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We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the

boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms.

We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon

limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy

approaches the Bekenstein-Hawking value S ¼ A=4. In this setup, the key role is played by the surface

stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any

distribution of matter inside the surface leads to the same universal value for the entropy in the

quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities

between black holes and quasiblack holes such as the mass formulas for both objects had been found

previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.
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I. INTRODUCTION

As it is known, the entropy S of a nonextremal black
hole is equal to the Bekenstein-Hawking value, S ¼ A=4,
where A is the area of the black hole horizon (we use units
such that Newton’s constant, Planck’s constant, and the
speed of light are put to one). Its formal appearance is
especially transparent in a Euclidean action approach
where this term stems entirely due to the presence of the
horizon [1–4]. A development on these issues was per-
formed by Brown and York [5], where from a quasilocal
energy formalism one can deduce, among other things,
black hole thermodynamics itself.

Imagine now, a collapsing body. When the surface of the
body is close to its own horizon rþ, but does not coincide
with it, there is no obvious reason for the presence of such
an S ¼ A=4 term for the entropy of the body. Therefore, at
first glance, the entropy A=4 appears as a jump, when the
black hole forms. Nonetheless, we will see below that we
can restore the continuity and trace the origin of the
entropy under discussion, if instead of a black hole we
will consider a quasiblack hole. Roughly speaking, a qua-
siblack hole is an object in which the boundary gets as
close as one likes to the horizon. However, an event
horizon does not form (see [6–8] and references therein
for more on the definition and properties of quasiblack
holes, and [9–15] for examples of quasiblack holes
themselves).

We will study a distribution of matter constrained inside
a boundary, at some temperature T, in the vicinity of being

a quasiblack hole and find the entropy S of such a system.
The steps to find the universal entropy formula consist of
using the first law together with the quasilocal formalism
of [5]. We will see that the matter entropy helps in the
generation of the A=4 term when the boundary approaches
the horizon. Instead of giving some examples of calculat-
ing the entropy for some spherically symmetric shell (see,
e.g., the very interesting studies in [16,17]), we proceed in
a model-independent way and exploit essentially the fact
that the boundary almost coincides with the would-be
horizon, i.e., with the quasihorizon. In the procedure, it is
essential that some components of surface stresses diverge
in the quasihorizon limit, in the case of nonextremal qua-
siblack holes. It is the price paid for keeping a shell (which
is inevitable near the nonextremal quasihorizon [6]) in
equilibrium without collapsing. Although by themselves,
such stresses that grow unbounded look unphysical, the
whole quasiblack hole picture turns out to be at least useful
methodically since it enables us to trace some features of
black holes. In particular, in previous works [7,8] we
managed to derive the black hole mass formula using a
quasiblack hole approach in which both the meaning of
terms and their derivation are different from the standard
black hole case. Thus, the concept of a quasiblack hole has
two sides: it simultaneously mimics some features of black
holes but also shows those features in a quite different
setting. To some extent, it can be compared with the
membrane paradigm [18,19]. However, the key role that
the diverging stresses play here was not exploited there (a
more detailed general comparison of both approaches
would be important, but is beyond the scope of our paper).
In the present work, we extend the approach to the entropy
of nonextremal quasiblack holes. We also discuss the issue
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of the entropy for extremal quasiblack holes. In some
papers [20–22] it was argued that S ¼ 0 for extremal black
holes, while in other works there were arguments to re-
cover the value S ¼ A=4 (see [23] for works within general
relativity, and [24] for additional arguments within string
theory). Thus, it is useful to examine the issue of the
entropy of extremal quasiblack holes at the classical level.

A point worth raising is that the entropy of a pure black
hole can in part be recovered from entanglement arguments
[25,26]. Quasiblack holes appeared first in the context of
self-gravitating magnetic monopoles [9,10] and this
prompted Lue and Weinberg [27] to argue that an observer
in the outer region describes the quasiblack hole inner
region in terms of a statistical density matrix � defined
upon taking the trace of the degrees of freedom in this inner
region. Then, defining as usual the entropy S as S ¼
�Trð� ln�Þ, one can argue that the emergence of the black
hole entropy, or quasiblack hole entropy, can be consis-
tently ascribed to the entanglement of the outer and inner
fields [27]. This entanglement entropy has some draw-
backs, one of which is that, although it gives a quantity
proportional to the horizon area A, the proportionality
constant is infinite, unless there is a ultraviolet cutoff
presumably at the Planck scale, which somehow would
give in addition the required 1=4 value. Here we do not
touch on the physical statistical approach; we rather use the
thermodynamic approach to the entropy of quasiblack
holes and find precisely the value S ¼ A=4.

The issue discussed by us is also relevant in the context
of [28] (see also [29–31]), where it was argued that the
Einstein equation can be derived from the first law of
thermodynamics TdS ¼ �Q and the proportionality be-
tween the entropy and the area A of some causal horizon.
In this setting, T and �Q are the temperature and the heat
flux seen by an accelerated local Rindler observer on a
surface which is close to the horizon but does not coincide
with it and remains timelike. Since this setup is based on a
timelike surface, rather than on a null surface, strictly
speaking there is a gap in the derivation, as the S ¼ A=4
value follows from the space-time structure for the horizon,
a null surface. In the present work we show how this S ¼
A=4 term is indeed recovered in the quasihorizon limit and,
thus, fill this gap.

II. ENTROPYAND FIRST LAW OF
THERMODYNAMICS FOR QUASIBLACK HOLES

A. Entropy in the nonextremal case

1. Entropy formula

Consider a static metric, not necessarily spherically
symmetric. We assume that there is a compact body.
Then, at least in some vicinity of its boundary the line
element can be written in Gaussian coordinates as

ds2 ¼ �N2dt2 þ dl2 þ gabdx
adxb; (1)

where ðt; lÞ are the time and radial coordinates, respec-
tively, and xa, xb represent the angular part. We suppose
that the boundary of the compact body is at l ¼ const. The
metric functions N and gab generically have different
forms for the inner and outer parts. Now also assume that
the system is at a local Tolman temperature T given by

T ¼ T0

N
; (2)

where T0 ¼ const. T0 should be considered as the tempera-
ture at asymptotically flat infinity. Assuming the validity of
the first law of thermodynamics we can write it in terms of
boundary values

Tdðs ffiffiffi
g

p Þ ¼ dð ffiffiffi
g

p
�Þ þ�ab

2

ffiffiffi
g

p
dgab þ ’dð ffiffiffi

g
p

�eÞ: (3)

One should carefully define each term appearing in Eq. (3).
The quantity g is defined as g � detgab. The quantity s is
the entropy density entering the expression for the total
entropy

S ¼
Z

d2x
ffiffiffi
g

p
s: (4)

The quantity � is the quasilocal energy density, defined as
[5]

� ¼ �g � �0; (5)

where

�g ¼ K

8�
(6)

and �0 ¼ K0=8�,. So, � ¼ K�K0

8� . Here K is the trace of the

two-dimensional extrinsic curvature Kab of the boundary
surface embedded in the three-dimensional manifold t ¼
const, and K0 is a similar term for the reference back-
ground manifold, e.g., flat space-time, but in our context
the precise background is unimportant. In more detail,

Kab ¼ �1
2gab

0; (7)

is the extrinsic curvature, where a prime denotes differen-
tiation with respect to l, i.e., 0 � @

@l , and

K ¼ � 1ffiffiffi
g

p ffiffiffi
g

p 0 (8)

its trace, K ¼ Kabg
ab. Finally, the spatial energy-

momentum tensor �ab is equal to [5] (see also [32–34]
for the more traditional approach)

�ab ¼ �g
ab ��0

ab; (9)

where
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8��g
ab ¼ Kab þ

�
N0

N
� K

�
gab; (10)

and �0
ab is the corresponding background tensor, with a

form similar to Eq. (10). Finally, the quantity ’ is the
electric potential and �e is the electric charge density of
the matter.

Our strategy consists of integrating the first law (3) to
obtain the entropy. In general, for an arbitrary boundary, if
one is far from the quasihorizon, the integration procedure
requires knowledge of the equation of state of the matter, as
has been worked out by Martinez for some specific models
of a shell in vacuum [17]. However, we will now see that if
we choose a sequence of configurations such that all its
members remain on the threshold of the formation of a
horizon, and integrate just over this very subset, the answer
turns out to be model independent, and there is no need to
specify an equation of state. To this end, we must simul-
taneously change the size and the proper mass M of the
configuration, to keep it near its gravitational radius rþ,
and in such a way that N ! 0 for all such configurations.
This will allow us to integrate the first law along such a
sequence and obtain the value of the entropy for a shell
near the quasihorizon.

We point out some subtleties. We use the definitions of
quasiblack holes done in [6–8] for general and spherical
systems. Consider, for simplicity, spherical configurations.
Then, there are two relevant quantities, the system radius R
and its gravitational radius rþ. For rþ fixed and R ! rþ,
we deal with the situation of [6–8]. In doing N ! 0 the

small parameter is " ¼ R�rþ
R � 1. But, now, actually there

are two small parameters " and � ¼ ð�rþÞ
rþ

, since we want to

consider small variations of thermodynamic quantities for
two close systems which differ in rþ. Then, we must first
send " ! 0 and only afterward consider � � 1. It is this
approach that ensures that we are dealing with quasiblack
holes having slightly different radii rþ. If the system is
kept near the quasihorizon, this allows us to integrate the
first law along such a sequence counting different members
of the same family of states and obtain the value of S for the
shell layer at the quasihorizon. It is worth dwelling on this
point, and in order to understand it, consider, for instance,
the simplest configuration with a Schwarzschild exterior
solution and a Minkowski metric inside. Then, the
Arnowitt-Deser-Misner (ADM) mass m of the solution,
the radius of the shell R, and its proper mass M are

connected by the relation m ¼ M� M2

2R [2,16]. The hori-

zon, if there is one, is at radius rþ � 2m. We can character-
ize the system by two independent parameters, R and m,
say. Then, in the whole space of parameters, we must
choose the curve lying slightly above the straight line R ¼
2m. Then, in the process of integration along this curve all
three quantities R, m, andM change but in such a way that
the approximate equality R � 2m holds.

Thus, in the outer region, neglecting the difference
between quasiblack hole and black hole metrics (which
can be done), we can write [35,36] for the system near the
formation of a quasihorizon,

Kab ¼ Kð1Þ
ab lþOðl2Þ: (11)

Equation (11) follows from regularity conditions. It is then
seen from (5) that the quasilocal energy density � remains
finite, and from (10) that the spatial stresses �ab diverge
due to the term 1

N ð@N@l Þþ. In the outer region ð@N@l Þþ ! �,

where � is the surface gravity of the body. Leaving in
Eq. (3) only the dominant contribution, we obtain that

dðs ffiffiffi
g

p Þ ¼ �

16�T0

ffiffiffi
g

p
gabdgab: (12)

Up to now, the quantity T0 is arbitrary. However, we should
take into account that near the quasihorizon quantum fields
are inevitably present. For an arbitrary temperature, their
backreaction becomes divergent and only the choice

T0 ¼ TH ¼ �

2�
; (13)

where TH is the Hawking temperature, enables us to obtain
a finite result [see, e.g., [23] and references therein, for the
proof that the stress-energy tensor and other quantities
diverge strongly on the horizon unless the corresponding
fields are in a state with a temperature equal to the natural
black hole temperature TH; we list the corresponding ex-
pression for the stress-energy tensor in Eq. (21)]. If, thus,
neglecting again the difference between a black hole and
quasiblack hole, we substitute this equality in (12), we
obtain

dðs ffiffiffi
g

p Þ ¼ 1
4d

ffiffiffi
g

p
: (14)

Upon integration over an area A, we reproduce the famous
result

S ¼ 1
4A; (15)

up to a constant c. In these considerations, we took into
account the leading term while integrating the first law (3).
It follows from the Tolman formula (2) that the corrections
which come from the first and last terms are of the order
Oð ffiffiffiffiffiffiffiffiffiffiffi�g00

p Þ and vanish when the quasihorizon is ap-

proached. In general, there are also corrections which
stem from the second term. They are model dependent
and depend on how rapidly the temperature T0 approaches
the Hawking value TH. In the limit T0 ! TH they vanish by
construction.
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It is interesting to note that in the quasihorizon limit an
analog of the Euler relation is found. Indeed, the Euler
relation has the form

Ts ¼ �þ p; (16)

where � is the energy density and p plays the role of a
pressure. It is easy to check that the relation (16) does not
hold in general. However, one can check directly that near
the quasihorizon Eq. (16) with the mean pressure given by
p ¼ �abgab=2 holds approximately. In doing so, in the
main approximation, one finds p � �=8�N and s � 1

4 , in

agreement with (15). One sees that � does not enter this
equation at all, being thus negligible.

2. Choice of the constant

We obtained that in the quasiblack hole limit S ¼ A=4þ
c, where c ¼ const. To substantiate our choice c ¼ 0, we
can require that S ! 0 when the quasiblack hole disap-
pears, so A ! 0. Then, indeed c ¼ 0 and the continuity of
the quasiblack hole entropy ensues.

3. Layer and boundary stresses

(i) Universality of the entropy formula, independently of
the specific layer or boundary stresses adopted for the
model: Our derivation is essentially based on the quasilocal
approach [5] which also admits an interpretation in terms
of the formalism of thin shells [32,33] (see [34] for a
discussion of this point and a more general setup, where
mass and quasilocal energy are defined for a naked black
hole, a relative of a quasiblack hole). In our context this is
especially important although it does not show up quite
explicitly.

Equation (9) for the surface stresses refers to the differ-
ence between quantities defined in the given metric and
those coming from the background metric, say, a flat one.
So Eq. (9) does not necessarily require a thin shell as a
model for the matter; it is irrelevant for the calculation of
quasilocal quantities in the outer region, so this equation is
valid for any inner region joined through the boundary to
an outer region (say, to vacuum) with fixed boundary data.
This is because information about the inner region is
encoded in the boundary values [2–4]. For example, denot-
ing by r the radial coordinate, if there is a spherically
symmetric body with radius R, such that 0 � r � R,
and with a distribution of matter with a mass function

mðrÞ, the quasilocal energy at some r, EðrÞ, is EðrÞ ¼
rð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ½2mðrÞ=r�p Þ. It only depends on quantities de-

fined at r. In particular, at the surface, r ¼ R, EðRÞ ¼
Rð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ½2mðRÞ=R�p Þ.
However, in any model, be it thin shell or distributed

matter joined by a boundary to the outer space, a crust in
the form of a thin layer arises inevitably when some surface
behaving as the boundary of the matter approaches the

quasihorizon. Moreover, the amplitude of such stresses
becomes infinite in this limit for nonextremal quasiblack
holes [6].
Thus, whatever distribution of entropy a body would

have, in the quasihorizon limit all the material distributions
(including a disperse distribution or even other shells of
matter) give the same universal result S ! A

4 . So the total

entropy agrees then with the Bekenstein-Hawking value.
Here, in the quasiblack hole approach we see a manifesta-
tion of the universality inherent to black hole physics in
general and black hole entropy, in particular. One reserva-
tion is in order. If we try to take into account the thermal
radiation from the boundary toward the inside region, we
encounter the difficulty that the local temperature T ¼
T0=N grows unbound, and so the mass of the radiation
and the entropy also explode. As a result, collapse ensues
with the appearance of a true black hole inside the shell
instead of a quasiblack hole. However, because of the
infinite redshift due to the factor N, any typical time t0
connected with emission of photons inside will grow un-
bounded as t0

N for an external observer as well, so the

concept of a quasiblack hole remains valid and self-
consistent, up to an almost infinite time in the limit under
discussion.
(ii) Nonessentiality of the choice of the background

stresses: In the above derivation of the entropy it is essen-
tial that the boundary approaches a quasihorizon. If we
have some distribution of matter, two shells, say, in general
different cases of forming a quasihorizon are possible [11–
13]: in one case it can appear at the outer shell, in the other
the horizon forms at the inner one. In the latter case the
derivation of the entropy formula follows the same lines as
before but with the change that the role of boundary is now
played by the inner shell, or, more specifically, by a surface
on the inner shell. Thus, in any case the term �g

ab is to be

calculated near the quasihorizon from the outside.
As far as the subtraction term�0

ab is concerned, one can

choose among several different possibilities. In the present
work we have chosen flat space-time to find �0

ab; in

previous works [7,8] we have chosen it differently.
However, this difference is irrelevant in the given context.
Indeed, one can also calculate the stresses given in Eq. (9)
using a modified version of Eq. (9) itself, in which �0

ab is

replaced by the term ��
ab determined from the inside. In

general both quantities �g
ab ��0

ab and �g
ab ���

ab are

different and even refer to different boundaries. To clarify,
let us suppose the following example: one has a thick shell
with an inner radius Rin and an outer radius Rout, with
Rin < Rout. Let us also assume that when the system ap-
proaches its own gravitational radius rþ, one has Rout !
Rin ! rþ. (This is not a generic behavior, it is an example,
see [11–13] for other manners in which the system can
approach rþ; in such cases one should redefine the bound-
ary.) In this example�0

ab refers to the background (say, flat

space-time) energy-momentum tensor at the outer radius
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Rout (which is the radius of the outer boundary and, thus,
the radius of the system as a whole), whereas��

ab refers to

the energy-momentum tensor at the radius Rin. But now
note that, in our example, in the quasihorizon limit, when
Rout ! Rin ! rþ, the difference, ��

ab ��0
ab, between

both subtraction terms becomes inessential for our pur-
poses. This is because both ��

ab and �0
ab remain finite.

Indeed, �0
ab is finite by its very meaning, and the only

potentially dangerous term in ��
ab, namely, ðN�1 @N

@l Þ�, is
also finite since in the inner region N ¼ �fðlÞ where, by
definition of a quasiblack hole, � is a small parameter and
fðlÞ is a regular function (see [6] and especially [7] for
more detailed explanations). In the calculation of the en-
tropy described above all these finite terms are multiplied
by the factor N ! 0, and do not contribute. The nonzero
contribution to the entropy comes from the leading diver-
gent term 1

N
@N
@l � �

N in �g
ab. In addition, it is worth noting

that it is this term which ensures the existence of a mass
formula for quasiblack holes similar to the mass formula
for black holes [7,8]. Now we see that, actually, this term
plays a crucial role also in the derivation of the entropy of
quasiblack holes.

The issue of the influence of boundary stresses at infinity
(see, e.g., [37]) has been in great focus recently. Although
important, we are mainly interested in local boundary
stresses.

4. Spherically symmetric configurations: Entropy issues

(i) Entropy of spherically symmetric thin shells in vac-
uum: The simplest example of a spherically symmetric
configuration is given by a thin shell of radius R sur-
rounded by vacuum, with a Schwarzschild metric outside
and a Minkowski one inside. Its thermal properties were
discussed by Martinez in [17] but all the examples studied
there do not consider the formation of a quasihorizon.
Although this model of [17] looks simple, it is of interest
in our context, as it enables one to compare the exact
results that can be extracted from the thin shell model
with our results, providing thus a convenient test of our
method. Following [17], let us write down the first law as

TdS ¼ dEþ pdA: (17)

Here E ¼ Rð1� ffiffiffiffi
V

p Þ is the quasilocal energy [5], which in
this case coincides also with the proper mass of the shell,
V ¼ 1� rþ

R , and rþ ¼ 2m is the horizon radius, with m

being the ADM mass. A ¼ 4�R2 is the surface area of the
shell of radius R, and p is the gravitational pressure given
by

p ¼ ð1� ffiffiffiffi
V

p Þ2
16�R

ffiffiffiffi
V

p ; (18)

see [17] for details. One can now take two routes. The one
followed by Martinez [17] and push the thin shell up to the

horizon, and the one advocated by us here. We will see that
both routes give the same result, as they should.
To start, we follow [17]. If one takes into account the

integrability conditions of Eq. (17), and changes variables
from ðE; RÞ to ðm;RÞ, it turns out that [17]

T ¼ T0ðmÞffiffiffiffi
V

p ; (19)

and Eq. (17) is reduced to [17]

dS ¼ dm

T0ðmÞ : (20)

Hence the entropy can be found by direct integration. Here,
T0 has the usual meaning of the temperature measured by
an observer at infinity. It is seen from (20) that the entropy
in this example does not depend on R. This is a conse-
quence of the fact that matter is absent inside, so @S

@R ¼ 0

everywhere. Formally, Eq. (20) is valid everywhere includ-
ing the near-horizon region with an arbitrary temperature
T0ðmÞ. However, near the horizon another factor becomes
important, which was not taken into account in [17] since
in it this region was avoided altogether. Outside the shell
there is a backreaction of quantum fields, and the stress-
energy tensor T�

� can be written as

T�
� ¼ T4

0 � T4
H

g200
f�� þ h��; (21)

where f�� and h�� are finite quantities (see, e.g., [23] and

references therein). At the horizon g00 vanishes. So, if
T0 � TH, inevitable divergences destroy the horizon of a
black hole or the quasihorizon of a quasiblack hole.
Therefore, we must assume that T0 is equal to the
Hawking temperature, T0 ¼ TH ¼ 1

8�m . Then, the assump-

tion of negligible backreaction becomes evident and in the
main zero-loop approximation we still may continue to use
Eq. (20). Substituting T0 ¼ 1

8�m in Eq. (20), and integrating

it, we obtain S ¼ 4�m2, i.e., S ¼ �r2þ, yielding

S ¼ 1
4A; (22)

where A now is the quasihorizon area.
Now we follow our formalism and proceed directly from

Eq. (17). This is less convenient in this simple model, but
enables us to check the general approach. Let us consider
variations of the system parameters for which the shell
remains in equilibrium near the would-be horizon, R ¼
rþð1þ �Þ with � small and fixed, 0< � � 1. This means
that we have to change simultaneously the radius of the
shell R and its ADM mass m ¼ rþ

2 when we pass from one

equilibrium configuration to another. As a result, the quan-
tity V ¼ 1� rþ

R appearing in the expression (20) for the

energy E ¼ Rð1� ffiffiffiffi
V

p Þ is fixed and small. So the first term
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in (17) is dE � dR � drþ. The second term in (17) is huge
since p� 1ffiffiffi

V
p ! 1. Thus, the first term in (17) is negligible

as compared to the second one. Then, writing p � 1
16�R

ffiffiffi
V

p ,

T ¼ T0ffiffiffi
V

p , R � rþ and integrating over rþ, we reobtain the

result (22), where again we have omitted the integration
constant to make sure that S ¼ 0 when rþ ¼ 0. This
example clearly demonstrates the validity of our approach
and of the key role played by the surfaces stresses, which
are described by the quantity p in this example.

An important and interesting feature can be taken from
this model of Martinez [17] due to the simplicity of the
configuration. The fact that the entropy S depends on the
ADMmassm only, means that the entropy does not change
when the shell with a given m is displaced radially. In
particular, one cannot say that the entropy (22) was gen-
erated in the process of a quasistatic collapse since the
entropy itself remains constant. Its value is due to the value
of the Hawking temperature TH. This value for S is enor-
mous when TH is small, which is the case for a configura-
tion with a relatively large gravitational radius rþ.

Another remark of importance is that it follows from the
derivation given above that no gravitational entropy was
assigned to the system a priori, in accord with some
previous observations on the study of thin shells [16].
Indeed, the Bekenstein-Hawking value for the entropy
(22) was obtained without invoking special additional
assumptions; it is a direct consequence of the first law for
matter only. One can say that ordinary matter in a non-
trivial way mimics the thermal properties of the horizon
when its size approaches the gravitational radius. In doing
so, the requirement T ¼ TH is essential. One can take T0 �
TH as it was done in [17] but only when one considers
shells far from the would-be horizon. To relate both situ-
ations, we can consider T0 ¼ TH½1þ "	ðmÞ�, where " �
1. Then, the backreaction described by Eq. (21) is still
bounded, and even small due to the smallness of f�� and

h��, if the numerator in the first term is of the same order of

the denominator, which includes the square of the
Schwarzschild metric coefficient, i.e., g200 ¼ ð1� rþ

r Þ2.
Then, we obtain that the admissible minimum radius for
the shell is R ¼ rþð1þ �Þ where �� ffiffiffi

"
p

. The sign of the
correction term to the entropy as compared to (22) depends
then on that of 	.

(ii) Entropy of spherically symmetric continuous distri-
butions of matter: To make the example more realistic, we
consider a continuous distribution of matter, rather than a
thin shell. Then, the arguments of [17] do not apply and
both the entropy and temperature may depend not only on
the mass m but also on radius R of the boundary.

Consider then a general metric for a spherically sym-
metric distribution of matter. The metric potentials in

Eq. (1) can be chosen such that N2ðrÞ ¼ VðrÞe2c ðrÞ, dl ¼
dr=

ffiffiffiffiffiffiffiffiffiffi
VðrÞp

, with VðrÞ � 1� 2mðrÞ=r, and g

 ¼
g��=sin

2
 ¼ r2, with mðrÞ and c ðrÞ being the new func-

tions. The metric is then written in the convenient form

ds2 ¼ �
�
1� 2mðrÞ

r

�
e2c ðrÞdt2 þ dr2

1� 2mðrÞ
r

þ r2ðd
2 þ sin2
d�2Þ; (23)

where mðrÞ and c ðrÞ are the relevant metric functions
which depend on the coordinate r alone. Defining � and
pr as the matter energy density and radial pressure, re-
spectively, Einstein’s equations yield

mðrÞ ¼ 4�
Z r

0
d�r�r2�; (24)

c ðrÞ ¼ 4�
Z r

r0

d�r
ð�þ prÞ �r
1� 2mð�rÞ

�r

; (25)

and a third equation for the tangential pressures that we do
not need in our discussion. Here the constant r0 defines the
low limit of integration. In general, it is arbitrary, but there
are convenient choices. If the matter is constrained to the
region r � R, with �þ pr ¼ 0 for r � R, then one can
choose r0 ¼ R and c ¼ 0 for r � R. For example, for an
electrically charged object, one has the Reissner-
Nordström metric outside in which case indeed �þ pr ¼
0 [35], for all r � R, so c ¼ 0 and mðrÞ ¼ m� Q2

2r where

m is the ADM mass and Q is the electric charge. For an
electrical neutral object �þ pr ¼ 0 trivially and the
choice c ¼ 0, mðrÞ ¼ m for the outside also follows,
yielding the Schwarzschild metric. Of course, other long-
range fields, like dilatonic and other fields, can also be
present. If one requires that the metric is asymptotically flat
at infinity, then a good choice is always mðrÞ ! m and
c ! 0 there, with r0 ¼ 1 in (25). We will see that the
final physical results do not depend on the choice of r0.
Moreover, we recall that, actually, this approach works
even without the requirement of spherical symmetry or
asymptotic flatness as it follows from Sec. II A 1, where
only local properties of the quasihorizon were used.
Now, for spherically symmetric systems, the first law in

terms of the ADM mass m and boundary radius R has the
form, alternative to the form given in Eq. (3),

T0dS ¼ expc ðRÞðdmþ 4�prR
2dRÞ; (26)

with pr being the radial pressure. See the end of the section
for the proof of this nontrivial result. Without knowing the
system details, one cannot find in general Sðm;RÞ.
However, at the quasihorizon limit one can bypass this
restriction. Indeed from Eq. (26) we are able to deduce
the Bekenstein-Hawking law for spherical quasiblack
holes. The steps are as follows: (1) Since we want R !
rþ we also have to put T0 as T0 ! TH. Now, TH is given by

TH ¼ ðec ðrþÞ=4�Þ½dð1� 2mðrÞ
r Þ=dr�ðrþÞ, i.e., at the quasi-

horizon,
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T0 ¼ TH ¼ ec ðrþÞ

4�rþ
ð1� 8��ðrþÞr2þÞ: (27)

Thus, substituting Eq. (27) in Eq. (26) we obtain

dS ¼ expðc ðRÞ � c ðrþÞÞdmþ 4�prRdR

ð1� 8��þr2þÞ
; (28)

giving the change of the entropy in terms of the changes of
the ADMmass and the boundary radius R. (2) Since we are
in the quasihorizon limit R ! rþ, the factor expðc ðRÞ �
c ðrþÞÞ in Eq. (28) drops out and one has

dS ¼ dmþ 4�prRdR

ð1� 8��þr2þÞ
; (29)

a simplified version of Eq. (28). Note that the entropy is a
function of R since now @S

@R � 0, unlike the case studied

previously; see Eq. (20). (3)-(a) Neglecting the difference
between a quasihorizon and a horizon, it follows

prðrþÞ ¼ ��ðrþÞ; (30)

from the regularity conditions on the horizon itself [36]
(see also [24]). (3)-(b) In general, the variations dm and dR
are independent. However, as we are interested in the
quasihorizon limit, we want to move along the line

R � 2m ¼ rþ; (31)

in the space of parameters, so that

dm � drþ
2

; dR � drþ: (32)

Thus, putting (30)–(32) into (29) yields

dS ¼ 2�rþdrþ; (33)

immediately. (4) Then upon integration one recovers, up to
a constant c (which one can put to zero), the Bekenstein-
Hawking value,

S ¼ 1
4A; (34)

as promised.
Now, we discuss how the two forms of the first law

Eqs. (3) and (26) are equivalent. Equation (3) involves
the tangential pressures, whereas Eq. (26) the radial pres-
sure. One relates to quasilocal energy E and the other to the
ADMmassm, one to the local temperature T and the other
to the temperature at infinity T0. Consider a thermal com-
pact body at temperature T0 at infinity, with matter with
density � distributed up to radius R, and vacuum outside.
For simplicity, we assume that the shell is massless, so the
mass is continuous on the boundary, mðRÞ ¼ m. Then,
Eq. (3) reduces after integration over angles to

TdS ¼ dEþ 8��


RdR: (35)

From Eqs. (9) and (10), with �0
ab corresponding to a flat

metric, it follows

8��


 ¼

1

R

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

R

s
� 1

�

þ
�
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

R

q dð1� 2m
R Þ

dr
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

R

s
dc

dr

�
r¼R�

;

(36)

and the same for 8���
�, where r ¼ R� means the quanti-

ties are evaluated at R from the inside, and c ðRÞ is as in
(25). Now we use the quasilocal energy formula for the
spherically symmetric case [2–4],

EðRÞ ¼ R

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

R

s �
: (37)

Performing dE in (37) and putting it together with (36) and

T ¼ T0=ð
ffiffiffiffi
V

p
ec Þ [see Eq. (2)] in Eq. (35) yields

T0dS ¼ expc ðRÞðdmþ 4�prR
2dRÞ; (38)

which is precisely Eq. (26). We have now completed the
derivation of the equivalence between the two different
formulas of the first law of thermodynamics, Eqs. (3) and
(26), in a thorough manner, leaving no doubts about its
validity. Note that Eq. (26) is valid if, in addition to matter,
there is also a true black hole horizon at some radius rbh, in
this case the formula for the mass being slightly changed,

mðrÞ ¼ rbh
2

þ 4�
Z r

rþ
d�r�r2�: (39)

(iii) Continuity of the entropy function as the radius
approaches the quasihorizon: In the above consideration,
we were interested in obtaining the asymptotic form of the
entropy when the boundary of a body approaches the
quasihorizon, so that we considered the change of the
system configuration along the curve that is approaching
the line R ¼ 2m. On the other hand, it is also important to
trace what happens in the physically relevant situation
when the boundary of the body with fixed ADM mass m
changes slowly its position from infinity toward the hori-
zon, while the radius of the body and its proper mass are
being changed. In the space of parameters ðR;mÞ, this
corresponds now to a vertical line m ¼ const. One may
ask what happens to the entropy function in this process
near the quasihorizon, whether a jump in SðRÞ can occur or
not. It follows from the first law (28) that ð@S@RÞm ¼
4�R2prðRÞ is finite. Thus, on the quasihorizon in the
process of slowly compressing the shell toward its own
gravitational radius there is no jump in the entropy. This no
jump can be generalized to metrics not necessarily spheri-
cally symmetric.

B. Entropy in the extremal case

Here we discuss the issue of the entropy for extremal
quasiblack holes. It was argued that S ¼ 0 in [20]; see also
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[21,22]. In [23] it was shown that one has to take into
account that one-loop consideration may change the pic-
ture drastically. So, the issue remains contradictory even in
general relativity. It was also demonstrated within string
theory that S ¼ A=4 (see [24] for a concise review).
Because of these contradictory results, we find it useful
to examine the issue of the entropy of extremal quasiblack
holes at the classical level, hoping to give more insight
into it. However, we do not intend to find a definitive
conclusion about the true value of S in this extremal
case. Rather, we only examine which consequences follow
from the assumptions of [20] when one uses the quasiblack
hole picture.

By the definition of the extremal case, N � expðBlÞ
where B is a constant and l ! �1. As a result, @N

@l � N

and we have an additional factorN ! 0 in the numerator in
Eq. (10). Therefore dðs ffiffiffi

g
p Þ ¼ 0 and, again omitting a

constant, we obtain S ¼ 0. Thus, using the picture of a
thermal body with the boundary approaching its own qua-
sihorizon we obtain the value S ¼ 0, with an arbitrary
temperature T0, thus confirming the conclusions of [20];
see also [21,22]. However, considering that T0 is not
arbitrary might lead to another result. The discussion above
for the choice of the constant also holds for extremal
quasiblack holes, so c ¼ 0.

III. CONCLUSIONS

We have considered the entropy for a system in which a
black hole event horizon never forms, instead a quasihor-
izon appears. From this we can draw some remarks:

(i) The crucial difference between the usual way of
obtaining the entropy of black holes by integration of the
first law and our version of obtaining the entropy of quasi-
black holes, also by integration of the first law, consists of
the fact that we are dealing with systems which do not have
a horizon. Quasiblack holes do not have horizons as black
holes do. The would-be horizon appears only asymptoti-
cally. Thus, as it is exhaustively shown in our paper, it was
not obvious in advance how to get the universal term A=4,
which is intimately connected with a horizon, from matter
configurations with timelike boundaries, instead of a light-
like surface as is the case for a black hole. Our work
provides the bridge between thermal matter configurations
and black holes in what concerns entropy. In our view, this
is a very important point.

(ii) The entropy comes from the quasihorizon surface
alone, i.e., the entropy of a quasiblack hole stems from the
contribution of the states living in a thin layer. That the
entropy comes from the quasihorizon surface alone auto-
matically emphasizes that the properties of matter inside
the quasihorizon are irrelevant, and the final answer for the
entropy is insensitive to them. So, a quasiblack hole deletes
information revealing its similarity to what happens in
black hole physics. Thus, the present work, along with
our previous papers on the mass formula for quasiblack

holes [7,8], confirms that, for outer observers, quasiblack
holes are objects that yield a smooth transition to black
holes. In particular, there is the special interesting issue of a
detailed comparison of the quasiblack hole picture with the
membrane paradigm [18,19].
(iii) Another important point consists of the role of the

huge surface stresses appearing due to the presence of a
quasiblack hole. We showed that the fact that these stresses
are infinite leads to the Bekenstein-Hawking value S ¼
A=4 for the entropy of a nonextremal quasiblack hole. In
doing so, we obtained this result in a model-independent
way and showed that all corrections to the A=4 term vanish
in the limit under discussion. For extremal quasiblack
holes, assuming a finite arbitrary temperature at infinity
leads to S ¼ 0 at the classical level, the fact that the
stresses are finite playing a key role in this derivation.
However, considering that T0 is not arbitrary might lead
to another result.
(iv) The fact that our approach reveals the key role

played by the surface layer near the quasihorizon (which
is inevitable there in the nonextremal case and may appear
in the extremal one) supports the viewpoint according to
which the quantum states which generate entropy live on
the quasihorizon of a quasiblack hole. We did not consider
here quantum properties of the system explicitly. However,
there is one important implicit exception. We have as-
sumed that the temperature of the environment tends to
the Hawking value TH. This is a separate problem that
requires further discussion. In particular, quantum back-
reaction drastically changes the whole picture in the ex-
tremal case since a nonzero temperature due to
backreaction effects makes the stress-energy tensor of the
quantum fields diverge on the horizon.
(v) Attempts to place the degrees of freedom that yield

the entropy of a pure black hole on the vicinity of the
horizon are not new. One of those first tries, where the
degrees of freedom are on the matter, was developed in
[38], while attempts to place the degrees of freedom on the
horizon properties, yielding an entropy coming from the
gravitational field alone, have also been performed, e.g., in
[39] (see [40] for a review). Our approach for the entropy
of quasiblack holes shows that their entropy, although in
the matter before its boundary achieves the quasihorizon,
comes ultimately from both the space-time geometry and
the fields in the local neighborhood at the Hawking tem-
perature. Thus our approach gives a tie between space-time
and matter in what concerns the origin of a quasiblack hole
entropy. Pushing the analogy between quasiblack holes and
black holes to the end, our approach hints that the black
hole’s degrees of freedom appear as nontrivial interplay
between gravitational and matter fields.
(vi) It would certainly be of further interest to trace the

dynamical process of entropy formation in quasiblack hole
scenarios [41].
(vii) Another important task is the generalization of the

present results to the rotating case.
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