potential method. We include temperature depen-
dent corrections of the effective potential up to one-loop
level and ring resummation following Arnold and Espinosa
[52]. We follow otherwise the conventions of [23] but use a
slightly different method for estimating the temperature
dependent one-loop correction, which involves a combina-
tion of the high temperature and low temperature asymp-
totic series [53] (see the Appendix for details). This
improves the potential at low temperatures. This is neces-
sary here since strong GW production requires strong first
order phase transitions, which typically means that the
critical temperature is much smaller than the electroweak
scale. Moreover, we use the actual nucleation temperature
T�, which can be considerably smaller than the critical
temperature Tc (where the symmetric phase and broken
phase vacua are exactly degenerate) for strong first order
transitions.
We include in the analysis the heaviest standard model

particles, the top quark and the weak gauge bosons. In
addition, we consider the fourth family leptons, and a few
composite scalar states that are made of techniquarks. The
scalar states are expected to be the lightest states of the
technicolor theory and have masses near the electroweak
scale with strong coupling to the chiral condensate, which
is identified with the expectation value of the composite
Higgs. Hence they are the most prominent states for the
dynamics of the electroweak phase transition. Of the two
scenarios presented in [23]—light and heavy ETC
masses—we only consider the latter one since it was
seen to produce a stronger phase transition, potentially
leading to stronger GWs. In this scenario the baryonic
Goldstone bosons of the SUð4Þ ! SOð4Þ chiral symmetry
breaking are decoupled from the phase transition because
of an ETC mass contribution that is much larger than the
electroweak scale. The remaining eight scalar states in-
clude the composite Higgs � and its pseudoscalar partner
� as well as the Goldstone bosons � that are eaten by the
gauge bosons, and their scalar partners A.
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The effective potential is then calculated as outlined in
the Appendix and in [23]. We include the states listed
above, except for the zero-temperature one-loop correc-
tion, where we leave out the (negligible but) infrared
divergent contribution from the massless Goldstone
bosons.

B. Results

Let us first comment on the parameter space. One of the
couplings m2, 	, 	0, and 	00 of the Higgs sector in the
effective theory is fixed by the requirement v ¼ 246 GeV,
while the rest can be expressed in terms of the Higgs mass
MH, the massM� of the� particle, and the massMA of the
scalar partners of the Goldstone bosons. Additional free
parameters in our setup are the masses of the fourth family
leptons which we assume to be equal and denote by Mf.

We follow [23] and present the results on the MH-M�

plane while keeping MA and Mf fixed at reference values

150 GeV and 350 GeV. Figure 1 shows our results for the
nucleation temperature T� (left) and the strength of the
phase transition ��=T�. We compared these results to our
earlier estimate [23] for the strength �c=Tc of the phase
transition at the critical temperature, where the two vacua
are exactly degenerate. There is a notable difference only
when the first order transition is very strong,��=T� * 1. In
this case typically ��=T� >�c=Tc. The region where the
transition is strong enough to drive electroweak baryo-
genesis (�=T * 1) is practically unchanged. Figure 2
shows the results for the parameter � characterizing the
produced latent heat (left), and the parameter �=H� char-
acterizing the rapidness of the transition (right), which are
specifically important for the production of GWs. It is seen
that the values of the parameters are strongly correlated. As
in other models (see, for example, [28]), strong first order
transition, with sizeable ��=T�, generally means low
�=H� and large �, which are required for eminent produc-
tion of GWs. The phase transition is at its strongest near a
critical line on the MH-M� plane, where (within our ap-
proach) T� ! 0 and ��=T� ! 1. However, values of � *
0:5 (and �=H� ’ 50 . . . 1000) that are required [32] for the
waves to be detectable at the Laser Interferometer Space
Antenna (LISA) [54] are obtained only in a very narrow
slice of the parameter space.

We observe that the value assumed by �=H� increases
substantially as the strength of the phase transition de-
creases. We find, for strong phase transitions, agreement
with the general prediction for this ratio put forward in
[37,55], while for weak phase transitions we find agree-
ment with the thin wall approximation.

In Fig. 3 we have plotted the gravitational spectrum of a
MWT theory with � ¼ 0:2, �=H� ¼ 300, and T� ¼
60 GeV. This is an example of a strong first order phase
transition with ��=T� ’ 4, which can be obtained without
fine-tuning the parameter values to be unnaturally close to
the critical line. This set of numbers can be derived from

the effective potential if we choose, for example, MA ¼
Mf ¼ 150 GeV, MH ’ 150 GeV, and M� ’ 583 GeV.

For these values of MH, MA, and Mf the phase transition

disappears forM� * 592 GeV, so the chosen value ofM�

lies within 10 GeV from the critical line.
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FIG. 1. The nucleation temperature T� (left column) and the
strength of the transition ��=T� (right column) for MWT in the
MH-M� plane for MA, Mf ¼ 150 GeV and 350 GeV, as indi-
cated in the labels. In the white regions the phase transition is
either second order, very weakly first order, or does not occur at
all.
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IV. GRAVITATIONALWAVES FROM MULTIPLE
PHASE TRANSITIONS

An interesting scenario which may arise in strongly
interacting extensions of the standard model is that there
can be several phase transitions at temperatures close to the
electroweak scale [24]. Only one of these transitions needs
to break the electroweak symmetry, while all of them can
produce GWs, which can lead to a complex GW spectrum
with several peaks from the various transitions. We shall

consider here the case of UMT [10], where chiral symme-
try breaking can proceed in two (or possibly three [24])
steps, related to the two sectors of matter in this theory.
In general, the two sectors of UMT can talk to each

other, since the matter in the different sectors interact via
the strong technicolor dynamics. This interplay is realized
at the effective Lagrangian level by terms which involve
composite bound states from both sectors. To simplify the
discussion on the production of GWs, we shall here omit
these terms (set 
 ¼ 0 ¼ 
0 below) and assume that the
two sectors are decoupled. Then the electroweak gauge
symmetry feels only one of the sectors (the one with the
order parameter �4 below), while the other (the one with
the order parameter �2) is decoupled from the electroweak
dynamics. In this case, the formalism for GW production
presented above is directly applicable for UMT. The effect
of the interactions between the two sectors was studied in
[24,25]. The interactions were found to lead to a rich phase
diagram with the possibility of breaking the electroweak
symmetry twice (and restoring it once) as the universe
cools down, while the phase transitions were typically
weaker than in the decoupled case. Hence we expect that
also the produced GWs are at their strongest in the scenario
investigated here. However, generally even within UMT,
there is the possibility of having three phase transitions and
consequently a richer GW spectrum than the one presented
here.
Let us make a brief general comment on multiple (first

order) transitions in the early universe. An important ques-
tion is if the transitions can be treated separately or if there
are bubbles related to different transitions present simulta-
neously. Recall from the discussion above that the nuclea-
tion probability density is �T4e�SE and consequently the
time scale of nucleation is given by the inverse of � �
�dSE=dt. The scale of change in temperature is thus
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FIG. 3 (color online). The density of produced GWs �GW ¼
�GWh2 in the case of the MWTas a function of the frequency (in
Hz). Dashed lines represent the expected sensitivity of LISA and
BBO, while solid lines represent the gravitational spectrum of
bubble collision and turbulence combined. The three solid lines
from thinner to thicker correspond to the gravitational spectrum
with bubble collisions given, respectively, by Eqs. (7), (13), and
(11). The values of the parameters are given in the text.

150 200 250 300
200

300

400

500

600

700

800

MH GeV

M
G

eV
MA 150. GeV M f 150. GeV

0.001

0.002

0.004

0.01

0.02

0.04

0.1
0.2

0.4

150 200 250 300
200

300

400

500

600

700

800

MH GeV

M
G

eV

MA 150. GeV M f 150. GeV

40 000
20 000

10 000

4000
2000

1000
400

200

H

150 200 250 300
200

300

400

500

600

700

800

MH GeV

M
G

eV

MA 150. GeV M f 350. GeV

0.001

0.0040.02

0.1

150 200 250 300
200

300

400

500

600

700

800

MH GeV

M
G

eV

MA 150. GeV M f 350. GeV

40 00010 0002000

400H

150 200 250 300
200

300

400

500

600

700

800

MH GeV

M
G

eV

MA 350. GeV M f 150. GeV

0.001

0.004

0.02

0.1

150 200 250 300
200

300

400

500

600

700

800

MH GeV

M
G

eV

MA 350. GeV M f 150. GeV

40 000

10 000

2000

400

H

150 200 250 300
200

300

400

500

600

700

800

MH GeV

G
eV

MA 350. GeV M f 350. GeV

0.0040.02

0.1

150 200 250 300
200

300

400

500

600

700

800

MH GeV

M
G

eV

MA 350. GeV M f 350. GeV

40 000

10 000

2000

400

H

FIG. 2. The parameters � (left column) and �=H� (right
column), which characterize the GW production, for MWT in
the MH-M� plane for MA, Mf ¼ 150 GeV and 350 GeV, as
indicated in the labels.
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�T � 1

�

dT

dt
� T�

H�
�

: (28)

Since we will have �=H� > 100 (typically even �=H� >
1000) and T� is around a few hundred GeV, �T is less than
a few GeV. Hence the transitions can be practically treated
as separate, unless the underlying dynamics forces them to
be exactly simultaneous [24,25]. Notice that the nucleation
probability depends exponentially on SE; therefore the
transition will end very quickly when the temperature
difference with respect to the start of nucleation exceeds
T�H�=�.

A. Effective theory for UMT

The model proposed in [10] consists of an SU(2) gauge
group with two Dirac fermions belonging to the funda-
mental representation and two Weyl fermions belonging to
the adjoint representation. In order not to be in conflict with
the electroweak precision tests only the fundamental fer-
mions are charged under the electroweak symmetry.

We shall only consider the effect of the composite scalar
mesons which are expected to be the lightest particles in
the theory. Their masses have the strongest dependence on
the vacuum expectations values of the Higgs fields.

The relevant degrees of freedom are efficiently collected
in two distinct matrices, M4 and M2, which transform as
M4 ! g4M4g

T
4 and M2 ! g2M2g

T
2 with g4 2 SUð4Þ and

g2 2 SUð2Þ. Both M4 and M2 consist of a composite
isoscalar and its pseudoscalar partner together with the
Goldstone bosons and their scalar partners

M4 ¼
�
�4 þ i�4

2
þ ffiffiffi

2
p ði�i

4 þ ~�i
4ÞXi

4

�
E4;

i ¼ 1; . . . ; 5; (29)

M2 ¼
�
�2 þ i�2ffiffiffi

2
p þ ffiffiffi

2
p ði�i

2 þ ~�i
2ÞXi

2

�
E2; i ¼ 1; 2:

(30)

The notation is such that X4 and X2 are the broken
generators of SU(4) and SU(2), respectively. Also �4 and
�4 are the composite Higgs and its pseudoscalar partner,

while �i
4 and ~�i

4 are the Goldstone bosons and their
associated scalar partners. For SU(2) one simply substi-
tutes the index 4 with the index 2.

To describe the interaction with the weak gauge bosons
we embed the electroweak gauge group in SU(4) as done in
[48]. Because of the choice of the electroweak embedding
the weak interactions explicitly reduce the SU(4) symme-
try to SUð2ÞL � Uð1ÞY � Uð1ÞTB which is further broken to
Uð1Þem � Uð1ÞTB via the technicolor interactions. Uð1ÞTB
is the technibaryon number related to the fundamental
fermions. The remaining SUð2Þ � Uð1Þ spontaneously
breaks, via the extra technifermion condensates, to

SOð2Þ � Z2. Here SOð2Þ ffi Uð1Þ is the technibaryon num-
ber related to the adjoint fermions.
We are now in a position to write down the effective

Lagrangian. It contains the kinetic terms and a potential
term

L ¼ 1
2 Tr½D�M4D

�My
4 � þ 1

2 Tr½@�M2@
�My

2 �
�V ðM4;M2Þ; (31)

where the potential is

V ðM4;M2Þ ¼ �m2
4

2
Tr½M4M

y
4 � þ

	4

4
Tr½M4M

y
4 �2

þ 	0
4 Tr½M4M

y
4M4M

y
4 � �

m2
2

2
Tr½M2M

y
2 �

þ 	2

4
Tr½M2M

y
2 �2 þ 	0

2 Tr½M2M
y
2M2M

y
2 �

þ 


2
Tr½M4M

y
4 �Tr½M2M

y
2 �

þ 4
0½ðdetM2Þ2PfM4 þ H:c:�: (32)

We shall from now on set 
 ¼ 0 ¼ 
0 so that the two
sectors are decoupled.
Once M4 develops a vacuum expectation value the elec-

troweak symmetry breaks and three of the eight Goldstone
bosons—�0, �þ, and ��—will be eaten by the massive
gauge bosons. In terms of the parameters of the theory the
vacuum states h�4i ¼ v4 and h�2i ¼ v2 which minimize
the potential are

m2
4 ¼ ð	4 þ 	0

4Þv2
4; (33)

m2
2 ¼ ð	2 þ 2	0

2Þv2
2: (34)

For the model to be phenomenologically viable some of
the Goldstone bosons must acquire a mass. Here we pa-
rametrize the ETC interactions by adding at the effective
Lagrangian level the operators needed to give the un-
wanted Goldstone bosons an explicit mass term.
The effective ETC Lagrangian breaks the global

SUð4Þ � SUð2Þ � Uð1Þ symmetry. To construct the re-
quired ETC terms at the effective Lagrangian level, we
find it useful to split M4 ðM2Þ—form invariant under U(4)
(U(2))—as follows:

M4 ¼ ~M4 þ iP4; and M2 ¼ ~M2 þ iP2; (35)

with

~M 4 ¼
�
�4

2
þ i

ffiffiffi
2

p
�i

4X
i
4

�
E4;

P4 ¼
�
�4

2
� i

ffiffiffi
2

p
~�i

4X
i
4

�
E4; i ¼ 1; . . . ; 5;

(36)
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~M 2 ¼
�
�2ffiffiffi
2

p þ i
ffiffiffi
2

p
�i

2X
i
2

�
E2;

P2 ¼
�
�2ffiffiffi
2

p � i
ffiffiffi
2

p
~�i
2X

i
2

�
E2; i ¼ 1; 2:

(37)

~M4ð ~M2Þ as well as P4ðP2Þ are separately SU(4) (SU(2))
form invariant. A set of operators able to give masses to the
electroweak neutral Goldstone bosons is

LETC ¼ m2
4;ETC

4
Tr½ ~M4B4

~My
4B4 þ ~M4

~My
4 �

þm2
2;ETC

4
Tr½ ~M2B2

~My
2B2 þ ~M2

~My
2 �

�m2
1;ETC½PfP4 þ PfPy

4 �

�m2
1;ETC

2
½detðP2Þ þ detðPy

2 Þ�; (38)

where B4 is the diagonal SU(4) generator that commutes
with the electroweak generators, and B2 ¼ �3 is the diago-
nal generator of SU(2). The masses of the two Higgs
particles

M2
H4

¼ 2m2
4 ¼ 2ð	4 þ 	0

4Þv2
4; (39)

M2
H2

¼ 2m2
2 ¼ 2ð	2 þ 2	0

2Þv2
2 (40)

are unaffected by the addition of the ETC low energy
operators. The rest of the spectrum is

M2
�UD

¼ m2
4;ETC; M2

�		
¼ m2

2;ETC;

M2
�4

¼ m2
1;ETC ¼ M2

�2

(41)

for the pseudoscalar partners and the Goldstone bosons that
are not eaten by the massive vector bosons, and

M2
~�UD

¼ M2
~�0 ¼ M2

~�� ¼ 2ð	0
4v

2
4 þ 
0v4

2Þ þm2
1;ETC;

(42)

M2
~�		

¼ 4v2
2ð	0

2 þ 
0v2
4Þ þm2

1;ETC (43)

for the scalar partners.

B. Effective potential analysis for UMT

For the effective potential in UMT we use the same
approach as outlined above for MWT: we include one-
loop corrections with ring resummation for the bosonic
degrees of freedom as presented in the Appendix and in
[25]. The particle spectrum includes the top quark, the
weak gauge bosons, and the lowest scalar states of the
theory presented above. For UMT the ETC mass scale
must be of the order of the electroweak scale in order to
obtain first order transitions.

The effective Lagrangian of scalar particles in UMT
includes several free parameters. However, since we study
only the case where the potentials related to the fundamen-

tal and adjoint techniquarks are decoupled, we have 
 ¼
0 ¼ 
0 and each of the transitions depends only on a
certain subset of parameters. The potential of the SU(4)
sector (fundamental quarks) is characterized by the Higgs
mass MH4

, the masses of the scalar partners of the

Goldstone bosons, and the ETC masses. Since this sector
breaks the electroweak symmetry, the zero-temperature
VEV v4 must equal the electroweak scale 246 GeV. The
dependence on the ETC masses is relatively weak, and we
fix all of them to be 150 GeV. For the (dynamical contri-
bution to the) masses of the scalar partners of the
Goldstone bosons we use

ð�M�4
Þ2 � M2

~�UD
�m2

1;ETC ¼ 2	0
4v

2
4: (44)

Similar parameters characterize the potential of the SU(2)
sector. In addition to the Higgs mass MH2

and

ð�M�2
Þ2 � M2

~�		
�m2

1;ETC ¼ 4	0
2v

2
2 (45)

the zero-temperature value of the condensate v2 is now a
free parameter (while v4 was fixed to 246 GeV). Notice
also that since only the fundamental techniquarks are
charged under the electroweak gauge symmetry, the
SUð2Þ ! SOð2Þ transition is independent of the standard
model parameters.

C. Results

The results for UMT are shown in Fig. 4. The rows from
top to bottom show the behavior of the nucleation tem-
perature T�, the ratio ��=T� at the nucleation temperature,
the parameter � characterizing the produced latent heat,
and the parameter�=H� characterizing the rapidness of the
transition, respectively. The left-hand plots give the pa-
rameters for the SUð4Þ ! Spð4Þ transition (the one coupled
to the electroweak), while the right-hand plots are for the
SUð2Þ ! SOð2Þ transition.
In general the plots are very similar as in MWT above.

The main difference is that both of the transitions here are
weaker than in MWT: in particular, the crucial parameter
� & 0:02. Therefore, it seems unlikely that detectable
GWs could be produced in the UMT model. The maximal
value of the � parameter can be slightly enhanced by
optimizing the choice for the ETC masses, possibly by
adding new ETC operators, and by increasing the value of
v2 (which was fixed to 300 GeV above in Fig. 4).
Despite the weakness of the transition, there is however

a very intriguing scenario. UMT admits successive phase
transitions that can be of first order and occur at different
temperatures. This in principle means that the gravitational
spectra of the two (or more in general) phase transitions
can peak at well separated frequencies. If the parameters �
and � are such that the spectrum of one phase transition
does not completely cover the one of the second, then
multiple peaks can be potentially seen. Such a case is
depicted in Fig. 5. In this case, one phase transition, i.e.,

GRAVITATIONAL WAVES FROM TECHNICOLOR PHYSICAL REVIEW D 81, 064027 (2010)

064027-9



the one associated to �4 (the one breaking the electroweak
symmetry), has � ¼ 0:025, �=H� ¼ 3000, and T� ¼
120 GeV, while the second phase transition associated to
�2 has � ¼ 0:005, �=H� ¼ 200, and T� ¼ 200 GeV. This
set of values can be deduced from the effective potential
with MH4

’ 130 GeV and �M�4
’ 350 GeV for the ‘‘4

sector’’ and with MH2
’ 180 GeV and �M�4

’ 635 GeV

for the ‘‘2 sector.’’ The ETC masses were 150 GeV and
v2 ¼ 300 GeV as above. As seen from Fig. 4 this is a

rather optimal scenario with a low Higgs mass MH4
and

parameters for the�2 transition rather near the critical line.
In Fig. 5 we see the existence of multiple peaks that span
almost 2 orders of magnitude in frequency (from 10�3 to
10�1). The peaks at higher frequency are due to the tran-
sition in the �4 sector, which also breaks the electroweak
symmetry, while the lower peaks are produced by the �2

transition. Unfortunately as we see, the spectrum lies be-
low the expected sensitivity of BBO. As mentioned above,
the spectrum can be enhanced by choosing optimal values
for the ETC masses and the vacuum expectation value v2.
However, in all the configurations which we have checked,
this does not change the conclusion: the nontrivial structure
of the spectrum is hardly visible at BBO. Nevertheless, this
is an interesting case for two reasons (apart from hoping for
a better sensitivity of BBO). First, one can consider an
underlying theory which has a larger number flavors than
UMT. The presence of extra fermions in the theory can
strengthen the phase transitions. In such a case, multiple
peaks can be above the BBO sensitivity. Second, the esti-
mation of GWs from first order phase transitions is far from
conclusive. For example, apart from bubble collision and
pure turbulence as we considered here, there is a possibility
of producing GWs via primordial magnetic fields [56–58],
with potentially larger amplitudes.

V. CONCLUSION

In this paper we studied the production of GWs from
first order phase transitions of theories that dynamically
break the electroweak symmetry. Although our setup is
general, we looked, in particular, at two different models,
i.e., the minimal walking technicolor and the ultraminimal
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FIG. 5 (color online). The density of produced GWs �GW ¼
�GWh2 in the case of the UMT as a function of the frequency (in
Hz). Dashed lines represent the expected sensitivity of LISA and
BBO, while solid lines represent the gravitational spectrum of
bubble collision and turbulence combined. The thin and thick
solid lines correspond to the gravitational spectrum with bubble
collisions given, respectively, by Eqs. (13) and (11). The spec-
trum from the �4 (electroweak) transition peaks at roughly f ¼
0:05 Hz, while the spectrum from the �2 transition peaks around
f ¼ 0:005 Hz. The values of the parameters are given in the text.
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FIG. 4. The nucleation temperature T�, the strength of the
phase transition ��=T�, the parameter �, and the parameter
�=H� (from top to bottom) in the MH-�M� plane for the ‘‘4
transition’’ (left) and for the ‘‘2 transition’’ (right) of UMT. We
fixed ETC masses at 150 GeV and used v2 ¼ 300 GeV.
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technicolor, that have been studied extensively. For MWT
we found that there is parameter space, at the effective
Lagrangian level, for a sufficiently strong first order phase
transition that produces GWs detectable at BBO. In this
case, however, the phase transition is so strong that if a
baryogenesis mechanism takes place, sphalerons would
not be able to wash out the produced asymmetry. First
principle lattice simulations will be able to disentangle,
in the near future, the order of the phase transition of the
underlying gauge theory. We should also stress that the low
energy effective theory used here for the MWT Lagrangian
can also describe the low energy effective theory for an
SO(4) gauge theory with 2 Dirac fermions in the funda-
mental representation of the gauge group. The latter gauge
theory has two advantages over the traditional SU(2) gauge
theory with fermions in the adjoint representation. It is not
expected to be conformal [59] and does not feature
technigluons-techniquark bound states [22] with poten-
tially dangerous fractionally charged states. We have also
discovered that, for reasonable values of the parameters,
UMT seems not to be able to provide a very strong first
order phase transition. However, UMT undergoes succes-
sive phase transitions, which can produce a gravitational
spectrum of multiple peaks spanning 2 orders of magnitude
in the frequency. This provides a very characteristic signal
that can differentiate strongly coupled theories with mul-
tiple first order phase transitions.
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APPENDIX: THE EFFECTIVE POTENTIAL

The effective potential is obtained by adding to the tree-

level potential Vð0Þ the one-loop correction Vð1Þ

Vð�Þ ¼ Vð0Þð�Þ þ Vð1Þ
T¼0ð�Þ þ Vð1Þ

T ð�; TÞ: (A1)

For brevity, we denote by � the expectation values of the
Higgs field(s) that characterize the techniquark condensate
(s). For MWT we have a single condensate �, while for
UMT we identify � ¼ f�4; �2g where �i refer to the
condensates of the two sectors in UMT. The standard
zero-temperature one-loop contribution to the potential
reads

Vð1Þ
T¼0 ¼

1

64�2

X
i

�nifiðMið�ÞÞ; (A2)

where the index i runs over all of the mass eigenstates and
�ni is the multiplicity factor for a given scalar particle nb,
while for Dirac fermions it is �4 times the multiplicity
factor of the specific fermion nf. The function fi is

fi ¼ M4
i ð�Þ

�
log

M2
i ð�Þ

M2
i ðvÞ

� 3

2

�
þ 2M2

i ð�ÞM2
i ðvÞ; (A3)

where M2
i ð�Þ is the background dependent mass term of

the ith particle and �T¼0 ¼ v.
The one-loop, ring-improved, correction can be divided

into fermionic, scalar, and vector contributions,

Vð1Þ
T ¼ Vð1Þ

T f þ Vð1Þ
T b þ Vð1Þ

T gauge: (A4)

We use the extrapolation method introduced in [53] for
evaluating the one-loop correction. At high temperatures
we expand in Mi=T, which gives for the fermions

Vð1Þ
T f;hðNÞ ¼ 2

T2

24

X
f

nfM
2
fð�Þ þ

1

16�2

X
f

nfM
4
fð�Þ

�
�
log

M2
fð�Þ
T2

� cf

�

� 2
X
f

nfM
2
fð�ÞT2

XN
l¼2

��M2
fð�Þ

4�2T2

�
l

� ð2l� 3Þ!!�ð2l� 1Þ
ð2lÞ!!ðlþ 1Þ ð22l�1 � 1Þ; (A5)

where cf ’ 2:63505. For the bosons (including the elec-

troweak gauge bosons, for which nb ¼ 3) we write instead

Vð1Þ
T b;hðNÞ ¼ T2

24

X
b

nbM
2
bð�Þ �

T

12�

X
b

nbM
3
bð�; TÞ

� 1

64�2

X
b

nbM
4
bð�Þ

�
log

M2
bð�Þ
T2

� cb

�

þX
b

nb
M2

bð�ÞT2

2

XN
l¼2

��M2
bð�Þ

4�2T2

�
l

� ð2l� 3Þ!!�ð2l� 1Þ
ð2lÞ!!ðlþ 1Þ ; (A6)

where cb ’ 5:407 62. At low temperatures we use for both
bosons and fermions the asymptotic expansion of the one-
loop correction

Vð1Þ
T lðNÞ ¼ �nie

�Mið�Þ=T
�
Mið�ÞT
2�

�
3=2 XN

l¼0

1

2ll!

�ð5=2þ lÞ
�ð5=2� lÞ

�
�

T

Mið�Þ
�
l
: (A7)

The extrapolated one-loop correction reads for each
fermion

Vð1Þ
T f ¼ �

�
xf �

Mfð�Þ2
T2

�
Vð1Þ
T f;hðN ¼ 4Þ

þ 4�

�
Mfð�Þ2

T2
� xf

�
ðVð1Þ

T lðN ¼ 3Þ � 
fÞ; (A8)

where� is the step function. The parameter xf ’ 2:216 05

GRAVITATIONAL WAVES FROM TECHNICOLOR PHYSICAL REVIEW D 81, 064027 (2010)

064027-11



and the small correction 
f ’ �7:904 54� 10�4 were

fixed by requiring the function to be continuous and differ-
entiable with respect toMf atM

2
f=T

2 ¼ xf. For the scalars

we resum the contribution of the ring diagrams. Following
Arnold and Espinosa [52] we write

Vð1Þ
T b ¼ �

�
xb �

Mfð�Þ2
T2

�
Vð1Þ
T b;hðN ¼ 3Þ

þ�

�
Mbð�Þ2

T2
� xb

�
ðVð1Þ

T lðN ¼ 3Þ � 
bÞ

þ nbT

12�
ðM3

bð�Þ �M3
bð�; TÞÞ; (A9)

where xb ’ 9:471 34, 
b ’ 3:1931� 10�4, and Mbð�; TÞ
is the thermal mass which follows from the tree-level plus
one-loop thermal contribution to the potential. For the

gauge bosons we set nb ¼ 3:

Vð1Þ
T gb ¼ �

�
xb �

Mfð�Þ2
T2

�
Vð1Þ
T b;hðN ¼ 3Þ

þ�

�
Mbð�Þ2

T2
� xb

�
ðVð1Þ

T lðN ¼ 3Þ � 
bÞ

þ T

12�
ðM3

gbð�Þ �M3
L;gbð�; TÞÞ: (A10)

HereML;gbð�; TÞ is the longitudinal mass of a given gauge

boson and we have ML;gbð�; T ¼ 0Þ ¼ Mgbð�Þ, while the
transverse mass receives only a suppressed temperature
dependent correction which we have neglected.
For a more complete presentation with explicit expres-

sions for the masses see [23,25].
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