
Triangulated loop quantum cosmology: Bianchi IX universe and inhomogeneous perturbations

Marco Valerio Battisti,* Antonino Marcianò,† and Carlo Rovelli‡
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We develop the triangulated version of loop quantum cosmology, recently introduced in the literature.

We focus on the dipole cosmology, where space is a three-sphere and the triangulation is formed by two

tetrahedra. We show that the discrete fiducial connection has a simple and appealing geometrical

interpretation and we correct the ansatz on the relation between the model variables and the

Friedmann-Robertson-Walker scale factor. The modified ansatz leads to the convergence of the

Hamiltonian constraint to the continuum one. We then ask which degrees of freedom are captured by

this model. We show that the model is rich enough to describe the (anisotropic) Bianchi IX universe, and

give the explicit relation between the Bianchi IX variables and the variables of the model. We discuss the

possibility of using this path in order to define the quantization of the Bianchi IX universe. The model

contains more degrees of freedom than Bianchi IX, and therefore captures some inhomogeneous degrees

of freedom as well. Inhomogeneous degrees of freedom can be expanded in representations of the SUð2Þ
Bianchi IX isometry group, and the dipole model captures the lowest integer representation of these,

connected to hyperspherical harmonic of angular momentum j ¼ 1.
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I. INTRODUCTION

Loop quantum cosmology (LQC) [1] is the most remark-
able application of the loop approach to quantum gravity.
Its main result is a robust indication that the cosmological
singularity that appears in classical general relativity is
removed by quantum effects [2]. While the physical basis
of this results is explicitly grounded on the physical dis-
creteness of quantum geometry which is predicted [3] by
full loop quantum gravity (LQG) [4], the precise relation
between LQC and LQG, on the other hand, has not been
fully clarified yet [5]. To shed light on this issue, a finite
dimensional truncation of LQG, which leads naturally to
LQC in the Born-Oppenheimer approximation, was intro-
duced in [6]. The idea is to fix a coarse triangulation of
physical space and consider a discretization and a quanti-
zation of general relativity on this triangulation. This pro-
cedure leads to a truncated version of LQG, interpreted as a
description of a finite number of large-scale (namely cos-
mological) degrees of freedom. In the simplest version of
the theory, called the dipole cosmology, compact physical
space is triangulated with two tetrahedra. It was shown in
[6] that this model leads to a LQC-like dynamics in the
Born-Oppenheimer approximation, where the scale factor
plays the role of the ‘‘heavy’’ degree of freedom. The
discrete dynamics of LQC is recovered in this manner
without recurring to the ‘‘area gap’’ argument.

The main purpose of this work is to analyze this dipole
cosmology more in detail, and, in particular, interpret the
geometrical meaning of its other (‘‘light’’) degrees of free-

dom. It has been suggested that these could just capture
some space anisotropies. We show that the model captures
indeed all the anisotropic degrees of freedom, that is, the
degrees of freedom of Bianchi IX. This may be of particu-
lar interest since Bianchi IX describes a generic space-time
near the cosmological singularity [7]. We write an explicit
relation between the Bianchi IX degrees of freedom and
those of the model. We discuss the possibility of using this
relation in order to construct a loop quantization of the
Bianchi IX cosmological model.
However, the model captures a richer dynamics than

Bianchi IX: it includes inhomogeneous degrees of freedom
as well, and therefore truly represents a ‘‘first step towards
inhomogeneity’’ in LQC. These degrees of freedom can be
identified as the lowest order term of a tensor harmonic
expansion, in terms of Wigner functions, of the spatial
geometry (see Ref. [8]). The physical relevance of this
expansion is of interest not only in cosmology, but also
in relation with the study of the LQG n-points correlation
functions, which is based on a similar approximation
[9,10].
In the course of our analysis, we obtain also two other

results. First, we show that the discrete version of the
fiducial connection used to define the theory, which was
defined in a rather ad-hoc manner in [6], has in fact a neat
and appealing geometrical interpretation on the triangu-
lated space. Second, following [11], we correct the naive
Bohr-Oppenheimer ansatz used in [6] to relate the model
variables to the scale factor. We show that using a different
ansatz the Friedman equation can be obtained explicitly in
the appropriate limit, from the discrete Hamiltonian con-
straint. Therefore, the model agrees with the standard
formulation of LQC both at the classical and quantum
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levels. The triangulated Hamiltonian constraints can be
interpreted as a different version of the LQC constraint.

We recall that although most of the LQC literature
focuses on the isotropic sector [12,13], homogeneous
[14–16] and inhomogeneous [17,18] models have been
studied as well.

The paper is organized as follows. In Sec. II we review
the geometry of the Bianchi IX universe. In Sec. III we
review the dipole cosmology model. In Sec. IV we relate
the dipole cosmology with Bianchi IX. In Sec. V we study
the classical limit of the model and show that it reproduces
the classical theory at small curvature. In Sec. VI, we study
the way anisotropies are described in the model. Finally,
inhomogeneous degrees of freedom are introduced in
Sec. VII.

We set 8�G=3 ¼ 1 ¼ c, where G is the Newton gravi-
tational constant and c the speed of light. We use small
Latin letters a; b; c; . . . as spatial indices on the three-
dimensional surfaces, and capital Latin letters I; J; K . . .
to label internal indices of suð2Þ-algebra-elements, which
are raised and lowered with the identity matrix. Sum over
internal or external indices is meant whenever those are
repeated, even if they are not paired, and do not appear
inside brackets. When indices are within brackets, summa-
tion is not be intended. That is aIb

IcI � P
IaIb

IcI, but

aðIÞbðIÞcðIÞ ¼ dI. We consider Euclidean gravity and we set

for simplicity the Barbero-Immirzi parameter as � ¼ 1.

II. BIANCHI IX IN A NUTSHELL

In this section we recall the basic properties of the
Bianchi IX cosmological model, which plays a central
role in the following. For a detailed discussion about the
topology of this model we refer to Appendix A.

The Bianchi IX model is the most general homogeneous
model for a spatially compact universe. It is also the basis
of the classical description of a generic inhomogeneous
space-time near the singularity, via the Belinski-
Khalatnikov-Lifshitz (BKL) scenario [7]: as the cosmo-
logical singularity is approached spatial points (causal
horizons) decouple dynamically and each of them evolves
essentially independently as a Bianchi IX model [7]. Thus
classical physics is well described in terms of this model
near the cosmological singularity.

Consider a four-dimensional metric space-time M and
let �: M ! R ��t be a diffeomorphism, where �t are
the Cauchy surfaces foliating space-time. This is defined to
be spatially homogeneous if for any t 2 R and any two
points p, q 2 �t there exists an isometry of the space-time
metric which takes p into q. A Bianchi IX cosmology is a
homogeneous cosmology where �t has the topology of the
three sphere S3.

In order to write homogeneous fields on S3, it is conve-
nient to have a homogeneous reference triad field. This can
be constructed by exploiting the fact that S3 can be iden-
tified with the group manifold of SUð2Þ. This manifold

carries the natural Cartan (flat) connection

! ¼ g�1dg ¼ !I�I ¼ !I
a�Idx

a; (1)

where g 2 SUð2Þ and xa are three arbitrary coordinates on
SUð2Þ. Here �I ¼ �I=ð2iÞ is a basis in the suð2Þ Lie
algebra and �I are the Pauli matrices. This connection is
left-invariant and satisfies the Maurer-Cartan structure
equation

d!I � 1
2�

I
JK!

J ^!K ¼ 0; (2)

where �IJK is the completely antisymmetric tensor. Denote
eI ¼ eaI @a the corresponding dual vector field, with values
in suð2Þ, such that eaI!

J
a ¼ �J

I . The Lie brackets of these
vector fields read

½eI; eJ� ¼ ��KIJeK: (3)

By identifying suð2Þ with an internal space, we can take eI
and !I as the definition of a triad and cotriad in space,
which are invariant under the (left) action of SUð2Þ on
itself. These fields can be used as ‘‘fiducial’’ coframes and
frames, as they naturally carry information about the ho-
mogeneity symmetry group.
An explicit parametrisation for the coframes can be

given in terms of Euler angles as

!1 ¼ cosc d�þ sinc sin�d�;

!2 ¼ sinc d�� cosc sin�d�;

!3 ¼ dc þ cos�d�:

(4)

Here � and � are in the range � 2 ½0; �Þ, � 2 ½0; 2�Þ,
while for the Euler angle c one must set c 2 ½0; 4�Þ in
order to achieve a simply connected covering space with
the topology of S3. This parametrization allows us to make
easily contact with the definition of Cartan connections in
terms of elements g 2 SUð2Þ. These latter can in fact be
written as

g ¼ 	 ��

�? 	?

 !
; with 	 ¼ eði=2Þð�þc Þ cosð�=2Þ;

� ¼ e�ði=2Þð��c Þ sinð�=2Þ; (5)

from which the above expression for the coframes follows
by means of (1). One can also easily find the expression for
the left-invariant frame eaI in this chart, as well as the right-
invariant vector fields (the Killing vector fields) which Lie
drag the above frame and coframe.
Any homogeneous Riemannian metric qab on the

Cauchy surfaces can be then written in terms of its triadic
projection qIJ on internal space as

qabðx; tÞ ¼ qIJðtÞ!I
aðxÞ!J

bðxÞ; (6)

where qIJ is a 3� 3 matrix, constant in space. In the
isotropic case qIJ is a multiple of the identity, and it is
proportional to the Killing-Cartan metric on SUð2Þ. The
space-time line-element can then be written in the form
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(taking the lapse function N ¼ 1)

ds2 ¼ �dt2 þ qIJ!
I �!J: (7)

The vacuum Einstein equations allow us to write qIJðtÞ in
diagonal form [19,20]

qab ¼ a2I!
I
a!

I
b; (8)

where aI ¼ aIðtÞ are the three (independent) scale factors
which describe the anisotropy of the space slices �t. Thus
homogeneity reduces the phase-space of general relativity
to six dimensions. The inverse metric reads qab ¼ a�2

I eaI e
b
I

and the spatial volume V is given in terms of the scale
factors by V ¼ 2�2a1a2a3. The closed Friedmann-
Robertson-Walker (FRW) cosmological model is recov-
ered as the particular case a1 ¼ a2 ¼ a3.

The Ashtekar-Barbero variables for the Bianchi IX cos-
mological model are hence written in terms of the Maurer-
Cartan connection (2) and the dual triad, and are parame-
trized by three time-functions cIðtÞ and their duals pIðtÞ as
(see for instance [11,16])

AI
a ¼ cðIÞ!

ðIÞ
a ; Ea

I ¼ pðIÞ!eaðIÞ; (9)

in which enters the determinant of the cotriad ! �
detð!I

aÞ, namely, the square root of the determinant of
the metric of the three sphere. The connections cI and
momenta pI parametrize the six-dimensional phase space,
the symplectic two-form being � ¼ dcI ^ dpI. The mo-
menta are related to the metric variables by the relations

p1 ¼ ja2a3jsgnða1Þ; p2 ¼ ja1a3jsgnða2Þ;
p3 ¼ ja1a2jsgnða3Þ;

(10)

and the connections are given in terms of triadic projection
of Christoffel symbol components �I and extrinsic curva-
ture components KI ¼ � _aI=2 as cI ¼ �I � KI. The �I are
here given in terms of the scale factors aI as

�I ¼ 1

2

�
aJ
aK

þ aK
aJ

� a2I
aJaK

�
¼ 1

2

�
pK

pJ þ
pJ

pK � pJpK

ðpIÞ2
�
:

(11)

In the closed FRW model [13] (a1 ¼ a2 ¼ a3) the triadic
projection of the Christoffel symbols becomes the constant
� ¼ 1=2 and one recovers the isotropic connection c ¼
ð _aþ 1Þ=2 as well as the momentum jpj ¼ a2. Thus the
cosmological singularity in Bianchi IX appears whenever
aI ¼ 0 for some I.

III. A MODEL FOR MERGING LQC IN LQG

We briefly recall the construction of the model [6].

A. Classical theory

Fix an oriented triangulation �n of the topological three
sphere, formed by n tetrahedra t glued by their triangles.
Label the triangles with an index f (‘‘f’’ for face) that runs

from 1 to 2n (the number of faces is twice the number of
tetrahedra). A group element Uf 2 SUð2Þ and a suð2Þ
algebra element Ef are associated to each oriented triangle

f. Given the face f�1 obtained inverting the orientation of
f, we take the convection that its associated group and
algebra elements read

Uf�1 ¼ U�1
f ; Ef�1 ¼ �U�1

f EfUf: (12)

We use the notation Ef ¼ EI
f�I and take Uf and Ef as the

phase space variables of a dynamical system. The phase
space of this model is that of a canonical lattice SUð2Þ
Yang-Mills theory, i.e. the fundamental Poisson brackets
are given by

fUf;Uf0 g ¼ 0; fEI
f; Uf0 g ¼ �ff0�

IUf;

fEI
f; E

J
f0 g ¼ ��ff0�

IJKEK
f :

(13)

In other words, the phase space is the cotangent bundle of
SUð2Þ2n with its natural symplectic structure. The dynam-
ics of the system is defined by two sets of constraints. The
Gauß (gauge) constraint (three constraints per tetrahedron)

Gt �
X
f2t

Ef � 0; (14)

where the sum is over the four faces of the tetrahedron, and
the Hamiltonian constraint

Ct � V�1
t

X
ff02t

Tr½Uff0Ef0Ef� � 0: (15)

In (15) the sum is over the couples of distinct faces at each
tetrahedron, Uff0 ¼ UfU

�1
f0 and V2

t ¼ Tr½EfEf0Ef00 � be-

cause of (14). Here Vt can be interpreted as (proportional
to) the volume of the tetrahedron t—thus we call V ¼ P

tVt

the total volume of space. The Hamiltonian constraint
gives the good classical limit once the gauge constraint
has been taken into account. In fact, at the first order the
holonomy is U� exp

R

 A� 1� j
j2FþOðj
j4A2Þ,

where F is the curvature of the connection A and 
 denotes
a loop. By means of the holonomy expansion, Eq. (15) can
be formally recast as follows

VtCt ¼
X
ff02t

Tr½Ef0Ef� � j
j2 X
ff02t

Tr½Fff0Ef0Ef� � 0:

(16)

The former term in relation (16) vanishes because of the
Gauß constraint, i.e.

P
ff02tTr½Ef0Ef� ¼ Tr½ðPf2tEfÞ�

ðPf02tEf0 Þ� � 0, and thus the second term undergoes the

expected continuum limit. We stress that this happens not
only for small values of the length of the loop j
j, but it
does for large values of j
j too, provided that j
j2F is
small.
This model can be regarded as a lattice approximation of

the geometrodynamics of a closed Universe. To see this,
consider real Ashtekar connection AI

a and electric field E
a
I ,
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with their standard Poisson algebra (see for instance [4]),
on a three-dimensional surface �with the S3 topology. Let
�n be a triangulation of � and ��

n a dual of the triangu-
lation. Then, Uf is the parallel transport of the Ashtekar-

Barbero connection along the link ef of ��
n dual to the

triangle f. In the same way, Ef is the flux �f of the

conjugate electric field across the triangle f (parallel trans-
ported to the center of the tetrahedron). The Poisson brack-
ets of Uf and Ef are thus exactly the ones in (13). For

instance, the third equality in (13) is motivated by the
parallel transport of �f to the center of each tetrahedron.

Of course these variables transform via the gauge con-
straint (14).

The constraint (15) corresponds to the non-graph-
changing version of the Hamiltonian constraint. Its quan-
tization is an operator acting on an underlying spin-
network state representing the graph dual to the triangu-
lation taken in consideration on the spatial manifold.
Whenever the triangulation is sufficiently fine, constraint
(15) represents an approximation the to Euclidean part of

the Hamiltonian constraint Tr½FabE
aEb�= ffiffiffiffiffiffiffiffiffiffi

detE
p � 0.

B. Quantum theory

The quantization of the model is straightforward. A
quantum representation of the observable algebra (13) is
provided in the auxiliary Hilbert space H aux ¼
L2½SUð2Þ2n; dUf�, where dUf is the Haar measure. That

is, states have the form c ðUfÞ. The operators Uf are

diagonal and the operators Ef are given by the left invariant

vector fields on each SUð2Þ element. Consistently, opera-
tors Ef�1 act as right invariant vector fields. Not surpris-

ingly, the operator associated to the volume Vt turns out to
be the standard LQG volume operator [4].

States that are solutions of the Gauß constraint (14) are
labeled by SU(2) spin networks on the graph ��

n. The dual
triangulation ��

n is characterized by a node for each tetra-
hedron and a link for each face of the triangulation �n. In
the dual triangulation only four-valent vertices appear,
which intertwine spin-jf representationsDjf ðUÞ associated
to the holonomies around the links lf. The basis of these

spin-network states is labeled by jjf; �ti, where �t denotes
the intertwiner quantum number at the given node. The
spin-network basis states are explicitly given by

c jf�tðUfÞ ¼ hUfjjf; �ti ¼ �fD
ðjfÞðUfÞ 	 �t�t; (17)

in which ‘‘	’’ indicates the contraction of the indices of the
DðjfÞðUÞ matrices with the indices of the intertwiners �t.

This constrained model can be directly quantized à la
Dirac. The Hamiltonian constraint can be defined à la
Thiemann, rewriting (15) in the form

Ct ¼
X

ff0f002t

�ff
0f00 Tr½Uff0U

�1
f00 fUf00 ; Vtg� � 0 (18)

and then defining the corresponding quantum operator by
replacing the Poisson bracket with the commutator.
Otherwise, there exists a second possibility: to implement
directly as a quantum operator the constraint (15) rescaled
by the volume Vt

~C t ¼ VtCt ¼
X
ff02t

Tr½Uff0Ef0Ef� � 0: (19)

This is exactly the early proposal to perform the quantiza-
tion of the Hamiltonian constraint in LQG, see [21].
Physical states are those annihilated by the quantum ver-

sion of (19), i.e. we have to impose ~Ctc ¼ 0. The
Hamiltonian constraint on the whole space � is obtained
combining the set of n Hamiltonian constraints by means
of the lapse function N ¼ fNtg at each node. Namely, there

is ~CðNÞc � P
tNt

~Ctc ¼ 0, 8N.

IV. DIPOLE COSMOLOGY

A topological three-sphere can be constructed by gluing
together the boundaries of two three-balls (more details in
Appendix A). The boundary of a three-ball is a two-sphere,
and these two two-spheres are identified, with opposite
orientations. The boundaries of the two balls define then
an ‘‘equator’’ of the three-sphere. Accordingly, a three-
sphere can be triangulated by gluing together two tetrahe-
dra, along all their faces. The equator of the three-sphere is
then triangulated by four triangles f, where f ¼ 1, 2, 3, 4.
(This is a cellular complex decomposition [22], and not a
�-complex or a simplicial complex decomposition
[23,24].) The dual graph of this triangulation described
above is formed by two nodes joined by four links

From now we focus on the theory defined by this
triangulation.
The unconstrained phase space of the theory defined by

this triangulation has 24 dimensions and is coordinatized
by ðUf; E

I
fÞ. At each node there are one Hamiltonian con-

straint C � 0 and three Gauß onesGI � 0. But it is easy to
verify that the constraints of the two nodes are in fact the
same, giving a total of four constraints only. This brings the
number of degrees of freedom down to eight. The Poisson
bracket algebra between the Hamiltonian constraints
closes in this case, as the Hamiltonian constraints at each
node are actually the same one because of (12).
The Hilbert space of the quantum theory is

L2½SUð2Þ4=SUð2Þ2�. The spin network states that solve
the gauge constraint are given by states jjf; �ti ¼
jj1; j2; j3; j4; �1; �2i. The action of the single Hamiltonian

constraint gives in general ~Cjjf; �ti ¼
P

ff0Cff0 jjf; �ti. The
Hamiltonian operator acts at each node. The action of the
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Hamiltonian quantum constraint operator implies that

C12jj1; j2; j3; j4; �1; �2i ¼
X

�;�¼
1

C
���01�

0
2

jf�1�2

��������j1 þ �

2
; j2

þ �

2
; j3; j4; �

0
1; �

0
2

�
; (20)

in which matrix elements C
���0

1
�0
2

jf�1�2
can be computed using

recoupling theory. In terms of the wave function compo-
nents, a more compact notation is given by

~Cc ðjf; �tÞ ¼
X

�j¼0;
1

C
�f�

0
t

jf�t
c

�
jf þ

�f
2
; �0t
�
: (21)

Notice that C
�j�

0
t

jf�t
vanishes unless �f ¼ 0 for only two j.

Matter fields can be simply added in this picture (see [6]).
In [6], a discrete fiducial algebra element !I

f associated

to the triangulation was introduced, and used to compare
the variables of the dipole model with the FRW variables.
Here we introduce a novel and more useful definition for
!I

f. Consider the Plebanski two-form of the connection !

�Ið!Þ ¼ 1
2�

I
JK!

J ^!K ¼ 1
2!eaI�abcdx

b ^ dxc; (22)

where ! ¼ detð!I
aÞ, and let !I

f be the surface integral of

this two-form on the triangle f of the triangulation. Using
the Maurer-Cartan equation (2), we have

!I
f �

Z
f
�I ¼ 1

2

Z
f
�IJK!

J ^!K ¼
Z
f
d!I ¼

I
@f
!I:

(23)

That is, the flux of the Plebanski two-form across a triangle
is equal to the line integral of !I along the boundary of the
triangle. An immediate consequence of this is that for each
tetrahedron t X

f2t

!I
f ¼ 0; (24)

where the sum is over the triangles that bound the tetrahe-
dron t. This is because the boundary of a boundary van-
ishes. The set of suð2Þ vectors !I

f form a natural

background fiducial structure for the discrete theory, analo-
gous to the!I fiducial connection in the continuous theory.

Notice that integral of j�j ¼ ffiffiffiffiffiffiffiffiffiffiffi
�I�I

p
on a triangle f is

(twice) the area of f determined by the background triad.
In the case of the dipole, the explicit properties of the!I

f

can be found using the symmetries. The action of SUð2Þ
that transforms the triangles into one another preserves the
equator of the three-sphere. The equator of SUð2Þ is
formed by the � rotations around a direction ~n. This set
of rotations are transformed into one another by the adjoint
action of the group on itself (which rotates ~n preserving the
rotation angle). A discrete subgroup of this adjoint action
therefore sends the triangles into one another. Under this
adjoint action, !I (which is in the algebra) transforms

under the adjoint representation, which is the fundamental
representation of SOð3Þ. That is, the four vectors !I

f are

rotated into each other by rotations (of the I index) of the
same angles. Therefore they are proportional to the nor-
mals of a regular tetrahedron inR3. The cosine of the angle
between two such vectors is therefore 1=3. It is also
convenient to take !I so that the norm of !I

f is one:

!I
f!

I
f � j!fj2 ¼ 1. This characterizes entirely the !I

f,

up to an overall rotation.

V. ISOTROPY: CLOSED FRW MODEL

We now begin the analysis of the physics and geometry
of the model. We start, in this section, with the restriction
of the model to the homogeneous and isotropic sector. This
analysis was already presented in [6], but we show here
that it can be strongly ameliorated by using a different
ansatz on the relation between the model variables and the
scale factor. Anisotropies and inhomogeneities are dis-
cussed in the following sections.

A. Classical framework

Let cðtÞ and pðtÞ denote the isotropic connection varia-
bles used in LQC [1,13]. They are related to the scale factor
a and to its time derivative _a by c ¼ ð _aþ 1Þ=2 and jpj ¼
a2 (see Sec. II). The phase space of a homogeneous and
isotropic cosmology is two dimensional and the basic
Poisson bracket is fc; pg ¼ 1.
In [6], the isotropic phase-space variables ðc; pÞ are

identified with a subspace of the dipole model phase space
by the relations

Uf ¼ expðc!I
f�IÞ; Ef ¼ p!I

f�I: (25)

These relations define an embedding of the isotropic ge-
ometries in the phase space of the model. Notice that this is
different from what is done in [15], where a projection of
the anisotropic degrees of freedom of the Bianchi I model
to those ones of the FRWmodel was defined. (See also [25]
for a discussion about superselection of isotropic FRW
states of LQC within the anisotropic Bianchi I setting.)
The second of the relations (25) follows immediately

from (9) and (23) and the identification of Ef with the flux

of the electric field E though f (Sec. III). The discussion of
the first relation is more delicate. Recall that Uf is the

holonomy of the connection along a dual link ef,

Uf ¼ P exp
Z
ef

AI
aðefÞ�Ideaf: (26)

Let us assume for simplicity that the identity in the groupG
is identified with the center of one of the two tetrahedra.
Then the four dual links ef run along one-parameter sub-

groups of G. Now consider a point g on the SUð2Þ group
manifold. Because of the flatness of the Maurer-Cartan
connection !, the holonomy of ! from the identity to
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the point xP does not depend on the particular path which
has been chosen to connect the identity with g. We can
write g ¼ expð	I�IÞ, in which 	I ¼ 	IðgÞ is a vector in
the internal space, and then parametrize the path 
 from the
identity of the group to g by

gðsÞ ¼ expðs	I�IÞ; (27)

in which s 2 ½0; 1�. This particular path defines an abelian
subgroup of SUð2Þ, and thus the holonomy reads

Uf � P exp
Z
1!gðsÞ

!I�I ¼ gðsÞ: (28)

That is: the holonomy of ! from the identity to g is
precisely g. Consider now the tangent to the path 
 at g,
and denote it va 2 Tg (Tg is the tangent space of the

group). Since we have a metric structure oqab ¼ !I
a!

I
b

defined on the group manifold, we have also the corre-
sponding one-form na ¼ oqabv

b. The contraction of! and

vads is given by

!ðvadsÞ ¼ nae
a
I �

Ids: (29)

On the other hand, by means of (1) and (27), we find

!ðvadsÞ ¼ g�1dgðvadsÞ ¼ 	I�Ids: (30)

Hence

eaI na ¼ 	I: (31)

Now, take g to be the intersection between the dual link ef
and the triangle f. By symmetry, the link ef and the

triangle f are orthogonal. The last equation shows that
	IðgÞ is nothing other than the normal na to the triangle
f, with the index raised by the fiducial triad. But !f is

precisely the integral of eaI na on the triangle, and we expect
it to be proportional to the value of eaI na on g. Therefore,
we can conclude that

Uf ¼ expðk!I
f�IÞ; (32)

for some k. Following [11], differently from what dis-
cussed in [6] we make the ansatz

Uf ¼ expððcþ 	Þ!I
f�IÞ; (33)

where 	 is a numerical constant determined by the spatial
curvature, which we fix below. We refer to [11] for a
discussion of the rational of this identification.

The Gauß constraint reads

G I ¼ X
f

EI
f ¼

X
f

p!I
f ¼ 0; (34)

and is automatically satisfied because of (24). The scalar
constraint (15) reads

~C ¼ p2
X
ff0

Tr½ec!I
f
�Ie	!

J
f
�Je

�	!K

f0�Ke
�c!L

f0�L!S
f0!

M
f �S�M�

� 0: (35)

Using the relation ec!
I
f
�I ¼ cosðc=2Þ þ 2!I

f�I sinðc=2Þ the
expression above can be simplified. Firstly notice that the
term containing two �-matrices is zero because of the Gauß
constraint. The terms including the traces of three and five
�-matrices are also zero because of the internal product of
two equal vectors!I

f and of the Gauß constraint. Moreover

the term proportional to the trace of six �-matrices identi-
cally vanishes. (See Appendix B for details about traces of
�-matrices.) Finally, as already discussed, each !I

f identi-

fies a normal to the center of the face f of the tetrahedron,
the angle between them given by cos�ff0 ¼ !I

f!
I
f0 ¼ 1=3.

Collecting these considerations and using the relationsX
ff0

!I
f!

I
f0 ¼

X
ff0

cos�ff0 ¼ 0;

X
ff0

ð!I
f!

I
f0 Þð!J

f!
J
f0 Þ ¼

X
ff0

cos2�ff0 ¼ 2

3
;

X
ff0

j!fj2j!f0 j2 ¼ 6;

(36)

we obtain the final form of the scalar constraint

~C ¼ 17
6p

2ðcosðc� 	Þ � 1Þ � 0: (37)

Such a constraint describes the dynamics of a (curved)
triangulated closed FRW cosmological model. The ordi-
nary classical dynamics can be recovered as soon as the
limit of small connection jcj � 1 is taken into account.
The constraint (37) rewrites as

~C ¼ 17

6
p2

�
c sin	� c2

2
cos	� 2sin2ð	=2Þ

�
þOðp2c3Þ � 0: (38)

This is the FRW classical constraint ~CFRW / �p2cðc� 1Þ
as soon as 	 is fixed at a suitable value 	?. In fact, the
canonical transformation c ! acþ b, p ! p=a (a, b 2
R) with cos	? ¼ ð9� ffiffiffiffiffiffi

17
p Þ=8 transforms the two con-

straint into one another. The appearance of the ordinary
dynamics for small values of the connection c is in agree-
ment with the claim that a coarse triangulation well ap-
proximates the classical theory for a low-curvature space-
time.
The expression (37) can be regarded as the effective

Hamiltonian constraint of the standard LQC. The effective
formulation of LQC is usually obtained by ‘‘polymeriz-
ing’’ the classical model: the connection is replaced by its
exponentiated version, to reflect the fact that the connec-
tion operator does not exist in the LQC Hilbert space [26].
The effective LQC dynamics can be also obtained by using
the methods of geometric quantum mechanics [27].
Replacing c ! sinð�cÞ=� (where � denotes the polymer
scale, fixed by the ‘‘minimal area gap’’ argument [26,28])

in ~CFRW, one obtains the constraint (37) for 	 ¼ 	?. Here,
instead, the ‘‘polymerization’’ is a consequence of the
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existence of the triangulation, and a conventional quanti-
zation of the truncated theory. In the quantum theory, a
WDW difference equation arises without adding an input
from LQG by hand: the lattice model leads directly to a
difference evolution equation, without recurring to the
‘‘minimal area gap’’ argument.

B. Quantum framework

The variable c multiplies the generator of a Uð1Þ sub-
group of the compact group SUð2Þ4. Therefore it is a
periodic variable: c 2 ½0; 4��. The kinematic Hilbert
space H iso of the theory is thus L2ðS1; dc=4�Þ of square
integrable functions on a circle. Eigenstates of p̂ (from now
on we drop the hat in order to simplify the notation) are

labeled by an integer 
 and read hcj
i ¼ ei
c=2. Wave
functions c ðcÞ are decomposed in a Fourier series of
eigenstates of p, labeled by an integer 


c ðcÞ ¼ X
n

c 
e
i
c=2: (39)

The fundamental operators on this representation are p and
expðic=2Þ, whose action on generic states reads

pj
i ¼ 
=2j
i; expðic=2Þj
i ¼ j
þ 1i: (40)

In particular, the operator sinðc=2Þ acts on j
i as

sinðc=2Þj
i ¼ 1

2i
ðj
þ 1i � j
� 1iÞ (41)

and it is then immediate to obtain the action of the com-
posite operators sinðc=2Þ cosðc=2Þ and sin2ðc=2Þ.

By following this path, we can construct the quantum
constraint operator corresponding to (37). In particular, in
order for the states c ðcÞ to be physical states, the coeffi-
cients c 
 ¼ hcj
i have to satisfy the recurrence relation

Dþð
Þhcj
þ 2i þD0ð
Þhcj
i þD�ð
Þhcj
� 2i ¼ 0;

(42)

where

Dþð
Þ ¼ 17
6


2ð�i sinð	=2Þ cosð	=2Þ � 1
2sin

2ð	=2Þ
þ 1

2cos
2ð	=2ÞÞ;

D0ð
Þ ¼ 17
3


2ð12 � sin2ð	=2ÞÞ;
D�ð
Þ ¼ 17

6

2ði sinð	=2Þ cosð	=2Þ � 1

2sin
2ð	=2Þ

þ 1
2cos

2ð	=2ÞÞ: (43)

In (42) we have chosen the simplest normal ordering of
posing multiplicative operators on the left of derivative
ones. Equation (42) has the structure of the LQC difference
equation.

VI. ANISOTROPY: BIANCHI IX MODEL

In this section we free more degrees of freedom than the
sole scale factor and we describe the triangulated version

of a homogeneous but non isotropic space-time. Since the
space topology is S3, we are therefore dealing with the
Bianchi IX cosmological model. Bianchi IX (or the
Mixmaster universe [19]) is the most general homogeneous
model with this topology: its physical importance relies in
describing a generic (classical) solution of the Einstein
equations toward a spacelike singularity via the BKL
scenario [7].

A. Classical framework

The dynamics of an anisotropic (homogeneous) cosmo-
logical model is described by three scale factors aI ¼
aIðtÞ, which identify three independent directions (in the
time evolution) of the Cauchy surfaces. In the connection
formalism, relaxing the isotropy condition corresponds to
consider three different connections cI ¼ cIðtÞ and mo-
menta pI ¼ pIðtÞ. Our model can be then extended to an
anisotropic setting by demanding that the variables of the
theory are given by

Uf ¼ expðcI!I
f�IÞ expð	!I

f�IÞ; Ef ¼ pI!I
f�I:

(44)

Notice that there is a main difference between the hol-
onomies (44) and those used in LQC in the anisotropic
context [11,16]. In the standard formulation of an aniso-
tropic LQC model the basic holonomies hI, are directional
objects, computed along edges parallel to the three axis
individuated by the anisotropies. They read

hI ¼ expðcðIÞ!ðIÞÞ ¼ cosðcI=2Þ þ 2!I sinðcI=2Þ: (45)

On the other hand, the variables Uf are nondirectional

objects, because the four faces of the triangulation do not
have any special orientation with respect to the three iso-
tropy axes. The connection components are summed over
and they are thus independent on the I-direction. The Uf

are in fact group element of SUð2Þ that depend on the face
f. Explicitly, they are given by

expðcI!I
f�IÞ ¼ cos

��������c
I!I

f

2

��������þ2
cI!I

f�I

jcI!I
fj

sin

��������c
I!I

f

2

��������
¼ cos�f þ 2�̂I

f�I sin�f; (46)

where �̂I
f denotes the unit vector �̂I

f ¼ �I
f=�f defined by

�I
f � 1

2
cðIÞ!ðIÞ

f ; �f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I

ð�I
fÞ2

s
¼ 1

2
jcI!I

fj: (47)

Let us now analyze the dynamics of the anisotropic
model. As above, the Gauß constraint does not carry out
any information since it vanishes because of the construc-
tion of the vectors !I

f. Explicitly, it is given by

G I ¼ X
f

EI
f ¼

X
f

pðIÞ!ðIÞ
f ¼ 0: (48)
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The scalar constraint of the triangulated Bianchi IX model
reads

~C ¼ X
ff0

Tr½ðcos�f þ 2�̂I
f�I sin�fÞðcosð	=2Þ

þ 2!J
f�J sinð	=2ÞÞ 	 ðcosð	=2Þ

� 2!K
f0�K sinð	=2ÞÞðcos�f0 � 2�̂L

f0�L sin�f0 Þ
� �S

f0�
M
f �S�M� � 0; (49)

where the �I
f are defined by

�I
f � pðIÞ!ðIÞ

f : (50)

The difference with respect to the usual LQC constraint is
evident. Let us note that, as a result of takingUf as defined

above, no terms drop here in virtue of the Gauß constraint,
as they did in the isotropic case. In fact, terms of the kind

gfgf0!f!f0 (where gf are generic functions) appear and

their sum in f, f0 no longer vanishes. It is convenient to
define

�ff0 ¼ !I
f�̂

I
f0 ; �ff0 ¼ !I

f�
I
f0 ; 
ff0 ¼ �̂I

f�
I
f0 ;

�ff0 ¼ �I
f�

I
f0 ; �ff0 ¼ �̂I

f�̂
I
f0 (51)

and

A ¼ �̂ ^ � ^ �; B ¼ ! ^! ^ �;

C ¼ ! ^! ^ �̂; D ¼ �̂ ^! ^ �;

E ¼ �̂ ^ �̂ ^!; F ¼ ! ^ � ^ �:

(52)

where the convention is Afff0 ¼ �̂f ^ �f ^ �f0 ¼
�IJK�̂

I
f�

J
f�

K
f0 and so on. The scalar constraint is given, in

terms of all these quantities, by

~C ¼ X
ff0

�
sin�f0 cos�f

�
Aff0fcos

2ð	=2Þ þ sinð	=2Þ cosð	=2Þ
�
�ff0
f0f0 � �f0f0
ff0 þ 1

2
�f0f0�ff0 þ �ff0
ff0

þ ��ff
f0f0 � 1

2
�ff0�ff0

�
þ 2sin2ð	=2Þ

�
1

4

ffBff0f � 1

4

ff0Bff0f0 þ �ff0Cff0f0 þ cos�ff0Af0f0f

��

þ cos�f cos�f0

�
2 sinð	=2Þ cosð	=2ÞFf0f0f þ sin2ð	=2Þ

�
�ff0�ff0 � �ff�f0f0 � 1

2
cos�ff0�ff0

�
� 1

2
�ff0cos

2ð	=2Þ
�

þ sin�f cos�f0

�
� 1

2
Aff0fcos

2ð	=2Þ þ sinð	=2Þ cosð	=2Þ
�

ff0�ff0 � 
ff�f0f0 � 
ff0�ff þ 
ff�ff0

� 1

2
�ff0�ff0 þ 1

2
�ff�ff0

�
� sin2ð	=2Þ

�
1

4
�f0f0Dfff � 1

4
�ff0Dfff0 þ �ff0Cfff0 þ �ffFf0f0f

��

þ sin�f sin�f0

�
cos2ð	=2Þ 	

�

ff0
ff0 � 
ff
f0f0 � 1

2
�ff0�ff0

�
þ sinð	=2Þ cosð	=2Þ

�
1

4

f0f0Dff0f � 1

4

ff0Dff0f0

� 2�ff0Eff0f0 þ �ff0Af0f0f þ 1

4

ff0Dfff0 � 1

4

f0f0Dfff � �ffAf0f0f

�
þ 1

2
sin2ð	=2Þ

�
� 1

2
Eff0f0Fff0f � 1

2
Cfff0Aff0f

þ �ff0 ðcos�ff0�ff0 þ ��ff0�ff0 Þ þ �f0f0 ð
ff0�ff � 
ff�ff0 Þ þ �ffð
f0f0�ff0 � 
ff0�f0f0 Þ � 4�ff�f0f0�ff0 Þ
�	

� 0:

(53)

The dynamics of the Bianchi IX model, in the triangulation
formalism, is then expressed in terms of geometrical quan-
tities as angle-like (51) and volume-like (52) quantities. As
can be checked by direct calculation, the isotropic con-
straint (37) is recovered as soon as c1 ¼ c2 ¼ c3 and p1 ¼
p1 ¼ p3. In this case all the terms in (52) vanish because
the internal wedge product of two equal elements !f.
Furthermore the terms containing any single angle (51)
are also zero because of the Gauß constraint.

As in the isotropic case, the constraint (53) describes a
discrete (triangulated) dynamics. Such a dynamics can be
regarded as an effective one in which all the outcomes of
the triangulation are abridged. The standard Bianchi IX
model is recovered in the limit of small connections, i.e. as
soon as jcIj � 1. In this limit, which corresponds to take

j�fj � 1, the expression (53) is rewritten as

~C ¼ pIpJðconstþ cK þ cKcLÞ þOðp2c3Þ � 0: (54)

In order to make the notation the easiest as possible,
constants (depending also on 	) are not written in (54)
and the contraction of the free indices is understood. The
isotropic constraint (38) is recovered if a basic canonical
transformation is performed, i.e. cI ! cI þ dI and pI !
pI þ bI for dI, bI 2 R3.
Summarizing, the constraint (53) describes the effective

LQG dynamics of an anisotropic homogeneous space-time
having the spatial topology of a three-sphere, i.e. the
Bianchi IX cosmological model. In the triangulation for-
malism the anisotropies (different scale factors or different
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connections) are described in terms of angles (51) and
(internal) volumes (52) characterizing a generic dynamical
tetrahedron. The contact with the standard (classical) dy-
namics is recovered as soon as the flat space-time limit
jcIj � 1 is taken into account.

B. Quantum framework

The fact that the dipole model includes Bianchi IX
suggests that we may use it in order to construct a loop
quantization of Bianchi IX. We analyze this intriguing
possibility in this section. There are two possible ways
for doing so. One is to start from the ðcI; pIÞ variables,
and define the dynamics with the Hamiltonian operator
(53), where all quantities are taken as functions of
ðcI; pIÞ via Eqs. (47) and (50). The second possibility is
to use the full quantum theory of the dipole cosmology
model, defined in Sec. VB. Neither of these approaches
gives a simple quantum model, as far as we can see, since
the resulting dynamical equation is complicated in both
cases.

Let us begin with a basis of states jcIi that diagonalize
the variables cI, and write the quantum state as c ðcIÞ in
this basis. The pI operator is then �i@=@cI. For each face
f, consider the three scaled variables (47) and the three
scaled momenta (50). The Hamiltonian operator (53) is
entirely written in terms of the four operators �I

f, sin�f,

cos�f, and �I
f=�f. These operators are easily written in

this representation. The first is

�I
f ¼ �i!ðIÞ

f

@

@cðIÞ
; (55)

while the others are diagonal. Thus, (53) yields a
Hamiltonian constraint on this Hilbert space, and defines
a quantization of the Bianchi IX cosmological model.

Does this quantization yield discreteness? Fix for a mo-
ment one of the four faces, say f. Observe that �I

f enters

the dynamical theory only as an argument of the group
element Uf in (44) via Uf ¼ expð2�I

f�IÞ expð	!I
f�IÞ.

Therefore the physically relevant domain of �I
f appears

to be given by

j�I
fj< 4� (56)

that is, adding 4� to j�I
fj gives back the same configuration

of the Uf variable (for a fixed f). Accordingly, the con-

figuration space is compact, and we expect the conjugate
variable pI to have discrete spectrum. This is reflected in
the fact that the norm of �I

f enters the Hamiltonian only via

sin�f (or cos�f). It seems therefore reasonable to expect

that what is going on is something analogous to what
happens in standard LQC, namely, we can chose a scalar
product where momenta have discrete spectrum, the op-
erator sin�f is well defined while �f is not, and the

dynamics is restricted to a discrete set of eigenstates.
These observations are intriguing, but incomplete, because

there are four distinct faces f, and four distinct group
elements Uf, and generically, there is no shift on the cI

that gives back the same value for all four group elements.
In other words, the map cI ! Uf defined in (44) maps R3

into the compact space ½SUð2Þ�4, but its image is not
necessarily compact. We leave the development of these
reasonings for future investigations.
The second alternative is to use the dipole model Hilbert

space H d, formed by states c ðUfÞ, and spanned by the

discrete jjf; ii basis. The reduction of a quantum theory to

a sector where some degrees of freedom are frozen (here
the inhomogeneous ones) is, in general, a rather nontrivial
step [5]. If we have given the Bianchi IX Hilbert space
H IX formed by functions c ðcIÞ and the cI ! Uf map (44)

, then a natural projection �: H d ! H IX is simply de-
fined by c ðcIÞ ¼ c ðUfðcIÞÞ. But in order to map

�: H IX ! H d we need to choose a way to compute cI

out of Uf. One natural possibility is for instance to define

cI ¼ X
f

�ðIÞ
f

2!ðIÞ
f

: (57)

Using this, we can map any state in H IX to H d. For
instance, we can expand an eigenstate expði
IcIÞ ¼Q

IhcIj
Ii of pI on the spin network basis, considering
Uf ¼ Ufð�I

fÞ and formula (17), via

Y
I

hjf; ij
Ii ¼
Z
SUð2Þ4

dUf½�fD
jf ðUfÞ 	 i 	 i�

� exp

�
i
X
I


I
X
f

�ðIÞ
f

2!ðIÞ
f

�
: (58)

Using these coefficients, the Bianchi IX Hamiltonian op-

erator can be simply defined by ~CIX ¼ � ~C�, where ~C is
the dipole Hamiltonian constraint operator, defined in
Sec. VII. This operator will be studied more in detail
elsewhere.

VII. INHOMOGENEITY: PERTURBATION OF
BIANCHI IX

Let us finally come to the full geometrical interpretation
of the ‘‘dipole model’’. The remaining large-scale gravita-
tional degrees of freedom captured by the dipole dynamics
are necessarily inhomogeneous. The easiest way to char-
acterize them is to consider an expansion of the gravita-
tional fields in tensor harmonics, and identify them with
the lowest order term of this expansion. In other words, we
can imagine that we want to describe only some low order
term of a mode expansion of the geometry over the three
sphere, and that the dipole variables read out these terms.
In [29], Regge and Hu considered a similar mode expan-
sion around Bianchi IX, using Wigner D-functions. (See
also [30].) Here we follow their approach, adapting it to the
first order formalism we are using.
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We begin by recalling the Regge-Hu expansion [29].

The Wigner D-functions Dj
	0	ðgðxÞÞ determine a basis of

functions of the symmetry-group of the model. Recall that
we can use group elements gðxÞ to coordinatize the physi-
cal space that has the S3 topology. Let q0abðx; tÞ be the

metric of an homogeneous space. A general perturbations
to the three-metric habðx; tÞ ¼ qabðx; tÞ � q0abðx; tÞ can first
be translated into a matrix of space-scalars hIJðx; tÞ by
projecting it on the invariant one-forms, that is

habðx; tÞ ¼ hIJðx; tÞ!I
aðxÞ!J

bðxÞ; (59)

Regge and Hu decompose these scalars in terms of definite
angular-momentum components of the three-metric

hj	IJ ðx; tÞ, labeled by spin and magnetic numbers fj; 	g.
hIJðx; tÞ ¼

X
j;	

hj	IJ ðx; tÞ: (60)

These can be expressed in terms of Wigner D-functions

Dj
	0	ðgðxÞÞ (whose form is recalled in Appendix C) via (see

[29])

hj	IJ ðx; tÞ ¼
Xj

	0¼�j

hj		
0

IJ ðtÞDj
	0	ðgðxÞÞ; (61)

The time-dependent amplitudes hj		IJ ðtÞ represent, at fixed
j, ð2jþ 1Þ2 inhomogeneous degrees of freedom. They are
governed by a set of coupled differential equations, studied
in [31].

At a first sight, the dependence of the scalar harmonic

function hj	IJ ðx; tÞ on the modes j, 	 in Eqs. (60) and (61)
seems to be incompatible with the Peter-Weyl decomposi-
tion [32] of hIJðx; tÞ. However, the choice of not summing
over the j, 	 labels contracted with the WignerD functions
relies on the evidence, due to Einstein equations, that j, 	
states can be decoupled from 	0 states. This leaves as a
possible choice to fix perturbations of the metric with
definite j, 	. Indeed, only the 	0 states are mixed by the
action of the derivative operators and thus by the linearized
Einstein tensor, as explained in Appendix C. This can be
understood moving from the action (C9) of the invariant
operators on the Wigner D functions and expressing it in
terms of derivatives vector fields on the Euclidean space E4

in which S3 can be embedded.
Let us adapt this formalism to the first order variables we

use. We start with the triads. Let us write a generic per-
turbed triad Ea

I ðx; tÞ as the sum of the background triad eI
field and a perturbation.

Ea
I ðx; tÞ ¼ eaI ðxÞ þ c a

I ðx; tÞ: (62)

It is convenient to project the perturbation on the back-
ground triad

c a
I ðxÞ ¼ c IJðx; tÞeaJðxÞ: (63)

Following Regge and Hu, we write this as a sum of
components of definite j and 	 quantum numbers

c IJðx; tÞ ¼
X
j	

c j	
IJ ðx; tÞ; (64)

where

c j	
IJ ðx; tÞ ¼

Xj
	0¼�j

c j		0
IJ ðtÞDj

	0	ðgðxÞÞ: (65)

The same can be done for the connection

!I
aðxÞ ! ~!I

aðx; tÞ ¼ !I
aðxÞ þ ’I

aðx; tÞ: (66)

Project ’I
a on the invariant one-forms

’I
aðxÞ ¼ ’IJðx; tÞ!J

aðxÞ: (67)

Expanding this in components of definite j and 	 quantum
numbers gives

’IJðx; tÞ ¼ X
j	

’IJ
j	ðx; tÞ; (68)

where

’IJ
j	ðx; tÞ ¼

Xj
	0¼�j

’IJ
j		0 ðtÞDj

	0	ðgðxÞÞ: (69)

The ð’IJ
j		0 ðtÞ; c IJ

j		0 ðtÞÞ are the time-dependent expansion

coefficients that capture the inhomogeneous degrees of
freedom. They, are given by matrices in the internal indices
I, J, labeled by the spin j that runs from j ¼ 1=2 to all the
semi-integers numbers, and the corresponding magnetic
number 	.

Dipole model

Suppose we restrict the geometry by assuming that the
matrices ð’IJ

j		0 ðtÞ; c IJ
j		0 ðtÞÞ are diagonal in the internal

indices I, J and it is different from zero only for lowest
nontrivial integer spin j ¼ 1 and for, say, 	 ¼ 0. That is,
we restrict to the components

’IJ
1;0;	ðtÞ ¼ �IJ’I

	ðtÞ: c IJ
1;0;	ðtÞ ¼ �IJc I

	ðtÞ: (70)

where 	 ¼ �1, 0, 1. Then we have that the inhomogene-
ities are determined by precisely nine plus nine variables
’I

	ðtÞ, c I
	ðtÞ, namely, 9 degrees of freedom. Assuming that

the Gauß constraint reduces the degrees of freedom by
three (see below), we obtain 6 degrees of freedom, which
is the number of degrees of freedom captured by the dipole
variables. Thus, such a geometry is entirely captured by the
6 degrees of freedom of the dipole model. Therefore, we
can interpret the six extra degrees of freedom of the dipole
model (beyond anisotropies), as a description of the diago-
nal part of the lowest integer mode of the inhomogeneities.
If we do so, we can relate the variables of the dipole

model to the quantities ð’I
	ðtÞ; c I

	ðtÞÞ. Notice that the one
forms ~!I no longer satisfy the Maurer-Cartan equation (2).
The fiducial algebra-elements !I

f are therefore perturbed

as well. At first order, for a generic perturbation, let us
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define

~!I
f ¼

1

2

Z
f
�IJK ~!J ^ ~!K ¼ !I

f þ
Z
f
�IJK!

J ^ ’K

¼ !I
f þ

X
j		0

’KL
j		0 ðtÞ�I

f
j		0
KL (71)

where

�I
f
j		0
KL ¼

Z
f
�IJKD

j
		0!J ^!L: (72)

In particular, if we restrict to the diagonal j ¼ 1, 	 ¼ 0
case,

~! I
f ¼ !I

f þ ’ðIÞ
	 ðtÞ�ðIÞ

f;	 (73)

where

�I
f;	 ¼

Z
f
�IJKD

1
0	!

J ^!K (74)

are fixed coefficients. Then the relation with the dipole
variables can be written as

UfðcI; ’I
	Þ ¼ expðcI ~!I

f�IÞ expð	!I
f�IÞ; (75)

which replaces (44). Similarly, we can write

~E I
f ¼

Z
f
ðeaI þ c a

I Þ�abcdxb ^ dxc

¼ EI
f þ 2

Z
f
c IJ�

J
KL!

K ^ c L

¼ EI
f þ 2

X
j		0

c j	
IJ �

J
f;		0 (76)

In particular, if we restrict to the diagonal j ¼ 1, 	 ¼ 0
case,

~E I
f ¼ EI

f þ 2c 	
I �

I
f;	: (77)

The Gauß constraint no longer identically vanishes. It
can be split into two parts: the homogeneous and the
inhomogeneous terms

G I ¼ X
f

pðIÞ!ðIÞ
f þ 2c 	

I

X
f

�I
f;	 � 0: (78)

The first part is the constraint which appears in (48) within
the Bianchi IX framework and vanishes identically because
of the Stokes theorem. The second gives three conditions
on the inhomogeneous perturbations to the electric fields
~Ef.

VIII. CONCLUSIONS AND PERSPECTIVES

We have studied a triangulated (loop) quantum cosmol-
ogy model, and analyzed the geometry it describes. In
particular, the model of a dipole SUð2Þ-lattice theory,
triangulating a topological three-sphere by means of two
tetrahedra, has been related to a Bianchi IX cosmological

model perturbed by six inhomogeneous degrees of
freedom.
This work is mainly based on the case of the dipole

cosmology, for which the algebra of Hamiltonian con-
straint closes. Higher modes of the mode expansion can
be captured with finer triangulations, but these require a
more work for a consistent definition.
The truncation we use relies on spherical topology. It is

likely that the technique we have used could be extended to
general compact spaces, but we have not studied this issue.
For the extension to noncompact spaces, on the other hand,
the problem is delicate. To use the same technique, one
should partition a noncompact spatial slice with ‘‘fiducial
boxes,’’ as is done in LQC, but this would reduce the
inhomogeneities that the model can capture. Doing so, on
the other hand, would be interesting for the comparison
with LQC.
We have only discussed the dynamics generated by the

Euclidean part of the Hamiltonian constraint and with a
fixed value of the Barbero-Immirzi parameter. The full
Hamiltonian constraint, the possibility of using of a generic
value of the Barbero-Immirzi parameter �, and the
Lorentzian theory, will be considered elsewhere.
Finally, notice that the results of this paper, together with

the link between LQC and spin-foams derived in [33],
might provide a path to connect cosmological spin-foam
models from the cosmological sector of LQG.
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financial support during their permanence at CPT in
Marseille.

APPENDIX A: THE THREE-SPHERE

We collect in this appendix some useful information on
the structure of a three-sphere, and a few other useful
formula. In A 1 we illustrate the topology of the three-
sphere and its relation to the Hopf fibration. In
subsection A 2, using the isomorphim of groups
S3=f1;�1g � SOð3Þ, in which the subgroup f1;�1g is the
kernel of the group homomorphism h: S3 ! SOð3Þ, and
identifying with SUð2Þ the double cover of SOð3Þ, namely
Spinð3Þ, we clarify which is the role of the group SUð2Þ in
describing the topology of S3 by means of the Hopf fibra-
tion. In subsection A 3, we describe how the SUð2Þ sym-
metry structure enter the definition of the Cartan one-
forms.

1. Topology of the three-sphere: Hopf fibration

We illustrate here a concrete realisation of the Hopf map
[34] acting on S3, which defines a fibration with fiber space
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S1 and the base space S2. In what follows we identify R4

with C2 and R3 with C� R. Taking ðx1; x2; x3; x4Þ 2 R4

and ð�1; �2; �3Þ 2 R3 the identification is achieved, respec-
tively, by means of z0 ¼ x1 þ ix2 and z1 ¼ x3 þ ix4 for
R4, and z ¼ �1 þ i�2 and y ¼ �3 for R3. A unit three-
sphere embedded inR4, as ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2 ¼
1, reads in terms of the complex variables jz0j2 þ jz1j2 ¼
1. A unit two-sphere is identified with the subset of C� R
such that jzj2 þ y2 ¼ 1. Let us parametrize S2 by means of
the expression ð�1Þ2 þ ð�2Þ2 þ ð�3Þ2 ¼ 1 and take a natu-
ral bundle projection by the Hopf map �: S3 ! S2

�1 ¼ 2ðx1x3 þ x2x4Þ; �2 ¼ 2ðx2x3 � x1x4Þ;
�3 ¼ �ðx1Þ2 � ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2:

(A1)

With this mapping the relation ð�1Þ2 þ ð�2Þ2 þ ð�3Þ2 ¼
ððx1Þ2 þ ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2Þ2 ¼ 1 holds.

We can now consider a stereographic projection [35,36]
of a point in the southern hemisphere S2� � S2 from its
north pole and label its coordinates as U, V. On the com-
plex plane C containing the equator of S2 � C� R, we
consider the function T ¼ Uþ iV, which is within the
circle of unit radius on the complex plane and is given by

T ¼ �1 þ i�2

1� �3
¼ x1 þ ix2

x3 þ ix4
¼ z0

z1
; (A2)

with �i 2 S2�. For a � 2 Uð1Þ such that j�j ¼ 1, we can
see that T is invariant under ðz0; z1Þ ! ð�z0; �z1Þ, which
are both points in S3. Since the set of complex numbers �
with j�j2 ¼ 1 form the unit circle in the complex plane, it
follows that for each point �m 2 S2, the inverse image
��1ð �mÞ is a circle, i.e. ��1ð �mÞ ’ S1. Thus the three-sphere
is realized as a disjoint union of these circular fibers.

Similarly, the stereographic coordinates P, Q of the
northern hemisphere S2þ projected from the south pole read

S ¼ �1 � i�2

1þ �3
¼ x3 þ ix4

x1 þ ix2
¼ z1

z0
(A3)

with �i 2 S2þ. On the equator, S2þ \ S2�, one finds T ¼
S�1.

The fiber bundle structure is then given by the following
local trivialization1: on the south hemisphere one defines
��1� : ��1ðS2�Þ ! S2� �Uð1Þ as given by ðz0; z1Þ !
ðz0=z1; z1=jz1jÞ while on the north hemisphere the quantity
��1þ : ��1ðS2þÞ ! S2þ �Uð1Þ is given by ðz0; z1Þ !

ðz1=z0; z0=jz0jÞ. This construction clarifies that S2 is the
base space of S3.

2. SUð2Þ description of the three-sphere

A further geometric interpretation of the Hopf fibration
can be obtained considering rotations of the two-sphere in
a three-dimensional space [36]. We recall that Spinð3Þ is
the double cover of the rotation group SOð3Þ and that is
diffeomorphic to S3. The spin group acts in a transitive way
on S2 by rotations. The stabilizer subgroup2 of a point of S2

is isomorphic to the circle group, from which it follows that
S3 is a principle circle bundle over S2. This is exactly the
Hopf fibration.
Concretely, this can be seen identifying Spinð3Þ with the

group of unit quaternions Spð1Þ: a point ðx1; x2; x3; x4Þ 2
R4 is interpreted [37] as a quaternion q 2 H by q ¼ x1 þ
ix2 þ jx3 þ kx4 and the three-sphere is then identified
with the quaternions of unit norm, namely q �q ¼ jqj2 ¼
ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2 ¼ 1. Now a vector p in R3

can be identified with the imaginary part of a quaternion,
i.e. p ¼ ip1 þ jp2 þ kp3, and the mapping p ! qp �q is a
rotation in R3, and thus an isometry as jqp �qj2 ¼ jpj2.
Moreover it is not hard to check that this mapping, as a
rotation, preserves orientation. The q are then unit qua-
ternions provided by the group of rotation in R3, with
opposite elements �q undergoing the same transforma-
tions. The set of unit quaternions q which fixes a unit
imaginary quaternion have the form q ¼ � þ �p, with � ,
� 2 R such that j�j2 þ j�j2 ¼ 1 (i.e. a circle subgroup).
Taking then p ¼ k, one can define the Hopf fibration via
the map �: q ! qk �q. The image set by the Hopf map is
made of (still unit) quaternions provided only by imaginary
parts: these points lie on the two-sphere S2. As a quaternion
q ¼ x1 þ ix2 þ jx3 þ kx4 can be recast in terms of a 2�
2 matrix,

qðx1; . . . x4Þ :¼ x1 þ ix2 x3 þ ix4
�x3 þ ix4 x1 � ix2

� �
; (A4)

one can identify the group of unit quaternions with SUð2Þ
and represent imaginary quaternions by the skew-
Hermitian 2� 2 matrices, which are isomorphic to C�
R. The fiber for a given point of S2 consists now of all those
unit quaternions whose image via the Hopf map �: q !
qk �q aims there. These points are easily recognized to
belong to a circle. A direct way of seeing it is to consider
that the multiplication by unit quaternions is equivalent to
realize a composition of rotations inR3: for instance multi-
plying by qt ¼ ekt corresponds to a rotation by 2t around
the z axis—varying t one draws a great circle of S3. As long
as a generic base point � ¼ ðl; m; nÞ is not the antipode
ð0; 0;�1Þ, any quaternion q� (associated to the base point

� by means of ��1) not having component on the z axis,

1Each local trivialization is well defined on each chart, while
on the equator they become ��1� : ðz0; z1Þ ! ðz0=z1;

ffiffiffi
2

p
z1Þ and

��1þ : ðz0; z1Þ ! ðz1=z0;
ffiffiffi
2

p
z0Þ: the transition function on the

equator is �þ�ð�Þ ¼ ð ffiffiffi
2

p
z0Þ=ð

ffiffiffi
2

p
z1Þ ¼ �1 þ i�2 2 Uð1Þ.

While following a path around the equator, the transition func-
tion �þ�ð�Þ crosses the unit circle in the complex plane once.
Thus the Uð1Þ bundle S3!�S2 is characterized by the homotopy
class 1 of �1ðUð1ÞÞ ¼ Z. The Hopf fibration is therefore locally
a product space, but it is not a trivial fiber bundle, as S3 is not
(globally) a product of S2 and S1.

2For every element x of a set X, the stabilizer subgroup of x is
the set of all elements in G that fix x.
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say for instance q� ¼ ð1þ n;�m; l; 0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ nÞp

, will

continue aim there after multiplication by qt: the fiber of
the base point � is therefore given by quaternions of the
form q� 	 qt, which does not represent merely a topologi-

cal circle, but a geometric one [38]. For the base point
ð0; 0;�1Þ, whose associated quaternion can be taken to be
the i axis, the fiber is simply ð0; cost;� sint; 0Þ.

3. Differential structure of the three-sphere

The unit quaternions, once expressed by means of the
unimodular (because of the q �q ¼ 1 condition identifying a
S3) matrices (A4), can be in turn represented by means of
Euler angles, which are another set of coordinates
f�;�; c g on the three-sphere such that � and �, as usual,
are in the range � 2 ½0; �Þ, � 2 ½0; 2�Þ, while for the
Euler angle c one must set c 2 ½0; 4�Þ in order to achieve
a simply connected covering3 space with the topology of
S3. By these one q assumes the form

qð�;�; c Þ :¼ e���1e���2e�c �3 : (A5)

In terms of Euler angles, isometries of the three-sphere are
well understood as left (and right) translation generated by
SUð2Þ representations. Recall that a left (right) translation
is a mapping 
: S3 ! S3 which take a point P in a point
P0, where qðPÞ ¼ 
qðP0Þ (and respectively qðPÞ ¼
qðP0Þ
). These are really translations, as the only mapping
having fixed points is the identity. Otherwise, a mapping
having fixed points can be defined by qðP0Þ ¼ 
ðPÞ
�1.
This latter is clearly a rotation.

The right and the left translation can be used to define
differential operators on S3. For instance a right translation
can be represented by a Hermitian matrix � and a parame-
ter v, for which qðP0Þ ¼ qðPÞeiv� or by a differential

operator K and a parameter v, such that qðP0Þ ¼
½eivKq�ðPÞ. The compatibility condition for those two
representations is q� ¼ Kq.

Similarly, a left translation is defined by �q ¼ ~Kq,
where using (A4) and previous definition of left and right

translation, it is possible to see that ~Kðx1; x2; x3; x4Þ ¼
�Kð�x1;�x2;�x3; x4Þ. Similarly, in term of Euler angles,
one must send ð�; �; c Þ ! ð�c ;��;��Þ. Right and left
translation operators can then be determined from these
definitions. If we relabel a point in R4 with
ðx1; x2; x3; x4Þ ¼ ðxi; X4Þ, we can recognize, respectively,
the right and the left translation operators to be [39]

Jk ¼ i

2

�
xk

@

@x4
� x4

@

@xk
� xs�skl

@

@xl

�

~Jk ¼ i

2

�
xk

@

@x4
� x4

@

@xk
þ xs�skl

@

@xl

� (A6)

Notice that these generators4 fulfill two suð2Þ algebras
½Ji; Jj� ¼ i�ijkJk; ½~Ji; ~Jj� ¼ i�ijk~Jk; ½~Ji; Jk� ¼ 0:

(A7)

These four-dimensional operators are all tangent to the
surfaces of constant modulus, represented by ðx1Þ2 þ
ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2 ¼ et, with t 2 R. Thus, focusing on
our case t ¼ 0 and equating relation (A4), which is written
in Cartesian coordinates, to relation (A5) expressed in
terms of Euler angles, one finds change of variables and
then translation operators in terms of Euler angles.
Making a further transformation, which defines Hopf

coordinates in terms of Euler angles,

� ¼ 1
2�; �þ ¼ 1

2ðc þ�Þ; �� ¼ 1
2ðc ��Þ;

(A8)

one finds the transformation from Cartesian to Hopf coor-
dinates

x1 ¼ sinð�=2Þ sin��; x2 ¼ sinð�=2Þ cos��;

x3 ¼ cosð�=2Þ sin�þ; x4 ¼ cosð�=2Þ cos�þ:
(A9)

Transformations (A8) and (A9) allow us to think at the
topology of S3 in terms of two-torus coordinates, as both
�1; �2;2 ½0; 2�Þ. In fact, we can consider the third com-
ponent of the left- and right-invariant vector fields J3 and
~J3, and their combinations J3 � ~J3 and J3 þ ~J3. Their
duals one-forms are now linear in d�� and d�þ, as

!3 � ~!3 ¼ �2cos2�d�þ;

!3 þ ~!3 ¼ �2sin2�d��:
(A10)

The metric on the unitary three-sphere turns out to be
expressed by

dl2 ¼ 4ððd�Þ2 þ sin2�ðd��Þ2 þ cos2�ðd�þÞ2Þ; (A11)

which makes clear that the trajectories of these two-
parameter subgroup are constant � surfaces and that they
shrink in the �� direction near the degenerate trajectory
� ¼ 0, and in the �þ direction near the other degenerate
direction � ¼ �=2. In terms of the Hopf fibration, each
torus, which topologically is in stead the product of two
circles, can be thought as the stereographic projection of
the inverse image of a circle of latitude of the two-sphere.

APPENDIX B: TRACES OF �-MATRICES

We give here results of straightforward calculations of
traces of products of �-matrices. We remind that a basis for
the suð2Þ algebra elements in the fundamental representa-
tion is given by �I ¼ �I=ð2iÞ, in which �I are intended to
be the Pauli matrices. It follows that:

3This chart breaks down at the poles � ¼ � ¼ c ¼ 0, corre-
sponding to the identity 1, and at � ¼ � ¼ 0 and c ¼ 2�,
corresponding to �1.

4Rotations about the fixed point x1 ¼ x2 ¼ x3 ¼ 0 and x4 ¼ 1
are generated by the operators Lk ¼ Jk � ~Jk.
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Tr½�I�J� ¼ �1
2�IJ; Tr½�I�J�K� ¼ �1

4�IJK; Tr½�I�J�K�L� ¼ �1
4ð�IK�JL � �IL�JKÞ þ 1

8�IJ�KL;

Tr½�I�J�K�L�S� ¼ 1
4ð�1

4�KS�IJL þ 1
4�KL�IJS þ �LS�IJK þ �IJ�LSKÞ;

Tr½�I�J�K�L�S�M� ¼ 1
8ð�1

4�IKL�JSM þ 1
4�JKL�ISM þ 1

2�SMð�IK�JL � �IL�JKÞ þ 1
2�KLð�IS�JM � �IM�JSÞ

þ 1
2�IJð�KS�LM � �KM�LSÞ � 2�IJ�KL�SMÞ: (B1)

APPENDIX C: WIGNER D-FUNCTIONS

Finally, we recall here an explicit formula for the Wigner D-functions. These are obtained from their very definition in
terms of matrix elements of the rotation operator Rð�; �; c Þ ¼ expð�i�jxÞ expð�i�jyÞ expð�ic jzÞ, in which jx, jy,

jzare generators of the suð2Þ Lie-algebra, and can be expressed as [40]

Dj
	0	 � hj	0jRð�; �; c Þjj	i ¼ e�i	0�dj

	0	ð�Þe�i	c ;

dj
	0	ð�Þ ¼ ½ðjþ 	0Þ!ðj� 	0Þ!ðjþ 	Þ!ðj� 	Þ!�1=2X

s

ð�1Þ	0�	þs

ðjþ 	� sÞ!s!ð	0 � 	þ sÞ!ðj� 	0 � sÞ!
�
cos

�

2

�
2jþ	�	0�2s

�
�
sin

�

2

�
	0�	þ2s

; (C1)

in which the sum over s is over such values that the
factorials are nonnegative.

For j ¼ l integers, the Wigner D-functions are simply
related to the spherical harmonics Yl;	ð�;�Þ by the relation
Dl

	0	ðgÞ ¼ ð�1Þ�	0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�=ð2lþ 1Þ

p
Yl;�	0 ð�;�Þei	c : (C2)

More in particular, the Wigner D-functions, which are
the representation functions of the SOð3Þ and SUð2Þ
symmetry-groups, can be obtained by imposing that they
satisfy the following differential equations, expressed in
terms of the Euler angles

ĈDj
	0	 ¼

�
@2

@�2
þ cot�

@

@�
þ 1

sin2�

�
�
@2

@�2
� 2 cos�

@2

@�@c
þ @2

@c 2

��
Dj

	0	

¼ jðjþ 1ÞDj
	0	;

L̂3D
j
	0	 ¼ �i

@

@c
Dj

	0	 ¼ 	0Dj
	0	;

L̂zD
j
	0	 ¼ �i

@

@�
Dj

	0	 ¼ 	Dj
	0	: (C3)

In the above equation we have introduced two bases of
generators for the suð2Þ algebra and their common Casimir

operator Ĉ, which is an invariant of the group. The angular

momentum operators fL̂1; L̂2; L̂3g of the three-dimensional
rotation group in quantum mechanics, which are the intrin-
sic angular momentum operators of a rigid body, are
related to the left-invariant vector fields eaI (which generate
right-transformations) via the relations

L̂ 1 ¼ iea1@a; L̂2 ¼ iea2@a; L̂3 ¼ iea3@a: (C4)

The spatial angular momentum operators fL̂x; L̂y; L̂zg are in

turns related to the right-invariant Killing vectors �a
I

(which generates left-transformations) by the formulas

L̂ x ¼ �i�a
1@a; L̂y ¼ �i�a

2@a; L̂z ¼ �i�a
3@a:

(C5)

In the chart provided by the Euler angles, it is straightfor-
ward to find the expression for the left-invariant frames eI
as well as that one for the right-invariant vector fields �I

(which Lie drag the frame and coframe introduced in
Sec. II). For the frames

e1 ¼ � cosc
@

@�
� sinc

sin�

@

@�
þ cos� sinc

sin�

@

@c
;

e2 ¼ sinc
@

@�
� cosc

cos�

@

@�
þ cos� cosc

sin�

@

@c
;

e3 ¼ @

@c
;

(C6)

which fulfill the relation ½eI; eJ� ¼ ��IJ
KeK.

It turns out that the Killing vectors are in the following
relation to the frames

�1 ¼ cos�
@

@�
� cos� cos�

sin�

@

@�
þ sin�

sin�

@

@c

¼�ðcos� cosc � cos� sin� sinc Þe1
þ ðcos� sinc þ cos� sin� cosc Þe2 þ ðsin� sin�Þe3;

�2 ¼ sin�
@

@�
þ cos�cos�

sin�

@

@�
� cos�

sinc

@

@c

¼�ðcosc sin�þ cos�cos� sinc Þe1
þ ðsin� sinc � cos�cos� cosc Þe2 � ðcos� sin�Þe3;

�3 ¼� @

@�
¼ sin� sinc e1 þ sin� cosc e2 � cos�e3; (C7)
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from which the Lie brackets ½�I; �J� ¼ �IJ
K�K easily fol-

low. Moreover

½�I; eJ� ¼ �IxeJ ¼ �IveJ ¼ 0; (C8)

which means that eI are left-invariant vector fields (i.e.
they are invariant under the left action ‘‘x’’ of the Killing
vectors) and, in turns, that �I are right-invariant vector
fields (i.e. they are invariant under the right action ‘‘v’’
of the frames).

We want now to show, following [41], that the action of
the derivatives, expressed in terms of the action of the
invariant operators, mixes only the 	0 states. That is what
we briefly mentioned in Sec. VII while we were expanding
inhomogeneous perturbations (intended as scalar harmonic
functions on S3) as a linear combination of Wigner
D-functions.

From the previous equations it follows that

L̂þD
j
	0	 ¼ ðL̂1 þ iL̂2ÞDj

	0	

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 	0Þðj� 	0 þ 1Þ

q
Dj

ð	0�1Þ	;

L̂�D
j
	0	 ¼ ðL̂1 � iL̂2ÞDj

	0	

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 	0 þ 1Þðj� 	0Þ

q
Dj

ð	0þ1Þ	;

L̂3D
j
	0	 ¼ 	0Dj

	0	:

(C9)

The invariant operators can be rewritten in terms of
Cartesian coordinates xA ¼ fx1; x2; x3; x4g in the
Euclidean space E4 in which S3 is embedded (see
Appendix A). In stead of the three coframes !I in the

Euler angles chart, in the Euclidean space the invariant
basis is given by the four forms �A, which are related to!I

by the transformation matrices SIAðxAÞ via
!I ¼ 2SIAðxAÞdxA: (C10)

Conversely, the coordinates differentials of E4 are ex-
pressible in terms of !I via dxA ¼ 1=2SIA!

I.
The coordinates derivatives, which are the vector fields

of E4, are then expressed by

@

@xA
¼ 2SIAðxAÞeI: (C11)

It turns out to be much easier, using the homogeneity of
the S3 spatial slices, evaluate the Cartesian derivatives at
the pole xP ¼ ðx4 ¼ 1; x1 ¼ x2 ¼ x3 ¼ 0Þ, where the
transformations matrices reduce to SIA ¼ ��IA thus yield-
ing the relations

@

@xA

��������xP

¼ �2eI: (C12)

Equation (C12) allows us, by means of (C4), to express
derivatives in terms of invariant operators. On other hand,
Eqs. (C9) specify the actions of the invariant operators on
the Wigner D-functions. It follows, once the Einstein
equations for the Bianchi IX model have been rewritten
in terms of Cartesian coordinates xA [29], that the pertur-
bations to homogeneity possess states with definite j, 	
and that only perturbations labeled by 	0 states are mixed.
This result has been used in Sec. VII in order to decouple j,
	 modes from 	0 modes.
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