
Gravitational duality and rotating solutions

Riccardo Argurio and François Dehouck
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We study how gravitational duality acts on rotating solutions, using the Kerr-NUT black hole as an

example. After properly reconsidering how to take into account both electric (i.e. masslike) and magnetic

(i.e. NUT-like) sources in the equations of general relativity, we propose a set of definitions for the dual

Lorentz charges. We then show that the Kerr-NUT solution has nontrivial such charges. Further, we clarify

in which respect Kerr’s source can be seen as a mass M with a dipole of NUT charges.
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I. INTRODUCTION

The theory of general relativity, when linearized, shares
many similarities with the much simpler theory of electro-
magnetism. The latter has the particular feature of having
vacuum equations which are invariant under a duality
transformation, which exchanges electric and magnetic
fields. This invariance, extended to the case when sources
are present, implies the existence not only of electric
charges, but also of magnetic monopoles. The Dirac mono-
pole [1], dual of the Coulomb charge, is then interpreted as
a source in the Bianchi identities of the electromagnetic
field strength rather than in its equations of motion.

Gravitational duality is the transposition to general rela-
tivity of the same idea of duality [2] (see [3] for a
Hamiltonian proof of the duality). The vacuum equations
are invariant under a duality which is defined on the
Riemann tensor. Extending this duality in the presence of
sources, see [4,5], implies the existence not only of matter
giving rise to the ordinary stress-energy tensor, but also of
‘‘magnetic’’ matter giving rise to a dual stress-energy
tensor. In particular, the Schwarzschild solution must
have, at least at the linearized level, a dual solution, which
was long ago identified with the Lorentzian Taub-NUT
solution. The literature on the subject is vast; we list here
a few references for the interested reader: for generaliza-
tions of the duality to (A)dS space, see [6–9]; for duality of
higher-spin field theories, see, for example, [10,11] and
references therein; for considerations about extending the
duality to the full theory, see [9–13].

One feature of the Taub-NUT solution is that it has a
stringlike singularity [14], sometimes called the Misner
string, very similar to the Dirac string of the magnetic
monopole. Then, similarly, the Misner string can be con-
sidered as a gauge artifact in the metric as soon as one is
ready to accept the presence of a magnetic source in the
right-hand side (r.h.s.) of the cyclic identity for the
Riemann tensor, or in other words, a magnetic stress-
energy tensor.

When the string singularity is properly taken into ac-
count in this way, it becomes possible in general relativity

to define a surface integral that computes precisely this
magnetic NUT charge [15] (see also [16] for an approach
using Komar charges).
It is the purpose of this paper to extend these ideas to

rotating solutions. The simplest occurrence, which will be
our main focus below, is the solution obtained when per-
forming a duality rotation on the familiar Kerr black hole.
The Kerr-NUT black hole [17] is a subgroup of the general
Petrov type D metrics obtained by Plebanski and
Demianski in [18], and it was shown to be consistent
with gravitational duality in [19]. A global analysis of
this solution can be found in [20].
It is then legitimate to ask what is the singularity struc-

ture, or what are the sources, for such a solution, and what
are its charges and how does one compute them by surface
integrals at infinity.1

In the course of this investigation, we will see that there
is also a ‘‘physical’’ choice involved. As the Dirac mono-
pole could be considered as a semi-infinite solenoid, one
could provide a similar physical interpretation of the Taub-
NUT solution. This was first reported by Bonnor in [21]
(see also [22]). The choice becomes more tricky when
dealing with solutions like the linearized Kerr black hole
and its dual (see, however, [20] for some considerations
along the lines of [21]). In fact, we show that one could also
consider the source of the Kerr metric as made of an
electric mass M and a pair of NUT sources, which we
will refer to as a di-NUT, in some appropriate limit.
The paper is organized as follows. In Sec. II, we review

the way Einstein equations were written in a duality in-
variant way in [4] and we single out the fact that dual-
ization looks more natural when realized on Lorentz
indices (see also [23]). In Sec. III, we derive the
Arnowitt-Deser-Misner (ADM) and dual ADM charges
when string contributions are included. We notice that
there exists, in our formalism, no way of expressing the
generalized Lorentz charges as surface integrals in a

1We will focus here and below only on solutions which are
locally asymptotically flat.
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gauge-invariant way. In Sec. IV, we study the particular
case of the Kerr-NUT solution and show that the usual
description of the Kerr metric as a rotating point source of
mass M could also be interpreted as a point sourceM with
a monopole-antimonopole pair in the limit where the
monopole mass goes to infinity and the distance in between
them goes to zero while keeping the orbital momentum
fixed. Appendix A recalls the duality between the linear-
ized Schwarzschild and NUT solutions, along with their
respective sources. Appendix B details the calculations we
need for the interpretation of the sources of the Kerr-NUT
metric.

II. GRAVITATIONAL DUALITY ON LORENTZ
INDICES

In this section, we review how gravitational duality
works in linearized general relativity by rederiving the
duality invariant form of the Einstein equations, and cyclic
and Bianchi identities. We will argue that gravitational
duality is best understood when dualization is performed
on Lorentz indices. We show that this choice permits one to
lower the duality relation to a duality between spin con-
nections. We eventually give an expression of the spin
connection in terms of the vielbein and a three-index
object, first introduced in [4], that contains the magnetic
information of the solution. Since we linearize around flat
Minkowski space in Cartesian coordinates, there will be no
distinction between curved and flat indices in the
following.

When there are no magnetic charges, the Einstein equa-
tions, and cyclic and Bianchi identities are

G�� ¼ 8�GT��;

R�½���� ¼ 1
3ðR���� þ R���� þ R����Þ ¼ 0;

@½�Rj��j��� ¼ 1
3ð@�R���� þ @�R���� þ @�R����Þ ¼ 0:

(1)

The Bianchi identities are solved by expressing the
Riemann tensor in terms of a spin connection. In turn,
the cyclic identity is solved when the spin connection is
expressed in terms of a vielbein or, when the local Lorentz
gauge freedom is fixed, in terms of a (linearized) metric.

Gravitational duality tells us that for every metric, there
exists a dual metric such that their respective Riemann
tensors are dual to each other. One important difference
with electromagnetism and its twoform field strength is
that here the Riemann tensor has two pairs of antisymmet-
ric indices (the Lorentz and the form indices, respectively,
in reference to the spin connection) and a choice for the
duality relation should be made. We will prefer here, for
reasons to be explained later, a dualization on the Lorentz
indices (the first two indices in our conventions, as is clear
from the Bianchi identities above):

~R���� ¼ 1
2"����R

��
��; R���� ¼ �1

2"����
~R��

��;

(2)

where ~R���� denotes the magnetic or dual Riemann tensor.

Looking now at the magnetic cyclic identity, we have

ð ~R���� þ ~R���� þ ~R����Þ ¼ 3	
��

½���� ~R���


¼ �1
2"����ð"���
 ~R���
Þ

¼ �1
2"����ð2R�

� � 	�
�RÞ

¼ 8�G"����T
�
�; (3)

and we see that the duality makes the electric stress-energy
tensor appear on the r.h.s. of the equation. However, under
a gravitational duality rotation

R���� ! ~R����; ~R���� ! �R����;

T�� ! ���; ��� ! �T��;
(4)

meaning that the electric cyclic identity can be generalized
such as to include a magnetic stress-energy tensor���. We

write the full set of electric and magnetic equations, re-
spectively, as

G�� ¼ 8�GT��;

R���� þ R���� þ R���� ¼ �8�G"�����
�
�;

@�R�	�� þ @�R�	�� þ @�R�	�� ¼ 0;

~G�� ¼ 8�G���;

~R���� þ ~R���� þ ~R���� ¼ 8�G"����T
�
�;

@� ~R�	�� þ @� ~R�	�� þ @� ~R�	�� ¼ 0;

(5)

where the electric and magnetic cyclic identities can also
be written by means of (3) as

~G�� ¼ 8�G���; G�� ¼ 8�GT��; (6)

thus showing the invariance of the equations under gravi-
tational duality rotation. One advantage of dualizing on
Lorentz indices, as compared to a dualization on form
indices, is that we do not need to modify the Bianchi
identity because

@½� ~Rj��j��� ¼ 1
2"��

��@½�Rj��j���: (7)

Note that the vanishing of the Bianchi identity is consistent
with the cyclic identity having a nontrivial source term if
and only if the magnetic stress-energy tensor is conserved,
@��

�� ¼ 0, just as the ordinary stress-energy tensor.

As already mentioned previously, the Riemann tensor
can only be defined in terms of a metric when both the
cyclic and Bianchi identities have a trivial right-hand side.
To deal with the introduction of magnetic sources we
introduce, as in [4], a three-index object ���

� such that

@��
��

� ¼ �16�G��
�; ���

� ¼ ����
�: (8)
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Further we define

����
� ¼ ���

� þ 1
2ð	�

��
� � 	�

��
�Þ;

�� ¼ ���
�: (9)

The Riemann tensor that will be the solution of the set of
equations (5) when making use of (8) is

R���� ¼ r���� þ 1
4�����ð@� ����

� � @� ����
�Þ; (10)

where r���� is the usual Riemann tensor verifying the

usual cyclic and Bianchi identities with no magnetic
stress-energy tensor. This means that r���� ¼ r���� and

that it can be derived from a potential: r���� ¼
2@½�h��½�;��.

Another advantage of the dualization on Lorentz indices
comes directly from the vanishing r.h.s. of the Bianchi
identity, which gives us the right to express the linearized
Riemann tensor in terms of a spin connection by

R���� ¼ @�!��� � @�!���; (11)

and thus allows us to lower the duality relation between
Riemann tensors to a duality between spin connections.
With the help of (2) and (11) the gravitational duality
relation becomes

~!��� ¼ 1
2"����!

��
�; (12)

where this relation is true up to a gauge transformation, as
the spin connection is a gauge-variant object.

The linearized vielbein and spin connection for the
Riemann tensor r���� are

r���� ¼ @����� � @�����;

e� ¼ dx� þ 1
2


��ðh�� þ v��Þdx�;
��� ¼ ����e

�;

���� ¼ 1
2ð@�h�� � @�h�� þ @�v��Þ;

(13)

where h�� ¼ h�� is the linearized metric and v�� ¼
�v��. Using this together with relations (11) and (12)

gives us the spin connection in terms of the vielbein and
the three-index object ����:

!��� ¼ ���� þ 1
4"���	

���	
�

¼ 1
2ð@�h�� � @�h�� þ @�v��Þ þ 1

4"���	
���	

�:

(14)

In [15] it was realized that by means of (12) there always
exists a ‘‘regular’’ spin connection even when magnetic
sources are present.2 From the expression above this can be
achieved for a specific choice of v�� that cancels string

contributions coming from ����.

One also easily sees that

~!��� ¼ 1
2"����!

��
�

¼ �1
4½"����ð2@�h�� þ @�v

��Þ þ 2 ������: (15)

III. THE DUAL POINCARÉ CHARGES

In this section, we give the generalized expressions for
the ADM momenta and dual ADM momenta in the pres-
ence of the NUT charge. These were first established in
[15] for a specific gauge choice of the vielbein. Here, we
give a full treatment of the singular string contributions,
obtaining gauge-independent expressions for the surface
integrals. This is also a proof of the validity of the gauge
choice of [15]. We eventually apply the same idea to derive
general expressions for the Lorentz charges and their duals,
though we will show that there is no way in this formalism
to express the charges as surface integrals without partially
fixing the gauge.
The generalized ADM momenta and dual ADM mo-

menta are

P� ¼
Z

T0�d
3x ¼ 1

8�G

Z
G0�d

3x;

K� ¼
Z

�0�d
3x ¼ 1

8�G

Z
~G0�d

3x:

(16)

However, the electric and magnetic Einstein tensors can be
expressed as [15]

G0� ¼ @ið!0i
� þ 	0

�!
i�

� � 	i
�!

0�
�Þ;

~G0� ¼ "ijk@i!�jk;
(17)

where by convention "ijk ¼ �"0ijk. This enables us to
formulate the momenta as surface integrals:

P� ¼ 1

8�G

I
½!0l

� þ 	0
�!

l�
� � 	l

�!
0�

��d�l; (18)

K� ¼ 1

8�G

I
"ljk!�jkd�l: (19)

With the help of (14), we have

P0 ¼ 1

16�G

I
½@ihli � @lhii þ @iv

il þ "ljk�0jk�d�l;

(20)

Pk ¼ 1

16�G

I
½@0hlk � @lh0k þ 	l

k@
ih0i � 	l

k@0h
i
i

þ @kv0
l þ 	l

k@
ivi0 � 1

2
"lij½�ijk þ 	ik�j0

0

þ 	ik�jm
m� þ 1

2
	l
k"

ijm�ijm�d�l; (21)
2By regular we should stress that we only refer to (string)

singularities on the two-sphere at spatial infinity.
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K0 ¼ 1

16�G

I
½"lij½@ih0j þ @jvi0� þ�l0

0�d�l; (22)

Kk ¼ 1

16�G

I
½"lij½@ihkj þ @jvik� þ�l0

k�d�l: (23)

When there are no magnetic charges, ��� is zero and

thus K� also by definition. Setting ourselves in the gauge

where v�� ¼ 0, one easily recognizes the ADM momenta

P�. The important difference with electromagnetism is

that here the surface integrals for calculating the charges
depend on the spin connection, a gauge-variant object. In
electromagnetism the contribution of the Dirac string is
always equal to the opposite of the string contribution
coming from the regularized connection. Here, if we
want to cancel the string contributions we need the addi-
tional gauge freedom of the vielbein to be fixed in the right
gauge. By duality arguments we showed that such a choice
is always possible. This completes the proof of the validity
of the expressions used in [15]. Details of calculations can
be found in Appendix A.

In the same spirit, the general expressions for the
Lorentz charges and their duals are as follows3:

L�� ¼
Z
ðx�T0� � x�T0�Þd3x

¼ 1

8�G

Z
ðx�G0� � x�G0�Þd3x;

~L�� ¼
Z
ðx��0� � x��0�Þd3x

¼ 1

8�G

Z
ðx� ~G0� � x� ~G0�Þd3x:

(24)

Plugging expression (17) into the definition of the elec-
tric Lorentz charges leads us to

Lij ¼ 1

8�G

Z
ðxiG0j � xjG0iÞd3x

¼ 1

8�G

I
½xj½!0li � 	li!0k

k�
� xi½!0lj � 	lj!0k

k��d�l

þ 1

8�G

Z
½!0ij �!0ji�d3x;

L0i ¼ 1

8�G

Z
ðtG0i � xiG00Þd3x

¼ 1

8�G

I
½�t½!0li � 	li!0k

k� � xi!lj
j�d�l

þ 1

8�G

Z
!ij

jd
3x:

(25)

We see that in the presence of nontrivial ����, we have a

priori no way to express the charges as surface integrals.
However, we know that the charges are independent of the
choice of v��; one could then always try to choose a gauge

such as to cancel the ���� contributions present in the

volume integrals by choosing an appropriate v��.

Expanding the volume integrals in the above expressions,

Z
2!ij

jd
3x ¼

Z
½@jhij � @ihjj þ @jv

ji

þ "ijk�0jk�d3x;Z
2½!0ij �!0ji�d3x ¼

Z
½@ih0j � @jh0i þ @jvi0 � @ivj0

� "ijk�k0
0�d3x; (26)

where we simplified the last equation using the relation

"lk½i ��lk
j� ¼ "ijk�k0

0, we see that we can absorb the ����

by choosing the vij and the v0i such that

Z
@jv

ijd3x ¼
Z

"ijk�0jkd
3x; (27)

Z
½@jvi0 � @ivj0�d3x ¼

Z
"ijk�k0

0d3x: (28)

Actually, these gauge choices do not fix completely the
local Lorentz gauge, and hence v��. Rather, they restrict

the gauge to a choice satisfying the above integral rela-
tions. Of course this can be done in the simplest way by
choosing a v�� that locally compensates the singularity

contained in ����.

In the gauge choice of expressions (27) and (28), we now
have

Lij ¼ 1

8�G

I �
xj½!0li � 	li!0k

k� � xi½!0lj � 	lj!0k
k�

þ 1

2
½	ilh0j � 	jlh0i�

�
d�l;

L0i ¼ 1

8�G

I �
�t½!0li � 	li!0k

k� � xi!lj
j

þ 1

2
½hil � 	ilh�

�
d�l:

(29)

3Note that the fixed timelike index is now upstairs, contrary to
the definitions of the momenta. We hope that this (arbitrary but
innocuous) switch in the convention will not upset the reader too
much.
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If we now look at the dual Lorentz charges, we have

~L0i ¼ 1

8�G

Z
ðt ~G0i � xi ~G00Þd3x

¼ 1

8�G

I
�"ljk½t!i

jk þ xi!0jk�d�l

þ 1

16�G

Z
"ikl½!0kl �!0lk�d3x

~Lij ¼ 1

8�G

Z
ðxi ~G0j � xj ~G0iÞd3x

¼ 1

8�G

I
"lkm½xj!i

km � xi!j
km�d�l

þ 1

8�G

Z
"ijk!k

l
ld

3x;

(30)

where in the last equality we used "ikm!j
km � "jkm!i

km ¼
"ijk!k

l
l.

It is amusing to observe that the pieces in L�� and ~L��

that cannot be expressed as surface integrals actually enjoy
a duality relation, ~Lbulk

�� ¼ 1
2"����L

��
bulk. This surprising

property cannot of course be extended to the full charges,
as is obvious from their definition in terms of the stress-
energy tensor and its dual, respectively. However, a con-
sequence of this observation is that with the previous
choice of gauge, we can also express the dual charges as
surface integrals:

~L0i ¼ 1

8�G

I �
�"ljk½t!i

jk þ xi!0jk� þ 1

2
"ilkh0k

�
d�l;

~Lij ¼ 1

8�G

I �
"lkm½xj!i

km � xi!j
km�

þ 1

2
"ijk½hlk � 	l

kh�
�
d�l:

(31)

The expressions derived here for the electric and mag-
netic Lorentz charges are thus valid in any gauge when
expressed as volume integrals like in (25) and (30).
Moreover, we have shown that there exists a gauge choice
valid for the Lorentz charges and their dual that permits us
to eliminate the ���� and simplify the expressions to

surface integrals. Note that in the case where all the
���� would be zero, any gauge is obviously fine, and we

recover the ADM expressions.
We are now prepared to apply those formulas to the

Kerr-NUT solution. Actually, it will prove more efficient
to work out the sources of the solution, encoded in T�� and

���, and compute the charges from their original defini-

tion. The above arguments ensure that the surface integrals,
with a correct choice of gauge, will yield the same result.

IV. KERR AND DI-NUT SOURCES

There exists in the literature a generalization of the
Taub-NUT metric with three parameters, the ADM mass
M, the NUT charge N, and a rotation parameter a. This

solution is known as the Kerr-NUT metric. It is a particular
case of the general Petrov type D solution found in [18]. It
was shown in [19] that this metric is consistent with
gravitational duality. What we want to study here are the
different possible sources for the linearized metric. We will
see that to obtain a magnetic stress-energy tensor such as
the one for Kerr, we will need to introduce the Misner
string contribution in ���� which appears in the surface

integrals for P� and K�, but also pointlike (Dirac delta)

contributions.
The Kerr-NUT metric reads

ds2 ¼ � �2

R2
½dt� ðasin2�� 2N cos�Þd��2

þ sin2�

R2
½ðr2 þ a2 þ N2Þd�� adt�2 þ R2

�2
dr2

þ R2d�2; (32)

where �2 ¼ r2 � 2Mrþ a2 � N2 and R2 ¼ r2 þ ðN þ
a cos�Þ2. We now consider some specific cases.
Taub-NUT (a ¼ 0)
If we set a ¼ 0 in the above solution, we recover the

Taub-NUT solution

ds2 ¼ � �2

R2
½dtþ 2N cos�d��2 þ R2

�2
dr2

þ R2ðd�2 þ sin2�d�2Þ; (33)

where �2 ¼ r2 � 2Mr� N2 and R2 ¼ r2 þ N2. We re-
view, in Appendix A, the well-known duality that brings
the linearized Schwarzschild (N ¼ 0) to the linearized
NUT solution (M ¼ 0). We also see that the linearized
NUT metric is actually to be supplemented with the term
�0z

0 ¼ �16�N	ðxÞ	ðyÞ#ðzÞ to describe a source that is a
point of magnetic mass N.4 If we do not add this string
contribution, the singularity is physical (as considered in
[21]) and can be interpreted as a semi-infinite source of
angular momentum �Lxy ¼ N�z.
Kerr (N ¼ 0)
If we set N ¼ 0 in the metric (32), we recover the Kerr

metric in Boyer-Lindquist coordinates:

ds2 ¼ �
�
1� 2Mr

�

�
dt2 � 4Mar

�
sin2�dtd�þ�

�
dr2

þ�d�2 þ B

�
sin2�d�2; (34)

where � � �2ðN ¼ 0Þ ¼ r2 � 2Mrþ a2, � � R2ðN ¼
0Þ ¼ r2 þ a2cos2�, and B ¼ ðr2 þ a2Þ2 ��a2sin2�. The
charges of this metric are easily calculated. If we linearize
this metric at first order in the charges, meaning we only

4Actually, in order for the string to be along the positive z axis,
we need to implement the change of coordinates t ! tþ 2N� in
the above metrics. This will always be assumed when referring
to singularities. We refrain from implementing it on the explicit
metrics to avoid unnecessary complications.
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keep terms in M and Ma, we obtain

h00 ¼ 2M

r
; hij ¼ 2M

r3
xixj; h0i ¼ 2Ma

r3
"zijx

j:

(35)

It is then shown in Appendix B 1 that, starting from the
information about the metric, the source for this solution is
a rotating mass M with angular momentum Jz ¼ Lxy ¼
Ma.

Rotating NUT (M ¼ 0)
A more interesting metric is the one where we set M to

zero in (32). This is the rotating NUT metric. Again,
linearizing as before gives us

~h tx ¼ 2Nyz

rðx2 þ y2Þ ;
~hty ¼ �2Nxz

rðx2 þ y2Þ ;

~h�� ¼ 2Naz

r3
:

(36)

It is shown in Appendix B 2 that this linearized metric
(after we set the string along the positive z axis) supple-
mented with the ���� contributions,

�0z
0 ¼ �16�N	ðxÞ	ðyÞ#ðzÞ;

�0y
x ¼ ��0x

y ¼ ��xy
0 ¼ �yx

0 ¼ 8�Na	ðxÞ; (37)

where # is the usual Heaviside function, describes the dual
solution to the linearized Kerr. This means it describes a
point of magnetic mass N and a magnetic angular momen-
tum ~Lxy ¼ Na.

Let us recall now that the choice for the���� in the case

of the Taub-NUT solution found its meaning in the exis-
tence of a string singularity in the linearized metric. This is
also justified by considering the Schwarzschild metric as
electric and imposing gravitational duality. Here, for the
Kerr-NUT solution, one should note that some���� terms

are only singular in r ¼ 0. Besides duality, we do not have
any a priori argument in favor of adding these delta con-
tributions to the rotating NUT solution. One could think of
the linearized rotating NUT with only the string contribu-
tion �0z

0 as another physical solution. As shown in

Appendix B 3, this would imply the presence of singular
terms in the electric stress-energy tensor corresponding to a
dipole of a positive and a negative mass at infinitesimal
distance. This interpretation is to be rejected on physical
grounds because of the presence of a negative mass in the
compound.

It is, on the other hand, amusing to contemplate the dual
situation, i.e. the usual Kerr solution, where, however, we
insert a nontrivial magnetic stress-energy tensor so that the
nontrivial charges become P0 ¼ M and ~L0z ¼ Ma. The
sources for this solution are

T00 ¼ M	ðxÞ; �00 ¼ Ma	ðxÞ	ðyÞ	0ðzÞ; (38)

an electric point of massM and a di-NUT, a dipole of NUT
charges þN and �N, separated by a distance � when we

take the limit � ! 0 and N ! 1 but with the product N�
constant and equal to ~L0z ¼ N� ¼ Ma:

�00 ¼ lim
�!0

½N	ðxÞ	ðyÞ	ðzþ �=2Þ�N	ðxÞ	ðyÞ	ðz��=2Þ�
¼Ma	ðxÞ	ðyÞ	0ðzÞ: (39)

This situation is physical since there is no obstruction in
having negative NUT charges. Indeed, the Taub-NUT met-
rics with opposite signs of N are just related by a flip of the
sign of the � variable. We should, however, note that this
leads seemingly to a clash between the statement of gravi-
tational duality and positivity of the mass for the
Schwarzschild solution. In other words, according to the
above arguments the gravitational dual of a physical situ-
ation is not necessarily physical. It would be nice to better
understand this issue, with the use, for instance, of positive
energy theorems.
Concerning the Euclidean Kerr black hole, this interpre-

tation had already been noticed a long time ago in [24]. For
the Lorentzian signature, it has recently been observed in
[25] that the Kerr metric could be reproduced by a non-
linear superposition of two Taub-NUT black holes of op-
posite NUT charges.5 Here, we have clarified that if this is
indeed true from the perspective of the metrics, there is
nevertheless a difference depending on whether the 	0
singularities find themselves in the T0i components of the
ordinary stress-energy tensor or in the �00 component of
the magnetic dual. The difference is encoded in the tensor
���� and is reflected on which Lorentz charges are non-

trivial, the electric or the magnetic ones. We suggest to
identify the Kerr metric as a di-NUTonly in the case where
there is a nontrivial �00.
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APPENDIX A: TAUB-NUT SOLUTION

In this appendix, we review the duality between the
linearized Schwarzschild and the linearized NUT solution
with the conventions set in Sec. II. We recover both the
ideas of Misner [14] and Bonnor [21] for how to interpret
the Taub-NUT solution. To deal with the Taub-NUT met-
ric, Misner noticed in [14] the presence of a string singu-
larity. Considering it as nonphysical, he identifies time to

5We would like to thank A. Virmani and R. Emparan for
pointing out this reference to us.
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get rid of it. We show in Appendix A 2 that by gravitational
duality the string singularity in fact determines a magnetic
stress-energy tensor and is thus nonphysical in an ‘‘elec-
tric’’ theory. We do not discuss the identification, as this is
really a feature that should be treated in the full theory. If
we drop this contribution, the magnetic stress-energy ten-
sor is zero and we end up with a massless source of angular
momentum N at every point along the physical singularity
at � ¼ 0. This is Bonnor’s interpretation of the Taub-NUT
solution. The string is considered as a physical singularity
in the electric theory. This is presented in Appendix A 3.

1. The linearized Schwarzschild solution

Considering the Schwarzschild solution, the nontrivial
components of the linearized metric and spin connection
are

htt ¼ 2M

r
;

hij ¼ 2M

r3
xixj;

!0i0 ¼ 1

2
@ih00 ¼ �M

xi
r3

;

!ijk ¼ 1

2
ð@jhik � @ihjkÞ ¼ M

r3
ð	jkxi � 	ikxjÞ:

(A1)

The nontrivial components of the linearized Riemann ten-
sor are

R0i0j ¼ �@j!0i0 ¼ M

�
� 3xixj

r5
þ 	ij

r3
þ 4�

3
	ij	ðxÞ

�
;

Rijkl ¼ @k!ijl � @l!ijk

¼
�
2M

r3
þ 8�M

3
	ðxÞ

�
ð	ik	jl � 	il	jkÞ

� 3M

r5
ð	ikxjxl � 	jkxixl � 	ilxjxk þ 	jlxixkÞ;

(A2)

where we used

@j
xk
r3

¼ 	jk

r3
� 3xkxj

r5
þ 4�

3
	jk	ðxÞ: (A3)

We finally obtain R00 ¼ 4�M	ðxÞ, Rij ¼ 4�M	ij	ðxÞ,
and R ¼ 8�M	ðxÞ, and also G00 ¼ 8�T00 ¼ 8�M	ðxÞ,
Gij ¼ Tij ¼ 0, and G0j ¼ T0j ¼ 0. The source for the

linearized Schwarzschild solution is thus a point of mass
M.

2. The NUT solution from the dual Schwarzschild
solution

To obtain the electric NUT spin connection, we use the
duality relation !��� ¼ � 1

2"���� ~!��
�, where ~! is the

spin connection for the linearized Schwarzschild solution
after we applied the duality rotation ! ! ~! and M ! N.
We thus obtain the regular spin connection for the NUT
solution:

!ij0 ¼ "ijk ~!0k0 ¼ �N"ijk
xk
r3

;

!0ij ¼ � 1

2
"ikl ~!klj ¼ N"ijk

xk
r3

:

(A4)

This gives the nontrivial components of the Riemann ten-
sor:

R0i0j ¼ 0; Rijkl ¼ 0;

Rij0k ¼ N"ijl@k

�
xl

r3

�
¼ N"ijl

�
	kl

r3
� 3xkxl

r5
þ 4�

3
	kl	ðxÞ

�
;

R0ijk ¼ @j!0ik � @k!0ij

¼ �2N"ijk

�
1

r3
þ 4�

3
	ðxÞ

�

þ 3N

�
"ijl

xkxl
r5

� "ikl
xjxl

r5

�
:

(A5)

For the Einstein equation, we have trivially R00 ¼ Rij ¼ 0.

From the expressions above, one easily sees that R0i ¼
Ri0 ¼ 0. This means that T�� ¼ 0. Plugging the expres-

sions into the cyclic identity, we obtain

R0ijk þ R0kij þ R0jki ¼ �8�"ijk�
00

¼ �2N"ijk

�
3

r3
þ 4�	ðxÞ

�

þ 6N

�
"ijl

xkxl
r5

� "ikl
xjxl

r5

� "kjl
xixl
r5

�
;

R00ij þ R0j0i þ R0ij0 ¼ �8�"ijk�
k
0;

Ri0jk þ Rik0j þ Rijk0 ¼ �@jð!0ik þ!ik0Þ
þ @kð!0ij þ!ij0Þ

¼ �8�"jkl�
l
i: (A6)

This gives us

�00 ¼ N	ðxÞ; �0k ¼ 0; �li ¼ 0: (A7)

For a solution describing a magnetic particle of mass N,
and thus a magnetic stress-energy tensor�00 ¼ N	ðxÞ, we
need, using relation (8),

�0z
0 ¼ �16�N	ðxÞ	ðyÞ#ðzÞ: (A8)

The previous nontrivial spin connections are expressed as

!ij0 ¼ 1
2ð@jh0i � @ih0jÞ þ 1

4"ij0k�
0k

0;

!0ij ¼ 1
2ð@ih0j þ @jvi0Þ � 1

4"0ijk�
0k

0;
(A9)

where we only assumed that the linearized vielbein is time
independent. As we have established that the regular spin
connection is such that !ij0 ¼ �!0ij, we immediately see

that the right gauge fixing will be h0i ¼ �vi0. The pre-
vious spin connections are recovered with
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h0x ¼ v0x ¼ 2N
y

rðr� zÞ ;

v0y ¼ h0y ¼ �2N
x

rðr� zÞ ;
(A10)

where the metric has a singularity on the positive z axis, in
agreement with the form of the �z00 term. To check that
this is the right result, we use a standard regularization
procedure (also used in the context of the Dirac monopole;
see e.g. [26]):

~A ¼ ðh0x; h0y; h0zÞ;
~B ¼ ~r� ~A ¼ 2N

~r

r3
� 8�N	ðxÞ	ðyÞ#ðzÞẑ;

(A11)

where ẑ is the unit vector along the z axis, and then

@jh0i � @ih0j ¼ �2N"ijk
xk

r3
þ "zij8�N	ðxÞ	ðyÞ#ðzÞ:

(A12)

Eventually, note that the nontrivial contribution to the
linearized metric in spherical coordinates is

h0� ¼ �2Nð1þ cos�Þ; (A13)

which is also the only nontrivial component for the line-
arized NUT metric.

As previously stated, this partially meets up with
Misner’s interpretation of the Taub-NUT metric. Here,
we interpret the singularity at � ¼ 0 as nonphysical in an
electric way, but it contributes to the magnetic stress-
energy tensor. The solution describes a particle of magnetic
mass N.

3. The NUT solution without the string

To recover Bonnor’s interpretation, we set���
� to zero.

Then, we obviously have ��� ¼ 0. With the previous

choice of v��, the nontrivial components of the spin con-

nections are now

!ij0 ¼ �N"ijk
xk
r3

þ "zij4�N	ðxÞ	ðyÞ#ðzÞ;

!0ij ¼ N"ijk
xk
r3

� "zij4�N	ðxÞ	ðyÞ#ðzÞ:
(A14)

Note that we still have !ij0 ¼ �!0ij so that from (A6) we

still immediately see that �il ¼ �0i ¼ 0. We can check
that �00 ¼ 0, as it should be.

The nontrivial components for the Einstein tensor are

Gi0 ¼ �@jð"zij4�N	ðxÞ	ðyÞ#ðzÞÞ; (A15)

giving the nontrivial components of T��:

Tx0 ¼ �N

2
	ðxÞ	0ðyÞ#ðzÞ; Ty0 ¼ N

2
	0ðxÞ	ðyÞ#ðzÞ:

(A16)

Note that such T�� are conserved.

This shows that P� ¼ 0 and �Lxy=�z ¼ N for every

value along the singularity. This agrees with Bonnor’s
interpretation of the NUT solution as a massless source
of angular momentum at the singularity � ¼ 0.

APPENDIX B: KERR-NUT METRIC

We now want to generalize the analysis of Appendix A
to the case of the Kerr-NUT solution presented in Sec. IV.
We will see here that the dual Kerr solution possesses the
usual Misner string but also additional delta contributions
to the ����. If we include these contributions, we get by

gravitational duality a magnetic mass N with a magnetic
angular momentum Jz ¼ Na. If we do not, we see that it
corresponds to a dipole of electric massesM separated by a
distance � in the limit where M ! 1, � ! 0 but L0z ¼
M� ¼ Na is constant. We only present the additional
information not contained in the previous Taub-NUT ex-
ample as the nontrivial contributions of the Kerr-NUT
metric split into contributions that were already present
in the Taub-NUT case and additional contributions in Ma
or Na.

1. Kerr metric

The additional nontrivial components of the linearized
metric and linearized spin connection are

h0i ¼ 2Ma

r3
"zijx

j;

!0ij ¼ 1

2
@ih0j ¼ �Ma"zij

�
1

r3
þ 4�

3
	ðxÞ

�
� 3Ma

r5
"zjlxix

l;

!ij0 ¼ 1

2
ð@jhi0 � @ihj0Þ ¼ !0ji �!0ij

¼ Ma"zij

�
2

r3
þ 8�

3
	ðxÞ

�
� 3Maxl

r5
ð"zilxj � "zjlxiÞ:

(B1)

The additional nontrivial components of the linearized
Riemann tensor are

R0ijk ¼ �Ma"zkl

�
@j@i@l

1

r

�
þMa"zjl

�
@k@i@l

1

r

�
;

Rij0k ¼ �Ma"zjl

�
@k@i@l

1

r

�
þMa"zil

�
@k@j@l

1

r

�
;

(B2)

where one can show that

@i@j@k
1

r
¼ �15

xixjxk

r7
þ 3

r5
ð	ijxk þ 	kixj þ 	jkxiÞ

� 4�

5
ð	ij@k	ðrÞ þ 	ki@j	ðrÞ þ 	jk@i	ðrÞÞ:

(B3)

Combining these results with the ones from Appendix A,
we easily obtain Rj0 ¼ R0j ¼ R0ij

i ¼ Ma"zjlð@l� 1
rÞ ¼

�4�Ma"zjl@l	ðxÞ. This also gives us R00 ¼ 4�M	ðxÞ,
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Rij ¼ 4�M	ij	ðxÞ, R ¼ 4�M	ðxÞ. Eventually, we find

G00 ¼ 8�T00 ¼ 8�M	ðxÞ, Gij ¼ Tij ¼ 0, and G0j ¼
R0j ¼ 8�T0j ¼ �4�Ma"zjl@l	ðxÞ. This solution de-

scribes a point of electric mass M with an electric angular
momentum Lxy ¼ Ma.

2. The rotating NUT solution from the dual Kerr

As for the dual of the linearized Schwarzschild solution,
by duality rotation we obtain the additional spin connec-
tions of the dual Kerr metric:

!0i0 ¼�1

2
"ijk ~!jk0 ¼Na

	zi

r3
� 8

3
�Na	zi	ðxÞ� 3Na

zxi
r5

;

!ijk ¼ "ijl ~!0lk ¼Nað	zi	kj�	zj	kiÞ
�
� 2

r3
þ 4�

3
	ðxÞ

�

þ 3Na

r5
ðxkðxj	zi � xi	zjÞþ zðxi	kj� xj	kiÞÞ;

(B4)

where we used "ijk"
zjk ¼ 2	z

i and "ijk"
zjl ¼ 	i

z	
k
l � 	k

z	
i
l.

One can easily derive the Einstein tensor and find that this
solution corresponds to a magnetic point of mass N with a
magnetic angular momentum ~Lxy ¼ Na. This is the gravi-
tational dual of the Kerr solution with a ��� with a

structure equal to the stress-energy tensor for the Kerr
solution, meaning

�00 ¼ N	ðxÞ; �0x ¼ Na

2
@y	ðxÞ;

�0y ¼ �Na

2
@x	ðxÞ:

(B5)

The nontrivial components for ���� are

�0z
0 ¼ �16�N	ðxÞ	ðyÞ#ðzÞ;

�0y
x ¼ ��0x

y ¼ ��xy
0 ¼ �yx

0 ¼ 8�Na	ðxÞ:
(B6)

We have

!0i0 ¼ 1
2@ih00 þ 1

4"0ijk�
jk
0 ¼ 1

2@ih00 þ 1
2	iz�

xy
0;

!ijk ¼ 1
2ð@jhik � @ihjk þ @kvjiÞ þ 1

2"ij0l
��0l

k;
(B7)

where for our choice of ����,

1
2 "ij0l

��0l
k ¼ 1

2"ij0l�
0l
k ¼ ð	iz	jk � 	jz	ikÞ�0y

x: (B8)

We then easily obtain6

h00 ¼ 2Naz

r3
; hij ¼ 2Naz

r3
	ij;

vij ¼ 2Na

r3
ð	zixj � 	zjxiÞ:

(B9)

The nontrivial components of the linearized metric in
spherical coordinates are then

h�� ¼ 2Naz

r3
; h0� ¼ 2Nð1þ cos�Þ: (B10)

These are the nontrivial components of the linearized
rotating NUT metric.

3. The rotating NUT metric without the delta
contributions

If we set�0y
x ¼ ��0x

y ¼ ��xy
0 ¼ �yx

0 ¼ 0, the dif-

ference from the previous case appears for

!0i0 ¼ �Na@i@z

�
1

r

�
;

!ijk ¼ �Na

�
	ik@j@z

�
1

r

�
� 	jk@i@z

�
1

r

�
þ 1

2
	zi@k@j

�
1

r

�

� 1

2
	zj@k@i

�
1

r

��
: (B11)

This means that

R00 ¼ �4�Na	ðxÞ	ðyÞ	0ðzÞ;
Rij ¼ �4�Na	ij	ðxÞ	ðyÞ	0ðzÞ: (B12)

The electric Einstein tensor now has a nontrivial compo-
nent:

G00 ¼ �8�Na	ðxÞ	ðyÞ	0ðzÞ:
The charges for the solution are thus K0 ¼ N and L0z ¼
�Na. This is thus a solution describing a point magnetic
mass N with, in addition, a ‘‘boost mass’’ �Na which can
be understood as a dipole of electric masses M and �M
separated by a distance � in the limit where � ! 0 and
L0z ¼ Na ¼ M� is kept constant. Positivity of energy in
general relativity tells us that this interpretation should be
discarded. We present in Sec. IV the dual version of this
calculation.
The interested reader could eventually wonder about

different combinations of the previous considerations.
One could, for example, try to interpret the rotating NUT
solution with only the delta contributions and no string
contribution (or, respectively, no ���� contributions at

all). Following our analysis this only partially matches
the proposal of Miller in [20] to interpret the Kerr-NUT
metric as a Schwarzschild black hole and an infinite source
of angular momentum along the singularity. Our calcula-
tions show that it should also be supplemented with a
magnetic angular momentum when delta contributions
are included (respectively, with a dipole of electric masses
in the same limit as previously discussed when no contri-
butions are taken into account). Dual considerations can
also be implemented following the same ideas presented at
the end of Sec. IV.

6Note that the v�� obtained here, and which lead to a regular
spin connection, do not satisfy the gauge fixing proposed in
Sec. III, where the aim was rather to define surface integrals.
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