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The static, apparently cylindrically symmetric vacuum solution of Linet and Tian for the case of a

positive cosmological constant � is shown to have toroidal symmetry and, besides �, to include three

arbitrary parameters. It possesses two curvature singularities, of which one can be removed by matching it

across a toroidal surface to a corresponding region of the dust-filled Einstein static universe. In four

dimensions, this clarifies the geometrical properties, the coordinate ranges, and the meaning of the

parameters in this solution. Some other properties and limiting cases of this space-time are described. Its

generalization to any higher number of dimensions is also explicitly given.
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I. INTRODUCTION

The well-known Levi-Civita solution [1] describes the
vacuum field exterior to an infinite cylinder of matter. In its
general form, it contains both a parameter � which, for
values in the range (0; 14 ), may be interpreted as the mass

per unit length of the source, and also a conicity parameter.
A generalization of this to include a nonzero cosmological
constant �, which can be either positive or negative, was
obtained by Linet [2] and Tian [3]. This metric is algebrai-
cally general and, as expected, locally approaches the
Levi-Civita solution either as � ! 0 or near the axis as
� ! 0. The Linet-Tian solution and its nonvacuum gener-
alizations have been used to describe cosmic strings (see
e.g. [3–5]). It has also recently been extended to higher
dimensions [6] for�< 0. It therefore seems appropriate to
analyze it in greater detail. Here, we will describe some of
its basic properties—its geometry, the range of its coordi-
nates, the number of its independent parameters and its
limits.

One might initially expect that, for � � 0, the Linet-
Tian solution would reduce to a de Sitter or anti-de Sitter
(AdS) background space as � ! 0 (see [7] for �< 0).
However, this is not possible, since the conformally flat
de Sitter and anti-de Sitter spaces are not compatible with
static cylindrical symmetry. (When expressed in cylindri-
cal coordinates, the metrics for these space-times are ex-
plicitly time dependent.) In fact, as shown by da Silva et al.
[8], this particular limit is a type D space-time. It is a
special member of the Plebański-Demiański family with
nonexpanding repeated principal null directions, and hence
also belongs to Kundt’s class (see e.g. [9]).

As for the Levi-Civita solution, a physical interpretation
of the Linet-Tian solution depends critically on matching it

to suitable interior metrics which remove their curvature
singularities. However, to date, the only known sources of
this solution are cylindrical shells of Bičák and Žofka [10].
The purpose of the present paper is to exhibit some

further interesting properties of this solution for the case
with �> 0. This will be achieved by examining its invari-
ance properties and by matching it across a toroidal hyper-
surface to a suitable region of the Einstein static dust-filled
universe.
Because of its importance in this context, the Einstein

static universe is first analyzed geometrically and an ap-
propriate cylindrical-type coordinate representation is in-
troduced. The Linet-Tian solution with a positive
cosmological constant is then investigated and matched
to a toroidal section of the Einstein universe. Further
properties and limiting cases are also described, including
the extension of the metric to an arbitrary higher numberD
of dimensions.

II. THE EINSTEIN STATIC UNIVERSE

The obvious candidate for an interior solution of a static
cylindrically symmetric space-time with a positive cosmo-
logical constant is a cylindrical section of the Einstein
static universe. This has a constant nonzero mass density
�, such that 4�� ¼ �, and zero pressure. However, since
such a space-time is closed, an apparently cylindrical
section is, in fact, toroidal.
The metric for the Einstein static universe is often given

in global coordinates in the form

ds2 ¼ �dt2 þ a2ðd�2 þ sin2�ðd�2 þ sin2�d�2ÞÞ; (2.1)

where t 2 ð�1;1Þ, � 2 ½0; ��, � 2 ½0; ��, and � 2
½0; 2�Þ. This space-time is spatially closed and the constant
a, which represents the radius of constant-curvature three-
spheres, determines both the density� and the value of the
cosmological constant as
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4�� ¼ � ¼ 1

a2
:

In fact, any Friedmann-Lemaı̂tre-Robertson-Walker uni-
verse can be expressed in terms of cylindrical or toroidal
coordinates. (For a detailed description of this, see [11].)
For this particular case, the transformation

�̂ ¼ sin� sin�; tanc ¼ tan� cos�;

takes the metric (2.1) to the apparently cylindrical form1

ds2 ¼ �dt2 þ a2
�

d�̂2

1� �̂2
þ ð1� �̂2Þdc 2 þ �̂2d�2

�
;

(2.2)

where �̂ 2 ½0; 1� and c 2 ½0; 2�Þ. Putting �̂ ¼ sinð�=aÞ
and c ¼ z=a, the metric becomes

ds2 ¼ �dt2 þ d�2 þ cos2ð
ffiffiffiffi
�

p
�Þdz2 þ 1

�
sin2ð

ffiffiffiffi
�

p
�Þd�2;

(2.3)

in which � can be seen to be a proper (cylindrical) radial
distance. It may also be noted that this metric clearly
approaches that of empty Minkowski space as � ! 0.

The singularities at �̂ ¼ 0 and at �̂ ¼ 1 (i.e.
ffiffiffiffi
�

p
� ¼ 0,

�=2) are coordinate singularities (poles), since the Einstein
universe is homogeneous and isotropic. Their meaning can
be clearly seen in the familiar representation of a space of
constant positive curvature as a three-dimensional hyper-
sphere x1

2 þ x2
2 þ x3

2 þ x4
2 ¼ 1 in a four-dimensional

Euclidean space ds2 ¼ dx1
2 þ dx2

2 þ dx3
2 þ dx4

2. Such

representations of the spatial parts of the metrics (2.1) and
(2.2) are given by

cos� ¼ x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �̂2

q
cosc ;

sin� cos� ¼ x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �̂2

q
sinc ;

sin� sin� cos� ¼ x3 ¼ �̂ cos�;

sin� sin� sin� ¼ x4 ¼ �̂ sin�:

Consequently,

x1
2 þ x2

2 ¼ 1� �̂2; x3
2 þ x4

2 ¼ �̂2;

x2
x1

¼ tanc ;
x4
x3

¼ tan�:

It can thus be seen that the surfaces on which �̂ ¼ const.
are a family of tori. They are surfaces spanned by� and c ,
which are both periodic. The angular character of these two
coordinates is illustrated in Fig. 1.

The complete regular Einstein static space-time (i.e. one
without conical singularities) can thus be described by the

metric (2.3) with t 2 ð�1;1Þ, � 2 ½0; �=2 ffiffiffiffi
�

p �, � 2
½0; 2�Þ, and z 2 ½0; 2�= ffiffiffiffi

�
p Þ, corresponding to c 2

½0; 2�Þ.

III. THE LINET-TIAN SOLUTION

The generalization of the Levi-Civita solution to include
a cosmological constant was obtained by Linet [2] and
Tian [3]. It is usually expressed in the form

ds2 ¼ Q2=3ð�P�2ð1�8�þ4�2Þ=3�dt2 þ P�2ð1þ4��8�2Þ=3�dz2

þ C2P4ð1�2��2�2Þ=3�d�2Þ þ d�2; (3.1)

where � ¼ 1� 2�þ 4�2, � is a proper radial distance
and

Qð�Þ ¼ 1ffiffiffiffiffiffiffi
3�

p sinð ffiffiffiffiffiffiffi
3�

p
�Þ;

Pð�Þ ¼ 2ffiffiffiffiffiffiffi
3�

p tan

� ffiffiffiffiffiffiffi
3�

p
2

�

�
:

(3.2)

Note that
ffiffiffiffiffiffiffi�g

p ¼ CQ. This is, in fact, the unique static

(apparently) cylindrically symmetric vacuum solution. It
admits both cases �> 0 and �< 0 (in which trigonomet-
ric functions are replaced by hyperbolic ones).

FIG. 1. The three-sphere in a four-dimensional Euclidean
space is here represented by two sections: those on which
� ¼ 0 (above) and c ¼ 0 (below). This clearly illustrates the
equivalence of the � and c coordinates in different orientations.
In particular, two thin tori around �̂ ¼ 0 and around �̂ ¼ 1 do
not intersect.

1It has orthogonal spacelike Killing vectors @� and @c and a
regular axis at �̂ ¼ 0. Near the axis, it resembles flat space in
cylindrical coordinates.
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It may immediately be seen that, both as � ! 0 and as
� ! 0, the metric (3.1) approaches the form

ds2 ¼ ��4�=�dt2 þ ��4�ð1�2�Þ=�dz2 þ C2�2ð1�2�Þ=�d�2

þ d�2; (3.3)

which is the Levi-Civita metric. For 0<�< 1
4 , this may

be interpreted as a cylindrically symmetric space-time in
which � represents the mass per unit length of a source
along the axis � ¼ 0, and there is an additional conicity
parameter C. To retain the interpretation of this limit, it
will be assumed below that the parameter � in the Linet-
Tian metric is also restricted to the range � 2 ½0; 14�.

When � ¼ 0, both metrics (3.1) and (3.3) approach
Minkowski space near the axis at � ¼ 0, but with a conical
singularity (or cosmic string) with deficit angle 2�ð1� CÞ
if � 2 ½0; 2�Þ, and � ¼ 2� is identified with � ¼ 0.
Indeed, with t, z constant, the circumference of a small
circle divided by its radius is ðR2�

0 C�d�Þ=� ¼ 2�C.
If � � 0, the limit as � ! 0 corresponds to a curvature

singularity for both metrics. However, the Linet-Tian met-
ric (3.1) with�> 0 has an additional curvature singularity

at � ¼ �=
ffiffiffiffiffiffiffi
3�

p
, and the proper ‘‘radial’’ coordinate � has

the finite range (0; �=
ffiffiffiffiffiffiffi
3�

p
). Thus, in addition to the pres-

ence of a source along the axis at � ¼ 0, there must exist

another source near � ¼ �=
ffiffiffiffiffiffiffi
3�

p
. It follows that the metric

(3.1) can at most represent the field in a vacuum region
with a cosmological constant between two concentric
cylindrical-like sources.

Both the Linet-Tian metric (3.1) and the Levi-Civita
metric (3.3) are invariant under a transformation which
replaces the parameter � with 1=4� and interchanges the
coordinates � and z (with a rescaling to reflect the change
of conicity). However, this transformation takes � outside
the range we wish to consider.

More importantly, the Linet-Tian metric (3.1) with
�> 0, C ¼ 1 is also invariant under the transformation2

� ¼ �ffiffiffiffiffiffiffi
3�

p � �0; t ¼
�
4

3�

�ð1�8�þ4�2Þ=3�
t0;

� ¼
�
4

3�

��2ð1�2��2�2Þ=3�
z0;

z ¼
�
4

3�

�ð1þ4��8�2Þ=3�
�0; � ¼ 1� 4�0

4ð1� �0Þ :

(3.4)

This demonstrates an equivalence between members of the
family of Linet-Tian space-times with these different val-
ues of � and �0. In this equivalence, both the character of
the two curvature singularities, and the roles of the coor-
dinates � and z, are interchanged. Thus, if the Linet-Tian
metric (3.1) with �> 0 and a particular value of � is

interpreted as having a source of strength � near � ¼ 0
in the z direction, then it could also be interpreted as having

a similar source of strength �0 ¼ 1�4�
4ð1��Þ near � ¼ �=

ffiffiffiffiffiffiffi
3�

p
in the � direction.
The Linet-Tian solution is usually assumed to have

cylindrical symmetry. Consequently, the z coordinate is
normally taken to have the range (�1;1), so that it
can always be rescaled. However, in view of the inter-
change of � and z in the invariance (3.4), it is clear that
both of these coordinates have the same character. In
particular, they are both periodic. This is consistent with
the expectation that a static space-time with a positive
cosmological constant would be spatially closed. Then,
since neither of these coordinates can be arbitrarily re-
scaled, it follows that the general Linet-Tian solution
with �> 0 must contain two conicity parameters associ-
ated with possible deficit angles at both singularities.
In view of these properties, it is appropriate to relabel the

coordinate z as c to reflect its character as an angle. Then,
with two conicity parameters B and C, we suggest that the
Linet-Tian space-time with �> 0 and � 2 ½0; 14� should
preferably be given by the metric

ds2 ¼ Q2=3ð�P�2ð1�8�þ4�2Þ=3�dt2

þ B2P�2ð1þ4��8�2Þ=3�dc 2

þ C2P4ð1�2��2�2Þ=3�d�2Þ þ d�2; (3.5)

where � ¼ 1� 2�þ 4�2, Qð�Þ and Pð�Þ are given by
(3.2), and �, c 2 ½0; 2�Þ. Apart from the cosmological
constant, this metric has three parameters B, C, and �.
It will be shown in the following section that the values

of B and C can be established, for example, by matching
this solution across a surfaces on which � is a constant to a
corresponding toroidal surface of the Einstein static
universe.
For use below, it is also convenient to express the metric

(3.5) in the form

ds2 ¼ cos4=3
� ffiffiffiffiffiffiffiffi

3

4
�

s
�

�
ð�P2p0dt2 þ B2P2p1dc 2

þ C2P2p2d�2Þ þ d�2; (3.6)

where Pð�Þ remains as given in (3.2) and

p0 ¼ 2�

�
; p1 ¼ 2�ð2�� 1Þ

�
; p2 ¼ 1� 2�

�
:

(3.7)

In particular, it may be noticed that these constants satisfy
the constraints

p0 þ p1 þ p2 ¼ 1; p0
2 þ p1

2 þ p2
2 ¼ 1:

2The equivalent transformation with � ¼ � 1�4�0
2ð1þ2�0Þ could

alternatively be used, but this would include values of � outside
our assumed range.
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IV. MATCHING CONDITIONS

We will here consider removing a region around one of
the two singularities of the Linet-Tian solution with �> 0
and replacing it by an appropriate region of the Einstein
static universe. Specifically, we will match the two metrics
on a surface � ¼ �1. We may either take the Linet-Tian
metric for � > �1 and the Einstein metric for � < �1, or
vice versa. In either case, the corresponding toroidal region
of the Einstein static universe has a metric which can now
be written in the form

ds2 ¼ �A1
2dt2 þ B1

2

�
cos2ð

ffiffiffiffi
�

p
ð�� �0ÞÞdc 2

þ C1
2

�
sin2ð

ffiffiffiffi
�

p
ð�� �0ÞÞd�2 þ d�2; (4.1)

where �, c 2 ½0; 2�Þ. This metric, which is a modifica-
tion of (2.3), includes four additional parameters A1, B1,
C1, and �0. These correspond to a rescaling, allowances for
possible deficit angles and a shift in the proper radial
coordinate �.

The required junction conditions are that the two metrics
(3.5) and (4.1) and their first derivatives match across the
surfaces � ¼ �1. These provide six conditions:

Qð�1ÞPð�1Þ�ð1�8�þ4�2Þ=� ¼ A1
3; (4.2)

Qð�1ÞPð�1Þ�ð1þ4��8�2Þ=� ¼ B1
3

B3�3=2
cos3ð

ffiffiffiffi
�

p
ð�1 � �0ÞÞ;

(4.3)

Qð�1ÞPð�1Þ2ð1�2��2�2Þ=� ¼ C1
3

C3�3=2
sin3ð

ffiffiffiffi
�

p
ð�1 � �0ÞÞ;

(4.4)

Q0ð�1Þ
Qð�1Þ

�
�
1� 8�þ 4�2

1� 2�þ 4�2

�
P0ð�1Þ
Pð�1Þ ¼ 0; (4.5)

Q0ð�1Þ
Qð�1Þ

�
�
1þ 4�� 8�2

1� 2�þ 4�2

�
P0ð�1Þ
Pð�1Þ

¼ �3
ffiffiffiffi
�

p
tanð

ffiffiffiffi
�

p
ð�1 � �0ÞÞ; (4.6)

Q0ð�1Þ
Qð�1Þ

þ 2

�
1� 2�� 2�2

1� 2�þ 4�2

�
P0ð�1Þ
Pð�1Þ

¼ 3
ffiffiffiffi
�

p
cotð

ffiffiffiffi
�

p
ð�1 � �0ÞÞ; (4.7)

in which, from the definitions (3.2),

Q0ð�1Þ
Qð�1Þ

¼
ffiffiffiffiffiffiffi
3�

p
cotð

ffiffiffiffiffiffiffi
3�

p
�1Þ; P0ð�1Þ

Pð�1Þ ¼
ffiffiffiffiffiffiffi
3�

p

sinð ffiffiffiffiffiffiffi
3�

p
�1Þ

:

The first three Eqs. (4.2), (4.3), and (4.4) effectively
determine the constants A1, B1=B, and C1=C in terms of
the parameters �, �, and �1.

For any solution with given values for � and �, the
condition (4.5) becomes

cosð ffiffiffiffiffiffiffi
3�

p
�1Þ ¼ 1� 8�þ 4�2

1� 2�þ 4�2
: (4.8)

Notice that the right-hand side of this expression decreases
monotonically from 1 to�1 as � increases from 0 to 1

4 , so

it determines a unique value for �1 explicitly. With this
value, it follows that

sinð ffiffiffiffiffiffiffi
3�

p
�1Þ ¼ 2

ffiffiffi
3

p ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
1� 2�þ 4�2

:

Hence,

Qð�1Þ ¼ 2
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
ffiffiffiffi
�

p ð1� 2�þ 4�2Þ ;

Pð�1Þ ¼ 2
ffiffiffiffi
�

pffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p ;

(4.9)

and

Q0ð�1Þ
Qð�1Þ

¼
ffiffiffiffi
�

p ð1� 8�þ 4�2Þ
2

ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p ;

P0ð�1Þ
Pð�1Þ ¼

ffiffiffiffi
�

p ð1� 2�þ 4�2Þ
2

ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p :

(4.10)

With these expressions, Eqs. (4.6) and (4.7) are in fact
identical. Each implies that

tan 2ð
ffiffiffiffi
�

p
ð�1 � �0ÞÞ ¼ 4�ð1� �Þ

1� 4�
: (4.11)

For �1 in the given range, this defines a unique (positive)
value for the parameter �0.
We must now investigate the (relative) values of the

constants A1, B1, C1 and the conicity parameters B and
C. These are given by the Eqs. (4.2), (4.3), and (4.4) in the
form

A1 ¼ Qð�1Þ1=3Pð�1Þ�ð1�8�þ4�2Þ=3�; (4.12)

B1 ¼ B
ffiffiffiffi
�

p Qð�1Þ1=3Pð�1Þ�ð1þ4��8�2Þ=3�

cosð ffiffiffiffi
�

p ð�1 � �0ÞÞ
; (4.13)

C1 ¼ C
ffiffiffiffi
�

p Qð�1Þ1=3Pð�1Þ2ð1�2��2�2Þ=3�

sinð ffiffiffiffi
�

p ð�1 � �0ÞÞ
: (4.14)

The first of these determines the value of A1 explicitly. The
other two need to be interpreted more carefully.
Consider first the case in which the region around the

curvature singularity of (3.5) at � ¼ 0 is replaced by a
corresponding toroidal region of the Einstein static uni-
verse, so that the space-time is described by the metric

(4.1) with � 2 ½�0; �1Þ, and the metric (3.5) with � 2
½�1; �=

ffiffiffiffiffiffiffi
3�

p Þ. In this case, the pole at � ¼ �0 is regular
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(with no conical singularity) if C1 ¼ 1. The corresponding
value of C can then be determined from (4.14) explicitly.
Any other value of C would lead to a conical singularity on
the axis of the toroidal region of the Einstein static universe
as determined by the value of C1 given by (4.14).

Interestingly, the total mass of the dust within this
toroidal section of the Einstein universe is

Z �1

�0

Z 2�

0

Z 2�

0
�

ffiffiffiffiffi
g3

p
d�dc d� ¼ 2�B1C1ffiffiffiffi

�
p �ð1� �Þ

ð1� 4�2Þ :

Since the length of this toroid is approximately 2�B1=
ffiffiffiffi
�

p
near � ¼ �0, and C1 ¼ 1, the mass per unit length of the
toroid is �ð1� �Þ=ð1� 4�2Þ, which is approximately �
for small values. This is consistent with the result that is
expected when� ! 0. Notice, however, that this is not the
sole ‘‘source’’ for this space-time. The contribution from
the remaining singularity must also be taken into account.

In the opposite case in which the other region, namely,

that around the curvature singularity at � ¼ �=
ffiffiffiffiffiffiffi
3�

p
, is

replaced by a corresponding toroidal region of the Einstein
static universe, the space-time is described by the metric

(3.5) with � 2 ð0; �1�, and the metric (4.1) with � 2
ð�1; �0 þ �=2

ffiffiffiffi
�

p �. In this case, the pole at � ¼
�0 þ �=2

ffiffiffiffi
�

p
is regular if B1 ¼ 1. The value of B can

then be determined from (4.13). Any other value of B
would lead to a conical singularity in the toroidal region
of the Einstein static universe (a closed cosmic string).

V. THE LIMIT AS � ! 0

For the case in which � vanishes, the Linet-Tian metric
(3.5) with �> 0 becomes

ds2 ¼ cos4=3
� ffiffiffiffiffiffiffi

3�
p
2

�

�
ð�dt2 þ B2dc 2Þ þ d�2

þ 4C2

3�
sin2

� ffiffiffiffiffiffiffi
3�

p
2

�

�
cos�2=3

� ffiffiffiffiffiffiffi
3�

p
2

�

�
d�2: (5.1)

Putting p ¼ cos2=3ð ffiffiffiffiffiffiffi
3�

p
�=2Þ gives

ds2 ¼ p2ð�dt2 þ B2dc 2Þ þ 4C2

3�

ð1� p3Þ
p

d�2

þ 3

�

p

ð1� p3Þdp
2; (5.2)

where p 2 ½0; 1� with p ¼ 1 representing the axis � ¼ 0.
(The Linet-Tian metric with �< 0 also reduces to this
form, but the range of p is altered to retain a Lorentzian
metric.)

The metric (5.2) is known to be of type D, and clearly
belongs to the family of nonexpanding Plebański-
Demiański solutions whose general form is given in
Eq. (16.27) of [9]. For the particular case in which the
parameters � and 	 both vanish, these solutions are given
by the metric

ds2 ¼ p2

�
�Qdt2 þ 1

Q
dq2

�
þ P

p2
d’2 þ p2

P
dp2; (5.3)

where

Q ðqÞ ¼ 
0 þ 
q2; P ðpÞ ¼ 2np� 
p2 � 1
3�p4:

Clearly the metric (5.2) is a particular member of this
family for which 
0 ¼ 1, 
 ¼ 0, n ¼ 1

6� and the coordi-

nates � and c have been rescaled. This is thus a general-
ization of the BIII metric which includes a cosmological
constant. It is also a particular type D solution of Kundt’s
class. However, none of these solutions are well understood
physically.

VI. EXTENSION TO HIGHER DIMENSIONS

Interestingly, the solution described above can be ex-
tended to any higher number (D) of dimensions. The
metric in this case is given by

ds2 ¼ Rð�Þ�
�
�Sð�Þ2p0dt2 þ XD�2

i¼1

C2
i Sð�Þ2pid�2

i

�
þ d�2;

(6.1)

where �i 2 ½0; 2�Þ are angular coordinates,
Rð�Þ ¼ cosð��Þ; Sð�Þ ¼ tanð��Þ;

with

� ¼ 4

D� 1
; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� 1Þ
2ðD� 2Þ�

s
;

the constants Ci are corresponding conicity parameters and
the constants pi satisfy the constraints

XD�2

i¼0

pi ¼ 1;
XD�2

i¼0

p2
i ¼ 1:

Such a metric satisfies Einstein’s vacuum field equations
R�� ¼ 2

D�2�g�� with a cosmological constant �> 0.

The metric (6.1) clearly reduces to the Linet-Tian solu-
tion in the form (3.6) with (3.2) whenD ¼ 4, in which case
the constants pi are expressed in terms of a single parame-
ter � using (3.7).
Notice that the analogous extension of the Linet-Tian

solution to higher dimensions for the case when �< 0 has
been recently given in [6].
There exists an important special subcase of the metric

(6.1) in which p0 ¼ 0, pi ¼ 0 for i ¼ 1; . . . ; D� 3 and
pD�2 ¼ 1. In view of the relations (3.7), this corresponds
to the ‘‘source-free’’ limit � ¼ 0 in the Linet-Tian metric,
as described in the previous section for the case D ¼ 4.
This particular metric reads
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ds2 ¼ cos�ð��Þ
�
�dt2 þ C2tan2ð��Þd�2 þ XD�3

i¼1

C2
i d�

2
i

�

þ d�2; (6.2)

where we have relabeled the coordinate �D�2 as �.
The �< 0 counterpart of the solution (6.2) has been

identified in [12] as a D-dimensional generalization of a
‘‘second anti-de Sitter universe’’ of [7] and as a special
case of an ‘‘AdS soliton’’ of [13].

VII. CONCLUSIONS

It is already well-known that the vacuum Linet-Tian
solution with �> 0 has two curvature singularities at

� ¼ 0 and � ¼ �=
ffiffiffiffiffiffiffi
3�

p
. It has been argued here that this

space-time is essentially toroidally symmetric with the
singularities located at the poles, which form closed axes.
The familiar coordinates � and z have been shown to be
both periodic, so that neither can be rescaled and two
corresponding conicity parameters should, therefore, be
included in the metric. In view of these properties, it is
suggested that the solution should be given in the form of
the metric (3.5).

The two curvature singularities are generally different.
However, they have a similar character and are related by
the invariance property (3.4).

It has been shown that a region of the vacuum Linet-Tian
solution can be matched across a toroidal surface to part of
the static Einstein universe containing dust. This clarifies
the above interpretation. However, since the Eq. (4.8) has
just a single solution for �1 for any given value of �, it is
not possible in this way to replace both curvature singu-
larities simultaneously with toroidal sources having a finite
vacuum region between them.
In the limit as � ! 0, this solution reduces to the well-

known Levi-Civita solution in which the parameter � may
be interpreted as a mass per unit length of a cylindrical
source. Interestingly, such an interpretation also applies to
the parameter � in the Linet-Tian solution with �> 0
when considering the source around � ¼ 0.
We also presented a higher-dimensional generalization

of the Linet-Tian vacuum solution in the case when�> 0.
This forms a natural counterpart of the recently discussed
family of metrics with a negative cosmological constant
which involves a second anti-de Sitter universe and a
special case of an AdS soliton.
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