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We investigate static, spherically symmetric solutions of an Einstein-Yang-Mills-Chern-Simons system
with negative cosmological constant, for an SO(6) gauge group. For a particular value of the Chern-
Simons coefficient, this model can be viewed as a truncation of the five-dimensional maximal gauged
supergravity and we expect that the basic properties of the solutions in the full model to persist in this
truncation. Both globally regular, particlelike solutions and black holes are considered. In contrast with
the Abelian case, the contribution of the Chern-Simons term is nontrivial already in the static, spherically
symmetric limit. We find two types of solutions: the generic configurations whose magnetic gauge field
does not vanish fast enough at infinity (although the spacetime is asymptotically AdS), whose mass
function is divergent, and the special configurations, whose existence depends on the Chern—Simons term,
which are endowed with finite mass. In the case of the generic configurations, we argue that the divergent

mass implies a nonvanishing trace for the stress tensor of the dual d = 4 theory.
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I. INTRODUCTION

It was originally found in d = 4 spacetime dimensions
[1,2], that a variety of well-known features of asymptoti-
cally flat self-gravitating non-Abelian solutions are not
shared by their anti—de Sitter (AdS) counterparts. In the
presence of a negative cosmological constant A < 0, the
Einstein-Yang-Mills (EYM) theory possesses a continuous
spectrum of regular and black hole non-Abelian solutions
in terms of the adjustable parameters that specify the initial
conditions at the origin or at the event horizon, rather than
at discrete values of these parameters. The gauge field of
generic solutions does not vanish asymptotically, resulting
in a nonzero magnetic flux at infinity. Moreover, in contrast
with the A = 0 case, some of the AdS configurations are
stable against linear perturbations [3].

As found in [4,5], some of these features are shared by
higher dimensional EYM solutions with AdS asymptotics.
Since gauged supergravity theories generically contain
non-Abelian matter fields in the bulk, these configurations
are relevant in an AdS/CFT context, offering the possibility
of studying some aspects of the nonperturbative structure
of a CFT in a background gauge field [6]. On the CFT side,
the boundary non-Abelian fields correspond to external
source currents coupled to various operators.

Given its relevance in the conjectured AdS/CFT corre-
spondence [7,8], the case of N = 8, d = 5 gauged super-
gravity [9,10] is of particular interest. The bosonic sector
of this theory consists of the metric, twenty scalars and
fifteen SO(6) Yang-Mills gauge fields.! Apart from the

"Note that the field content of the full N =8,d =5 gauged
supergravity is richer. However, a number of bosonic fields can
be consistently set to zero [10].

1550-7998/2010/81(6)/064005(17)

064005-1

PACS numbers: 04.20.Jb

usual F? term, the Yang-Mills (YM) fields have in this
case a non-Abelian Chern-Simons (CS) term in the action,
which unlike in the Abelian case does not vanish when
subjected to spherical symmetry.

Solutions of this model have been considered by several
authors for various consistent truncations, with subgroups
of SO(6) (see e.g. the recent work [11] and the references
therein). However, to our knowledge, no attempt has been
made to construct non-Abelian solutions for the general
case of the full SO(6) gauge group. In particular, the effects
resulting from the introduction of the CS term have so far
not been studied.

This paper is aimed as a first step in this direction,
by taking a truncation of the N = 8, d = 5 model corre-
sponding to a pure Einstein-Yang-Mills-Chern-Simons
(EYMCS) theory (i.e. with a negative cosmological con-
stant, but with no scalar fields). We propose an Ansatz
for a spherically symmetric SO(6) gauge group and inves-
tigate the basic properties of both the black hole,
and, particlelike globally regular solutions. Special
attention is paid to the new features induced by the CS
term.

As originally found in [4,5,12], a generic property
of higher dimensional EYM solutions is that their masses
and actions, as defined in the usual way, diverge. (For a
recent review of these solutions, see [13].) This can be
understood heuristically by noting that the Derrick scaling
requirement is not fulfilled in spacetimes for dimension
five and higher. To our knowledge, the only mechanism
for regularizing the mass of the d > 4 asymptotically flat
or (A)dS non-Abelian gravitating solutions, proposed
so far in the literature, is to include higher order terms
in the YM hierarchy [5,14,15] and the corresponding
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YM-Higgs terms [16].” These are the YM counterparts of
the Lovelock gravities (or the hierarchy of Einstein sys-
tems), and occur in the low energy effective action of string
theory [18,19].

One of the main features of the present work is the
introduction of the CS term in 4 + 1 dimensions, as an
alternative to the higher order curvature terms of the YM
hierarchy employed previously for regularizing the mass. It
turns out that this prescription does result in finite mass
solutions, but in addition to these, we find solutions with
divergent mass in what we have termed as the generic case.
These last are characterized by a continuum of values of
the shooting parameters, which is a typical feature of EYM
system with a negative cosmological constant. The finite
mass solutions on the other hand, termed as the special
case, are special in that they occur only for a discrete set of
values of the shooting parameters. Of course, in the ab-
sence of the CS term the only solutions that exist are ones
with divergent mass.

Although the spacetime still approaches asymptotically
the maximally symmetric AdS background, the mass and
the total action of a generic solution present a logarithmi-
cally divergent part. The coefficient of the divergent term is
fixed by the square of the induced non-Abelian fields on the
boundary at infinity. We shall argue that the logarithmic
divergence of the non-Abelian AdSs configurations does
not signal a problem with these solutions, but rather pro-
vides a consistency check of the AdS/CFT conjecture, the
coefficient of the divergent term in the action being related
in this case to the trace anomaly of the dual CFT defined in
a background non-Abelian field. Moreover, one can define
a mass and action for the generic solutions by using the
counterterm prescription of [20]. The counterterms here
depend not only on the boundary metric but also on the
induced non-Abelian fields on the boundary.

However, perhaps the most interesting feature of the
EYMCS model is the existence of a set of solutions with
finite mass. In the case of these solutions, as for the well
known d = 4 Bartnick-McKinnon solitons [21], they exist
only for discrete values of the shooting parameters (asso-
ciated with the initial values of the gauge fields). As can be
seen by using a simple Derrick-type argument, they are
supported by the contribution of the non-Abelian CS term,
a prescription which can be exploited only in odd dimen-
sional spacetimes where a CS term is defined.

The paper is structured as follows: in Sec. II we present
the general framework and analyze the field equations and
boundary conditions. We present the numerical results in
Sec. III, special attention being paid to solutions with a
finite mass. The computation of the mass and electric
charge of the solutions is addressed in Sec. IV. We con-

21t is in principle possible to supply such higher scaling terms
by employing only Higgs kinetic terms, or, the kinetic terms of
suitably gauged higher dimensional sigma models [17], but these
have not been attempted.
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clude with Sec. V where the significance of, and further
consequences arising from, the solutions we have con-
structed are briefly discussed.

II. THE MODEL
A. The action

We consider the following action

S = ] d5x1/ (m (R 2A) ‘EYM)
- f dxLes, (D
M
where
-E Y™M % Tr{F,u,VFMV}’ (2)

is the usual Yang-Mills Lagrangian for a gauge group
S0(6) (with F,,, = d,A, — d,A, + e[A,, A,] the gauge
field strength tensor), and

L s = iKEuypor Tr{AT[FWFW — eFrYAPA”

2
+3 ezAf‘A”APA"]}, 3)

is the CS term® (with k the CS coupling constant), while
A = —6/€? is the cosmological constant and e is the
gauge coupling constant.

These are the basic pieces which enter the bosonic action
of the d = 5, IN' = 8 gauged supergravity [9], [10], the CS
coefficient being k = 1/8 in this case. However, the full
N =8 system contains an additional twenty scalars,
which are represented by a symmetric unimodular tensor.
These scalars have a nontrivial potential approaching a
constant negative value at infinity which fixes the value
of the effective cosmological constant. Although ignoring
the scalar sector is not a consistent truncation of the general
N = 8 model, we expect that the basic properties of our
solutions hold also in that case.”

The field equations are obtained by varying the action
(1) with respect to the field variables g,,,, A,

1
RMV - _g,MVR + Ag,uv

> = 8wGT,,
(V—gF*7) + 3keh"P?"F , ,F,, = 0. 4)

\/— Dy

where the energy momentum tensor is defined by

The factor of i appears in (3) because we are using an anti-
Hermltlan representation for the SO(6) algebra matrices.

“This is the situation for d = 4 EYM solutions. As discussed
e.g. in [22], the properties of the EYM-dilaton solutions (the
dilaton field possessing a nontrivial potential approaching a
constant negative value at infinity) are quite similar to those of
the pure EYM-AdS case.
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1
T/,LV = Tr{F/wF,,ﬁg B — Zg/LVFQBF ’B} (5)

One can show that this tensor is covariantly conserved (i.e.
V,T#" = 0) for solutions of the YM-CS equations.

B. The spherically symmetric ansatz

In this work we shall restrict to the simplest case of
static, spherically symmetric solutions. Thus we consider a
metric Ansatz in terms of two metric functions N(r) and

o(r)

dr?
ds* = ——+r?dQ3 —

N( 5 N(r)o2(r)dt?, (6)

where we have found convenient to define

m(r) r?
N(r)=1- r2)+€2’ @)
the function m(r) being related to the local mass-energy
density (as defined in the standard way) up to some factor. r
and ¢ are the radial and time coordinates, while dQ% is the
metric on the round three-sphere.

The static, spherically symmetric SO(6) YM fields are
taken in one of the two chiral representations of SO(6),
such that the spherically symmetric Ansatz is expressed in
terms of the representation matrices,

1 ~
2ap = = 721 Zp) (®)

where 3, = =3, = iy;, 35 = —35 = iys, 5S¢ = +36 =
11, are defined in terms of the usual Dirac gamma matrices
Yi-

Our spherically symmetric Ansatz for the SO(6) YM
connection A, = (A,, A;) is a variant of Witten’s Ansatz
for the axially symmetric instanton [23]. Also, this Ansatz
is one of the two SU(4) Ansitze proposed in [24], namely,
the one employing Dirac gamma matrices as opposed the
one employing the Gell-Mann matrices.” It is expressed as

A= (XSS 00 — N ()3 50),

4= i(((ﬂr)“)gﬁﬁj . [(¢M(r))( 5,

r

+ (eA,(r))Mx,-fcj]z it AZ(r)a%,-E%),

lﬁj) (9)

where £; = x;/r (with x' the usual Cartesian coordinates
on R* and x;x; = r?). In the above relations i, j = 1,2, 3,4
and the index M runs over 5, 6. Also, ¢ is the two dimen-
sional Levi-Civita symbol.

>This distinction is important since the Dirac gamma matrix
Ansatz cannot be contracted to a SU(2) subalgebra, while clearly
Gell-Mann matrix Ansatz does have a SU(2) subalgebra.
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After taking the traces over the spin matrices, it is
convenient to relabel the triplets of radial function as (;S =
(@Y, ¢%), X = (XM, x) and A, = (A}, A}), with M = 1,
2 now.

Substituting (9) and (10) in the YM Lagrangian density
we find the compact expression for the reduced one di-
mensional reduced YM action density6

Lo =% = [m(sz P + <|¢a|2—1>2)

17 3

-0 D a2+_ abc ch)iI. 10
3 (x4 eegtx) | o)
The calculation of the reduced CS action density is rather
more tedious since unlike (10), this term is not gauge
invariant. It can be expressed in a compact way as

Los = ks 1120171 = DA(ex? )
+ 318V R(BD,x) + 66X (4D, b)
~ 914" P (D, ) — (26 + ) D, x*)
+ @Il - 26 - D,
+(6x " + Tx* — 2¢°x*)D, ¢*
—2(x“¢* + x’)D,$°], (1D

which of course does not feature the metric functions. Note
that (11) is not a scalar after contraction of the indices
(a, b, c). This is a consequence of the gauge variance of the
CS density.

In both (10) and (11) we have used the notation

Dr¢a — 8r¢a + sabCAb¢C

D% =9 v* + abcAb (12)
XO=0,x0 t e :

which are SO(3) covariant derivatives of the two triplets

¢ =" = (", ¢%), and ¥ = x* = (M, ). with re-
spect to the SO(3) gauge connection A, = A%. But A, is
really a pure-gauge since in one dimension there is no
curvature. As such, it can be consistently set equal to zero.
But more importantly, taking the variations 65, leads to
the constraint equations, which are first integrals of the

equations for $ and Y, and which play an important
technical role in the numerical integrations. We will return
to these below. The occurrence of constraint equations in a
system supporting what are basically sphaleron solutions is
completely expected, as the solutions we construct are
indeed sphalerons, just like the familiar Bartnik-
McKinnon solutions. Needless to say, the consistency of
the Ansatz used has been verified, so it is sufficient to work
with the reduced one dimensional Lagrangian (10) and

(1n).

“Here we ignore the (irrelevant) angular part in ./=g.
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Finding solutions within the general YM Ansatz (9),

which after setting A, = 0 still features six independent
functions, is technically a difficult task. A further consis-
tent truncation of the general Ansatz is ¢ = x> =0,
leading to an EYMCS system with six unknown functions,
four of them being gauge potentials parametrizing the
gauge field, and, two metric functions. Indeed, the two
gauge functions suppressed are redundant and would
only be excited in an eventual stability analysis of our
sphalerons.

To connect with notations used in the previous work
[4,12,14] on d = 5 EYM solutions, we adopt the notation

¢ (r) = w(r),
X (r) = V(r).

L) = w(r
@'(r) v~V( ), 13
x'(r) =V(r),

The resulting system has some residual symmetry under
a rotation of the *doublets’ w(r), w(r), and V(r), V(r) with
|

2

1
m = —a2<3r(N(w’2 + W) +
2 r

o 3a?
o

= —(w/2 + W2+

2r

2ww? + w? — 1) 1%
3 +

,

2w(w? + w? — 1) Vv
5 +
’

(roNw') = ra’(

(roNw') = ro-(

3V/ / 3 ~
(r ) — 2LV = Vw) + 126(w? + 02 = Dw!,
o oN

together with the constraint equation

3
r—(VV’ — VV) + 3rNo(ww' — ww')
o

— 12k(Vw = V)(w?2 + w2 — 1) =0, (15)

which originates from the variational equation for SA),
(where a prime denotes a derivative with respect to r).
These equations support both globally regular and black
hole solutions. The only known closed form solutions of
these equations are discussed in the next subsection and are
trivial in some sense, since the magnetic gauge potentials
do not feature any dependence on r. However, it is con-
ceivable that non-Abelian analytic solutions can be found
by studying the first order Bogomol’nyi equations of the
full N = 8 gauged supergravity model, with all scalar
functions included. This was the case of other gauged
supergravity theories, the most famous example being the

(w2 + 2 — 1)?

pyy (Vw — Vw)

—y (Vw = Vi)

r3\7’)/ 3r
o
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the same constant angle u (e.g. w — wcosu + W sinu etc.)
One can use this symmetry to consistently set w(r) =
V(r) = 0 (or w(r) = V(r) = 0) which results in a particu-
lar truncation of the system, which we shall exploit in
Sec. III B. Note that for configurations with v (r) = V(r) =
0 the gauge potentials are invariant under the ‘“‘chiral”
transformations generated by 25. The configurations with
w(r) = V(r) = 0 instead change just by a sign under the
same transformations. Also, this Ansatz is invariant under
the parity reflections transformation ¢ — —¢<, y* —
—x“. The asymmetry between (w, V) and (#, V) is man-
ifested by the different set of boundary conditions they
satisfy.

C. The equations and boundary conditions

Inserting this Ansatz into the action (1), the EYMCS
field Egs. (4) reduce to (to simplify the notation we denote
a® = 16mrG/(3¢?) and absorb a factor of 1/e in the ex-
pression of k):

3
) + r—2<v/2 + V2 + ——(Vw — Wv)2)),
g

2N

1 -
Vg2 (Vw — VW)Z),

(14)
) + 4k(V/(W?2 + w2 — 1) + 20 (Vi — Vw)),

) + 4V (W2 + W2 — 1) + 2w/ (Vw — VD)),

=" w(Vw — VW) + 12k(w? + w2 — D)W/,
oN

Chamseddine-Volkov solution [25] of the N =4, d =4
Freedman-Schwarz model [26]. One might therefore ex-
pect the full N = 8 model to support BPS solutions
describing also non-Abelian globally regular solitons,
which actually contrasts with the case of an Abelian trun-
cation. However, given the large number of matter func-
tions, even finding the explicit form of the first order
Bogomol’nyi equations of the N* = 8 supergravity model
with non-Abelian fields is bound to be a very difficult task,
which has not been addressed so far in the literature. This is
not surprising since the analogous task in the construction
of the Chamseddine-Volkov solution involves simply a
SU(2) gauge field and a single dilaton field.

However, one can analyze the properties of the solutions
of the system (14) by using a combination of analytic and
numerical methods, which is sufficient for most purposes.

The globally regular configurations are nontrivial defor-
mations of the AdSs and have the following expansions
near the origin r = 0:
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w(r) =1—br* + O(r*),

V(0) — 24kb
_ &l ()902 K UO)r3+O(r5),
0

V(r) = V(0) + 6b%koyr? + O(r"),
V(r) = gir + O(F),

2002 + 6b2g2
QT T 90 (81 gb %) *+ 0(r%),
20y

N 3a2(g? + 4b%o,
40'0

Ww(r)

(16)

m(r) =

2
o(r) = oy 0 > + 0(r?).
The free parameters are b = —1w"(0), V(0), g, = V'(0)
and oy = 0(0). The coefficients of all higher order terms
in the r — 0 expansion are fixed by these parameters.
We are also interested in solutions having a regular event
horizon at r = r;, > 0 and representing non-Abelian gen-
J

w(r) = wy + wi(r =) + 00 — )%,
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eralizations of the Reissner-Nordstrom-AdSs (RNAdS)
black hole. To simplify the general picture we shall con-
sider mainly nonextremal black holes, in which case N(r)
has a single zero at r = r;, and o(r,) > 0. We expect that
extremal black holes also exist for the full SO(6) theory,
but we have restricted their numerical construction only to
the particular truncation (W = V = 0) of the system, al-
luded to in the previous subsection, which is of course, a
consistent truncation. We have made this restriction simply
due to our desire to render the numerical task easier. From
our study of this particular truncation of the system, we
deduce that it is likely extremal black holes exist also for
the full SO(6) theory.

For the nonextremal case, the field equations imply the
following behavior as r — r;, in terms of five parameters
wy = w(ry), w, = w(r,), V, = V(ry), V; = V'(r;), and
o, = a(ry):

w(r) =w, + w,(r —r,) + O(r — ;)%

~ v,V %
V(ir) =V, +Vi(r—r,) + O —r,)> V(r) = YWalh + 24! (r—ry,) + O@r —r,)?
Wp wp
- _ (17)
2 203202 + w2) 3wl + it — 1)2
m(r) = r%l(l + r—’zl) + a_(rh '(M;h - Wil 4 vy + %, = 1) )(r —r) + O(r — 1,2,
4 2 oWy, rp
o(r)=o, +o,(r—r,) + 0 —r,)%
where
4r o pwi(2kr, Vi + apwy)(wi + w2 — 1)
wy = — ,
! —4r%(2r% + fz)a'%w%l + a2€2(3tr%w%(wi + W% - 12+ rﬁVlz(w% + W%))
_ 4r o pwy Wy, 2kr, Vi + opwy) (w2 + w2 — 1) (18)
o= — ,
! —4roiws + 3a2Cowi(wi + Wi — 1)? + ri(—=8owi + a*?Vi(wi + W1))
— 24a2rh€40'§1w%(21<rhvl + a'hwh)z(w%l + W% — l)z(w% + W%

N @r2aiwi —3a*o2wi(ws + w2 — 1)2 + ri8aiw? — a?2Vi(w? +Ww?)))*

Large r asymptotic expansions

The expansion at infinity of the solutions is more complicated and involves separate analyses in the generic and the

special cases.

In the generic case, the potentials parametrizing the non-Abelian gauge field take arbitrary values as r — oo, with the

leading order behavior

Wy logr

w
wr)=wy+—5+w.—+..., 2
r r

> W(r)=vT/0+

logr

V(r)=\70+%+\7c—2+,
r r

or)=1-

—+Ww
2

3 ~
m(r) == MO + 5&'2((W% + W% - 1)2 + €2(V0W0 - V0W0)2) logr,

1
ogr

logr
e —— +
c r2

V() =Vo+ L+ V.=l
r r

19)

a’(w? + w2)log?r N

with

r6 ey
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£ - -
W, = —?(ZWO(W(% + W3 — 1) + Vo2 (Vg — Vowy)),
~ e 2 4 =2 2(Y7 ~
Wc = _7(2W0(W0 + WO - 1) + V0€ (VOW0 - V()WO)),
3 N
V.= —§€2W0(V0\7f/0 — Vowy),
- 3 -
Ve=~— Efzwo(vowo — VoWo), (20)

where wg, W, Vo, Vo and w,, Wy, g, § are arbitrary
parameters satisfying the constraint

3(waWy — Wawg) + €2(GVo — qVo)
+ 602 k(Vowy — Vowo)wg + w3 — 1) = 0. (21)

Thus, similar to the well known case of a SO(3) gauge
group [4], the generic non-Abelian configurations have a
nonvanishing magnetic field on the AdS boundary (i.e.
F,F w¥| e # 0). As aresult, one can see from the above
relations that the mass function m(r), and hence also the
action of these solutions, diverge logarithmically.’

However, despite the divergence of the mass, the space-
time is still asymptotically AdS, the large r behavior of the
metric  function N(r) being N(r) — r?/€> + 1.
Asymptotically AdS solutions with diverging mass have
been considered recently by some authors, mainly for a
scalar field in the bulk (see e.g. [30]). In this case it might
be possible to relax the standard asymptotic conditions
without losing the original symmetries, but modifying the
charges in order to take into account the presence of matter
fields. In Sec. V of this work we shall argue that this is also
the case of the EYMCS configurations with the general
asymptotics (19). By using a counterterm approach, one
can define a mass for these solutions, which is fixed by the
parameter M, appearing in (19). (Note that for generic
solutions not only m(r) diverges logarithmically as r —
oo but also the terms 7> V'(r) and *V'(r) which, as argued
in Sec. 1V, fixes the electric charge(s) of the solutions. In
the numerics, we have studied mainly the solutions with
V.=V,=0)

For the special configurations, which support finite
mass, the required asymptotic behavior at large r is |$§| —
1 and | X gl =0 (ie. w2+ w2—1 and woV, —
WwoVp — 0). These conditions can be satisfied only in the
presence of the CS term. Different from the case of a
simple EYM theory [4], the existence of finite mass con-
figurations here is not forbidden by the Derrick-type scal-

"The existence of a logarithmic divergence in the action is a
known property of some classes of AdSs solutions which are
endowed with a special boundary geometry [27]. The coeffi-
cients of the divergent terms there are related to the conformal
Weyl anomaly in the dual theory [28,29]. However, this is not the
case for the non-Abelian AdSs configurations here, which have
the same boundary metric as the Schwarzschild-AdS solution
and hence feature no Weyl anomaly in the dual CFT.
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ing argument. Indeed, the numerics in the following
section indicate the existence of a subset solutions with
finite mass, with the following expansion at infinity

w(r) = sina + -2 + 0(1/r%),
r
~ . "T}Z 4
Ww(r) = cosa + — + O(1/r%),
T
V(r) = ®sina + L+ 0(1/1%),
I

V(r) = dcosa + L+ 0(1/1),
r

(g + @)+ 3(w3 + Ww)))

m(r) =M oy

+0(1/r"),

(w3 + Ww3)

or)=1-— c + 0(1/r%), (22)
r

where the amplitude of the electric potential at infinity is
fixed by

P — 3(;1/2 cosa — vTjQ .sina). (23)
€%(q cosa — g sina)

Thus the free parameters in the far field expansion of this
special set of solutions are M, a = arctan(V(c0)/V(c0))
and the coefficients g, §, w,, W, of the 1/r? decaying terms
in the non-Abelian potentials.

D. Particular cases

The simplest solution of the field equations has pure
gauge fields (F,, =0) and corresponds to the
Schwarzschild-AdSs black hole

P” M

N(r)=1+ Rt o(r) =1, w(r) = sina,
w(r) = cosa, V(r) = ®sina, V(r) = ® cosa,
(24)

where @, « are arbitrary constant.
The embedding of the RNAdS Abelian solution is re-
covered for

M a*q?
N(r)=1+€—2_ﬁ+ r4q, (T(r)=1,
W(V):V(F)ZO, w(r) = *1, V(I")ZCD-F%

r

(25)
The only AdS exact solutions with nontrivial non-Abelian

fields known so far is:

2 My + 3% logr
=l+5-——2 =1
N(r) 7 3 , o(r) =1, 26)

w(r) = w(r) =0, V(r)=V(r) =0,

(with M, an arbitrary positive constant). This solution was
obtained in [4] and describes a Reissner-Nordstrom type

064005-6



AdSs SOLUTIONS IN EINSTEIN-YANG-MILLS- ...

geometry in EYM theory with a gauge group SO(3) (note
that the mass function is logarithmically divergent in this
case). Its embedding in the SO(6) gauged supergravity
model and the extremal limit has been discussed in the
recent work [11].

A particularly interesting model is found by taking
Ww(r) = V(r) = 0 (or equivalently w(r) = V(r) = 0). This
is our particular truncation of the full SO(6) model. The
resulting solutions are those of the SU(2) X U(1) trunca-
tion of the model® parametrized in terms of the represen-
tations of the algebra of SU(4) instead of SO(6). (Of course
in that case both gauge groups have the same gauge cou-
pling constant.) One can see that the CS term is still non-
trivial in this case

L s = ikV(r)e,, aaya, THF12F%%}
1R2kV(r)wW (r)(w?(r) — 1), 27

(with a; = 1,...4). As we shall argue in the next section,
the solutions of this particular truncation contain already
the basic features of the full model. However, they are
much easier to study numerically.

The YM-CS equations in this case admit the first integral

VI(r) = %(K + drew(w? — 3)), (28)

with K being an integration constant. One can easily see
that the solutions are regular at the origin, » = 0, only if
K = 8k. The value of K is not fixed a priori for black hole
solutions.

The asymptotics of the SU(2) X U(1) solutions can
easily be read from the general relations (16), (19), and
(22). At infinity, the finite mass solutions have @ = * /2
in (22), with the gauge potentials

8k ¥ K
-+ o0/,
W (29)
w(r) = *1+ —22 + 0(1/r%).
r

Vir)=®

Thus, for the case w(oo) = —1 studied in this work, the
parameter ¢ fixing the Abelian electric charge of these
solutions is ¢ = —(4k + K/2) for black holes and g =
—8« for globally regular solutions.

III. NUMERICAL RESULTS

We start by noticing that the Egs. (14) are not affected by
the transformation:

8This truncation of the full SO(6) model shares a number of
common features with the five-dimensional N =4 gauged
SU(2) X U(1) supergravity model considered in [31]. For ex-
ample, a first integral similar to (28) appears there also.
However, the solutions in [31] have an extra dilaton field with
a Liouville potential and thus are not asymptotically AdS.

PHYSICAL REVIEW D 81, 064005 (2010)
€ — AL, V—V/A,
K — AK, 30)

r— Ar, m— A’m,

V—V/A, a— Aa,
while w, W and o remain unchanged. It follows that one
can always take an arbitrary positive value for a. The usual

choice is @ = 1, which fixes the EYM length scale L =

VJ87G/(3¢?), while the mass scale is fixed by M =
87r/(3e?). All other quantities get multiplied with suitable
factors of L. However, in this Section, to avoid cluttering
our expressions with a complicated dependence on (G, e),
we fix the value of & at @ = 1, and ignore the extra factors
of e and G in the expressions of various global quantities.

Therefore the remaining input parameters are the AdS
length scale € and the CS coupling constant «.
Determining the pattern of the solutions in the parameter
space represents a very complex task which is outside the
scope of this paper. Instead, we analyzed in detail a few
particular classes of solutions which, hopefully, reflect all
relevant properties of the general pattern. For definiteness
we set € = 1 in our numerical analysis, although we have
found nontrivial solutions also for other values of the
cosmological constant.”

Instead we have looked for the dependence of the solu-
tions on the value of the CS coefficient x, which has not
been fixed a priori. (This investigation has been partly
motivated by the study in [32] of the Einstein-Maxwell-
CS system, which revealed a nontrivial dependence of the
properties of the solutions on the value of x. We shall see
that this is also the case for the solutions constructed in this
work, which feature a critical value of CS coefficient.)

The resulting set of six ordinary differential equations'®
is solved with suitable boundary conditions which result
from (16), (17), (19), and (22). The numerics employs a
collocation method for boundary-value ordinary differen-
tial equations equipped with an adaptive mesh selection
procedure [33]. Typical mesh sizes include 103-10* points.
The solutions have a relative accuracy of 1077, In addition
to employing this algorithm, some solutions were also
constructed by using a standard Runge-Kutta ordinary
differential equation solver. In this approach we evaluate
the initial conditions at r = 107> (or r = r;, + 107°), for
global tolerance 10~ 2, adjusting for shooting parameters
and integrating towards r — o0. We have confirmed that
there is good agreement between the results obtained with
these two different methods.

“In particular, the finite energy solutions survive in the limit
A — 0, being supported by the CS term (this contrasts strongly
with the case of a pure EYM theory [12]). A discussion of the
asymptotically flat EYMCS solutions will be presented
elsewhere.

19Although we have solved the second order YM equations in
(14), we have also monitored the constraint (15), which was
always satisfied with very good accuracy. Also, the Eq. (15) has
been used to construct the asymptotic expansions (16), (17), (19)
, and (22).
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The properties of the solutions depend on the input
parameters, but it is rather difficult to find a general pattern.
However, a feature shared by all asymptotically AdS solu-
tions is that the metric functions m(r), o(r) monotonically
approach their asymptotic values, which can easily be seen
from the corresponding field equations. Also, so far we
could not find solutions where the electric potentials V(r),
V(r) present oscillations, even though such solutions are
allowed.

A. The generic solutions

The generic solutions studied here are for the d = 4 + 1
dimensional model, which features a CSterm. But solu-
tions with similar properties are found also in the EYM
model with no CS term. All these solutions bear a qualita-
tive similarity to those of the more familiar d =3 + 1
EYM model [1,2]. These solutions can also be seen as
higher gauge group generalizations of the EYM solutions
in [4], but unlike the latter they feature a nontrivial electric
potential, made possible by the larger gauge group. (The
electric potential necessarily vanishes for a d = 5 static,
spherically symmetric SU(2) gauge field).

Considering first the case of globally regular configura-
tions, one finds that solutions approaching asymptotically
the AdSs background exist for compact intervals of the
initial parameters w”(0), V(0), V/(0) and ¢ (0). The values
of the parameters wy, Wy, Vo, \70, Wy, Ws, and ¢, which
enter the asymptotics of the solutions are fixed by the
numerics. (There are also branches of solutions with a
different asymptotic behavior, which stop to exist for finite
values of r. To study these configurations, one needs to
employ a metric Ansatz different from (6). Such solutions,
being not asymptotically AdS, are of no interest here.)

Of the full set of solutions with AdS asymptotics, we
have paid special attention to the physically more interest-

2
1
0
1 Vi
2 1 0 1 2
log,(r)
FIG. 1.

PHYSICAL REVIEW D 81, 064005 (2010)

ing case of configurations with a 1/r2 decay of the electric
potentials at infinity (ie. V. =V,=0 and Vyw, —
Vowo = 0), this being the only case reported in this
Section. These solutions have a finite electric charge,
although their mass functions will diverge asymptotically

since || = \wg + w§ + 1 here.

A typical configuration with a regular origin is presented
in Fig. 1 (left), for k = 1. One can see that the mass
function diverges logarithmically while o (r), w(r), Ww(r)
and V(r), V(r) asymptotically approach some finite values.
Solutions with nodes in w(r), w(r) were also found.

In Fig. 2 we plot a number of relevant parameters as a
function of the coefficient b in the initial dataat »r = 0 (b =
—w''(0)/2), for a family of asymptotically AdS solutions.
(One of the parameters there is M, appearing in (19),
which in Sec. V we argue that it can be taken as the
renormalized mass of the solutions; note that M, may
take also negative values). This branch ends for some finite
values of b, where —g,(0) = o(0) — 0 while V,, g di-

verge. The condition qu X ¥l — 0 as r— oo has been
enforced by treating V(0) as a shooting parameter. Then
V/(0) is a free parameter while ¢(0) results from the
numerics (the solutions in Fig. 2 have V/(0)/o = 0.15).

The results in Fig. 2 show that the for generic solutions
w?(00) + 192(00) 4+ 1. From (19), this leads to a divergent
mass-energy as defined in the usual way. However, one can
see that the condition |<Z)| — 1 is satisfied for a discrete set
of the parameter b (e.g. b =~0.3219 X 1073 and b =
0.6125 X 107 for the data in Fig. 2). This suggests the
existence of several branches of finite mass solutions pa-
rametrized by V/(0) (or, equivalently, V(0)), which is con-
firmed by the results in the next subsection.

Black hole solutions have been found as well, presenting
the same general features. Here also we find a continuum

2
m(r)x3
1.5+
T T oW . -
El. G
0.5 E ~
g w(r)
0F S| T
ok
-0.5 wir)
a1+
V(IS -
15U I . I I I I
-0.5 0 0.5 1 1.5 2 2.5
logy(r)

The profiles of a typical globally regular solution (left) and a black hole solution (right) of the EYMCS equations are

presented as a function of the radial coordinate r. For these solutions, the mass function m(r) diverges logarithmically as r — co.
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FIG. 2. A number of relevant parameters are plotted as functions of the coefficient b for globally regular solutions of the EYMCS
model with € = 1, k = 1. These solutions have finite electric charges, which are fixed by ¢ and .

of solutions with arbitrary values of gauge potentials at
infinity, the relevant parameters being the values of the
gauge potentials at the event horizon as given by (17).
Again, finite mass black holes are found only for specific
values of the gauge potentials on the horizon.

As a general remark, we note that the presence of the CS
term is not crucial for the existence of the generic solutions
(i.e. with a divergent mass). We have found solutions with
rather similar properties also for k = 0. Thus, the role of
the CS term is indispensable only for the construction of
special, finite mass, solutions to be presented in the next
subsection.

B. Finite mass solutions
1. Regular configurations

In the numerics, special attention has been paid to
solutions with a finite mass. As noted above, in this case,
three of the four parameters in the data at r = 0 are fixed.
The remaining free parameter was chosen to be V(0)
(similar results are found when V(0) is chosen instead).

Remembering the invariance under the parity reflection

é— —¢, X — — X it turns out to be sufficient to consider
V(0) = 0 (or V(0) = 0).

Thus, corresponding to a choice of the coupling constant
k and of the cosmological constant A, there exist in
principle a family of finite mass charged EYMCS solutions
labeled by the value at the origin of one of the electric
potentials, in this case, V(0). The pattern of these solutions
turns out to be extremely rich, with some unexpected
features.

In order to illustrate this, we first fix V(0) = 0.3 and
study the solutions as functions of the CS parameter «.
(Qualitatively, the same results have been found when
considering other values of V(0)). The numerical results

show that a branch of solutions with Ww(r) = V(r) = 0
always exists for sufficiently large values of «, for instance,
Kk = ko = 0.07 in the present case. These are the solutions
of the reduced SU(2) X U(1) model with the asymptotic
angle a = 7/2. For convenience, we will refer to this
branch as the main branch. In the limit k — «( the metric
function o(r) vanishes at the origin and the solution be-
comes singular. For all values of the other parameters, no
finite mass solutions have been found for x < k.

The interesting feature is that new branches of solutions
with nontrivial functions w(r), V(r) emerge from the main
branch at critical values of . In our cases, the first branch
of excited solution appears « =0.0953 and a second
branch at « =0.1875. This behavior is illustrated in
Fig. 3, where a number of relevant global parameters are
plotted a functions of the CS coupling constant «. It should
be noted that, for a fixed «, the excited solutions have
larger masses than the solutions on the main branch.

The profiles of the two first excited solutions corre-
sponding to k = 0.2 is presented in Fig. 4. One can see
that the functions w, W parametrizing the magnetic field of
the excited solutions develop more pronounced oscillations
before becoming constant in the asymptotic region.

It is also natural to study the spectrum of solutions in
terms of one of the charges, say g for a fixed value of «.
The second electric charge ¢ is determined from numerics.
The results of our analysis for the value x = 0.2 are
summarized in Fig. 5. In this case, two excited solutions
are available. Several relevant parameters are plotted there
versus g (see Eqn. (22)) for two excited solutions. Fixing
the parity symmetry by means of V/(0) = 0, the numerical
analysis reveals that the solutions of the branch “1” (re-
spectively ““2°") are characterized by negative (respectively
positive) values of §. Also, they exist up to a minimal
(respectively maximal) value, say § = §,,. For k = 0.2
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FIG. 3. A number of relevant parameters are plotted as functions of the Chern-Simons coupling « for finite mass, globally regular
solutions of the EYMCS model. One can see that new branches of solutions emerge as k increases.

we have g.. = —7.8 and G, = 2.5 respectively, for the
first and second branches. In the limit §., — 0, the excited
solutions converge to the main solution. The ending of the
branches at § = §,, is more subtle. Indeed, our numerical
results show that another family of solutions (with larger
mass) exists in the region |§| < |g,,|, backbending from
the branch coming directly from the main solution. These
new branches are shown on Fig. 5; however, we have not
attempted to construct further branches in this region,
although they are likely exist.

2. Black holes

The EYMCS system presents also black hole solutions
which were constructed using similar techniques. In con-

0.5

m(r)

_branch 1

branch 2

log (1)

FIG. 4.

trast with the regular solutions presented above, the main
thrust here is confined to the solutions of our particular
truncation of the full SO(6) model. This restriction is made
to simplify an otherwise very complex numerical task.

The Hawking temperature and the entropy of the black
holes are given by

_ o(rp)N'(ry,)

T
1 4T

with AH = V3r2,

(3D

Ay
S =
4G

where V3 = 272 is the area of S3. An interesting feature
here is that the finite mass black hole solutions have two
free parameters in the event horizon initial data, which
were taken to be V(r,) and V(r,). As a result, and in

1.5
branch1 \?(r) ,,,,,,,,
L |
_branch 2.
0.5 .
V()
2 3

log;((r)

The profiles of two typical globally regular EYMS solutions are presented as function of the radial coordinate r. m(r) and

o (r) are metric functions, which w(r), w(r) and V(r), V(r) are non-Abelian potentials.
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FIG. 5. A number of relevant parameters are plotted as functions of the electric charge § for finite mass, globally regular solutions of
the EYMCS model with a Chern-Simons coefficient k = 0.2. The dashed and solid curves denote different branches of solutions.

contrast to the case of globally regular solutions, the two
electric charges ¢ and ¢ are independent for black holes.
This leads to a much richer parameter space of solutions.

Our numerical results provide evidence for the existence
of finite mass black hole solutions of the EYMCS system
with a set of four nontrivial gauge functions (i.e. for the full
group SO(6)). The profile of a generic black hole corre-
sponding to k = 0.2 and r;, = 0.5 is presented in Fig. 6
(left) for g = 0.5, ¢ = —1.5.

However, given the large number of free input parame-
ters, we did not attempt a systematic study of these solu-
tions, concentrating instead on the simpler case of the
SU(2) X U(1) truncated model. An interesting feature
here is that solutions with AdS asymptotics exist only for

the limited interval kp;, = Kk = K, of k. The limits of
this interval depend on the values of r;, and K. Clearly, the
range of the electric charge of these solutions is also
bounded. These features are illustrated in Fig. 7 (left), for
black hole solutions with a fixed horizon radius r;, = 1.
One can see that as k — K, the value at the horizon of
metric function o(r) tends to zero, as does also the
Hawking temperature, while other quantities stay finite.
The behavior of solutions for large « is less clear, the
accuracy decreasing with x. However, the numerical re-
sults seem to indicate that this branch ends in a critical
solution with o (r;,) close to 1 and a finite nonzero value of
Ty . Unfortunately, the study of solutions for k — Kk, 1S @
difficult task and the general picture may be much more

,,,,, ”_\?(r) o(r)
1 L ""~-7.A,“‘_‘ﬁ_‘”,,,,
0.5
=1
]
S
5
=
or 8§
>l \
5} \
\‘\\W(r)
0.5 ¢ \ 1
V(r)/10
-1 ‘ ‘ B S
-0.5 0 0.5 1 1.5 2

V()
2 L .
m(r)/15
o(r
N 0
=}
<)
N
=
5}
=
=
0F % |
K=5.2 k=1
1 s
-0.5 1.5 2

log(r)

FIG. 6. Left: The profiles of a typical non extremal black hole solution of the SO(6) model is presented as a function of the radial
coordinate r. Right: An extremal black hole solution for our particular truncation of the full model.
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1.5r

05

FIG. 7. The mass parameter M, the value at the horizon of the metric function o(r) and the magnetic gauge potential w(r), the
electrostatic potential ® and the Hawking temperature are plot as a functions of the CS coupling constant « (left) and of the event

horizon radius r; (right).

complicated. For example, we have noticed the existence
there of a secondary branch of solutions, which are close to
a finite mass extremal configuration with nontrivial gauge
fields. A systematic study of these aspects would require a
different parametrization of the metric line element than
(6), and is beyond the scope of this work.

One can also keep « and K fixed and vary the value of
the event horizon radius. As noted above, choosing the
values of k, K fixes also the electric charge, i.e., these black
holes are in a canonical ensemble. Our numerics indicate
that for any K, the value of the gauge field potential at the
horizon decreases with r;,. For large enough values of the
event horizon radius, the solutions become essentially
RNAGJS black holes, with w(r) being close to the value
—1 everywhere, with the non-Abelian magnetic field
vanishing.

However, the picture for small enough values of the
horizon radius depends crucially on the value of the inte-
gration constant K in the V-Eq. (29) (i.e. on the Abelian
electric charge). Starting with the special value K = 8k,
we plot in Fig. 8 a number of relevant features of the

decreasing function of the Hawking temperature. They
become thermally stable for large enough values of the
event horizon radius. In the limit r, — 0, these black holes
approach the set of globally regular particlelike solutions
with V(r) = w(r) = 0, discussed above.

The picture is very different when choosing instead K #
8k [see Fig. 7 (right)]. As an interesting new feature, here
an extremal black hole solution is approached for a critical
value of ry,. In this case the horizon is degenerate (i.e., N(r)
has a double root: N(r,) = N'(r,) = 0) and the near hori-
zon geometry is AdS, X S3.

As r — r;, one finds the approximate form of the solu-
tion in the near horizon region:

N(r) = Ny(r — r,)> + O(r — 1,)3,
3oy (32)

o(r)=o, — T (r—r,) + 0@ — 1,

w(r) = wy, + wi(r—r,) + O(r = r,)?,

wp =

solutions, for three different values of the CS coefficient V) =V, = 20—y 4 O = 1) (33)
k. One can see that these non-Abelian black holes behave " 2k, " M
in a similar way to the vacuum AdS solutions. The small
black holes are thermally unstable, the entropy being a  where
|
32621, 0wy (1 — w?)
—=3a?rp wj, + 384k 2 (1 — w})? — 4K3(24ry, — Arp2(w; — 2) + 327 2(1 — w})?) 34

241} + 8r302 — 322 (1 — w3)?)
N, = 42
2r;€

The parameters r;, and w;, in the above relation are solutions of the equations
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FIG. 8. The temperature-entropy diagram (left) and the value at the horizon of the metric function o(r) and of the electrostatic
potential ® (right) are ploted as functions of the event horizon radius r;, for three different values of the Chern-Simons coupling
constant k. These configurations have an integration constant K = 8k, and approach the globally regular particlelike solutions as

rh_>0.

32r2 _
52

2..,2
12a2(1 — w2)? + @(16 -2 Wh) =0,
K

2Kk + wy(r2 + 8k3 (w2 — 3)) = 0. (35)

Recalling that K = 2(g — 4«), it follows that all event
horizon boundary data (except o(r;,)) are fixed by the «,
€ and the electric charge ¢g. (Note the analogy with the
extremal Abelian solution case.) This extremal solution
differs from the RNAdS one, presenting non-Abelian mag-
netic hair and a nontrivial metric function o (r) [see Fig. 6
(right)].

As expected, the near horizon structure of the extremal
solutions can be extended to a full AdS, X S° solution of
the field equations. This configuration has a line element

IV. GLOBAL CHARGES

A. The mass and boundary stress tensor

The action and mass of these AdSs non-Abelian con-
figurations is computed by using a boundary counterterm
prescription. As found in [20], the following counterterms
are sufficient to cancel divergences in five dimensions, for
Schwarzschild-AdS black hole solution (in this section we
restore the 877G and e factors in the expressions):

! d“x\/—h[é + fR:I,

. = —
ot 87G Jom ¢ 4

(40)

with R the Ricci scalar for the boundary metric A.
(Note also that, as usual, to ensure well-defined Euler-
Lagrange field equations, one adds to the action (1), the

dr? Ar? . .
ds* = % + r3dQ% — (1 - %)dtz, (36)  Gibbons-Hawking surface term [34] Iyy = —gig
1= [ d*x/—hK, where K is the trace of the extrinsic
and the matter fields curvature for the boqn_dary dM.) However, in the presence
of matter fields, additional counterterms may be needed to
w = Wy, V(r) =V — 2W0 (r—ry). (37) regulate the action [35], which is also the case for the
Kro generic non-Abelian solutions discussed in the previous

For wj # 1, this is a non-Abelian solution, with the gauge

field living on the three-sphere. The parameters A, w, and

the radius r, of the S* are constrained by the relation
3 @G riwd + 1262w — 1)?

A=2 -
2 2 2.4 ’
Ty e K™r

(38)

the value of the AdS, cosmological constant A; in (36)
being

sections."!
This divergence is cancelled by a supplementary coun-
terterm of the form (with a, b boundary indices):

¢
Jp i —— log(%) fa VI THE,FL @D

""The geometric counterterm (40) regularises also the action of
the RNAdS;5 black hole solution. However, this does not hold for
any d =5 solutions of the Einstein-Maxwell-A system. An

A =6 A _l _7T_G r (2)W(2) + 4K2(1 - W(z))2 (39) interesting example here are the AdS black strings with a
1 r% o2 K2 ré ’ magnetic U(1) field [36], in which case one has to consider an

additional matter counterterm on the form (41).
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Note that this term is identically zero for the solutions with
w2+ w2 =1, Vw — Vv — 0.

Using these counterterms and the Gibbons-Hawking
boundary term, one can construct a divergence-free bound-
ary stress tensor T,

1

T, =
e

1
x log<%) Tr{Fachdh"d - Zha,,chFfd}, 42)

3 ¢ 2¢

(Kab — Khy, — Zhab + EEab) 2

where E,;, and K are the Einstein tensor and the trace of the
extrinsic curvature K,, for the induced metric of the
boundary, respectively. In this approach, the mass M of
the solutions is the conserved charge associated with the
Killing vector 9/d¢ [20]. A straightforward computation
leads to the following simple result for the mass of the
generic EYMCS solutions:

167wG

3V,02
647G’

+ M, with M.=

(43)
|

[

PHYSICAL REVIEW D 81, 064005 (2010)

For the case of black hole solutions of the truncated
SU(2) X U(1) model, we have found that M coincides
within the numerical accuracy with the mass computed
from the first law of thermodynamics, up to the constant
term M, which is usually interpreted as the mass of the
pure global AdSs.

From the AdS/CFT correspondence, we expect the non-
Abelian hairy black holes to be described by some thermal
states in a dual theory formulated in a metric background
given by

Yapdx®dx? = —dr* + €*(d i + sin® i (d6?
+ sin0d¢?)), (44)

where i, 6, ¢ are the usual polar angles parametrizing S°.

The matter fields in the dual CFT would interact with a
background non-Abelian field, whose expression, as read
from (9) and (19) is

A, = —(Vo[sing sinf(2 14 cosep + S sing) + sinty cosfZ55 + cosihSue] — Vos6),

—_—

Ay = ;((1 + wo)[sind (24 cosg + 2,4 sing) + cosO234] + Wwo[cosi sinf(2 5 cose + 2,5 sing)

+ cosif cosf35 — sinth 3 y5)),

1
Ag = —((1 4+ wy) singr[singf (25 cosep + 23 sing) — siny cosh 14 cosg + cosiy cosh,, sing + cosy sinf3,]
e

+ g sinyf[cosf(2 5 cose + 2y sing) — sinf45]),

1
A, = ;(—(1 + wp) sing[sinyfsin?03, + sini sinf cosf( 3 sing — 2,3 cose) + cosy sinf(Z 4 sing — 2y, cose)]

— W siny sinf( 5 sing — 2,5 cos@)),

We note that this is still fully an SO(6) gauge field.
The expectation value (7%) of the dual CFT stress tensor
can be calculated using the relation [37]

J=yy ) = lim V—h heT,,. (46)

Employing also (42), we find the finite and covariantly
conserved stress tensor (with x!' = ¢, x> =0, x> = ¢,
=1

1 00 O
1M, 1o 10 0
877G<T”>=ﬁ<?+1) 001 0
000 -3
47TG((W(2) + W(Z) - 1)2 + gz(VOWQ - V()VT/O)Z)
B e’
1 000
01 00
% 47)
0010
00 00O

(45)

I
Different e.g. from the case of Reissner-Nordstrom-AdS
Abelian solutions, this stress tensor has a nonvanishing
trace. Moreover, for the physically relevant case of solu-
tions with a finite electric charge (i.e. | x| — 0 asymp-
totically) one finds that (79) = Ayy = —3(w3+
w3 — 1)>/(2€2¢?). This agrees with the general results
[35,38,39] on the trace anomaly in the presence of an
external gauge field, Ayy = RF(, the coefficient R

being related to the charges of the fundamental constituent
fields in the dual CFT.

B. Electric charge(s)

For the solutions with | X ¥l — 0 (ie. (Vow —
VoWwo)l,—e = 0) the coefficients of the 1/r% terms in the
asymptotic expansion of the electric potentials are finite.
Thus, from the Gauss flux theorem one can formally define
the electric charge

4 2
Or = fm dS;J=gF" = %(QE% +q2pn), (48)
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which is clearly not gauge invariant. (This is a generic
problem for the definition of the non-Abelian charges in
the absence of a Higgs field, see e.g. [40]).

Perhaps a more proper definition can be given following
the reasoning in [41]. In this approach one starts by eval-
uating the quantity Tr{F, F''},

JTETHF,F") = JTg DA, F)
= 9,(y=g Tr{A,F"})
— /=2 Tt{A,D,F'"}.

Using the Gauss’ law equation, we find that the contribu-
tion of the electric field to the total mass then is

1 R N
Ee = _? dek\/__gXDrX
v, f dr(dl2 = DY - Dodg".  (49)

Subject to the truncations this expression simplifies; the
integral in the second term must be evaluated using the
numerical solution, while the surface integral in the first
term can be evaluate using only the asymptotic values of
the functions.

In the absence of the Chern-Simons term, i.e., when k =
0, the contribution of the electric field to the total mass can
be written as

E,— - f 45,/ =F THA,F¥} = Qu,

where

® = Tr{AA} =V + V3,

Q. — 4% Vog + Voi
are the electrostatic potential and the electric charge, re-
spectively. However, one can extend this definition of &
and Qg to solutions of the EYMCS system. This applies to
both generic and special configurations (note that @ = @,
Qg = 47 (sinag + cosag)/e for finite mass solutions).
For finite mass solutions, following [21], one can also
define an effective non-Abelian charge Q. by the asymp-
totic behavior of the metric function N(r), which, to order
1/r* is similar to that of the RNAdS solution:
r My QO

N(r)=1+ﬁ_7+ r4

(50)

+.. (51)

ie.

ay/(g* + G + 3(w} + Ww3))
Qefr = \/ 7 = (52)

Concerning a definition of a “‘magnetic” flux, the only
natural quantity we have at our disposal for this purpose is
the Chern—Pontryagin density, which we know is the lead-
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ing and sole contributing term to the topological charge
(““magnetic” flux) of the monopole in 4 + 1 dimensions
[42]. There however the gauge group is SO(4) and the
model features an iso-four-vector Higgs field.

This quantity can be calculated easily for the SO(6)
Ansatz employed in this paper

. 4! -
g TH{FUFM} = — ﬁ(|¢|2 — 1) Tr(D, 3256
+ (D, pe)" ), (53)

which vanishes, i.e., the candidate for a magnetic charge
for the solutions found in the present work equals zero
identically.

V. FURTHER REMARKS

On general grounds, one expects that extending the
known classes of solutions of the d = 5 supergravity to a
non-Abelian gauge group would lead to a variety of new
physical effects.

This work has been aimed as a first step towards con-
structing the non-Abelian solutions of the maximal d = 5
gauged supergravity. Restricting to the simplest case of
static, spherically symmetric solutions, we have proposed a
suitable Ansatz for the gauge fields and presented numeri-
cal evidence for the existence of both particlelike and black
hole solutions. Our systematic description of the black
holes is restricted to a certain truncation of the full SO(6)
model, with the sole purpose of rendering the numerics
practicable. In this limited context, we have also found
extremal black holes.

As a consequence of the presence of a negative cosmo-
logical constant in the model, we have recovered the
qualitative properties of the solutions to the usual
EYM-A model in 3 + 1 dimensions [1,2]. Notably, some
of our solutions to which we have referred as generic, are
characterized by arbitrary asymptotic values of the poten-
tials parametrizing the gauge field. Also, these solutions
share another property with those of the 3 + 1 dimensional
EYM model, namely, that the shooting parameters in-
volved take on a continuum of values. Unlike the latter
however, their masses turn out to be divergent in our 4 + 1
dimensional case. This is expected on the basis of the
Derrick-type scaling argument. However, we have pro-
posed a regularization procedure for the mass of these
solutions, in the context of the AdS/CFT correspondence.
As far as these generic solutions are concerned, the pres-
ence of the Chern—Simons term makes no qualitative
difference.

Perhaps the most interesting feature of the EYMCS
model is the existence of finite mass solutions. We have
referred to these as special solutions and they contrast with
the generic ones in that the shooting parameters involved
take on a discrete set of values. The special solutions exist
only when the non-Abelian Chern—Simons term is present.
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Concerning the physical context of our results, it is in
order to make several remarks on the issue of the more
general solutions of the d = 5, N' = 8 gauged supergrav-
ity. This model contains an additional 20 scalars, which are
represented by a symmetric unimodular tensor. These sca-
lars have a nontrivial potential approaching a constant
negative value at infinity which fixes the value of the
effective cosmological constant. No obvious consistent
truncation of this sector seems to exist for a gauge group
SO(6) and strictly speaking one should work with the full
set of scalars. In principle, at least when this general model
is subjected to spherical symmetry, the one dimensional
subsystem resulting from the application of the Ansatz
here can be studied using the same methods as in this
paper, i.e., the solutions can be constructed by solving a
boundary-value problem. One can in that case find the
approximate expressions at the origin or event horizon
and at infinity. The only obstacle to this task that we see
at this moment is the huge complexity of the ensuing
equations. Based on the results in this paper, we expect
the parameter space of the full SO(6) solutions of the d =
5, 2N = 8 model to be very rich. Inclusion of the scalar
sector will lead to many new free parameters in the asymp-
totics and will make any attempt to classify the solutions
difficult (involving numerous different ways of approach-
ing a constant negative value at infinity for the scalar
potential).

The generic non-Abelian solutions on the other hand
will always present a nonvanishing magnetic gauge field
on the boundary which appears as a background for the
dual theory. (This feature is independent of the presence or
absence of scalars.) Thus the expectation value of the dual
CFT stress tensor will contain a part which is similar to
(47). Configurations with vanishing non-Abelian magnetic
field on the boundary, and finite mass, should exist as well,
being supported by the CS term. Also, similar to the case of
four dimensional EYM non-Abelian solutions in [6], the
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existence of both spherically symmetric globally regular
and hairy black hole solutions with the same set of data at
infinity raises the question as to how the dual CFT is able to
distinguish between these different bulk configurations.

Concerning future developments of this work, we expect
a much richer structure of the non-Abelian solutions to be
found when relaxing the spacetime symmetries. For ex-
ample, one may envisage the existence of asymptotically
AdSs solutions which are static and nonspherically sym-
metric, generalizing the configurations in [43]. Particularly
interesting would be to approach the issue of EYMCS
rotating solutions. To our knowledge, the only d > 4 rotat-
ing solutions with non-Abelian fields known so far in the
literature are the d = 5 EYM-SU(2) black holes in [44].
However, the mass of these solutions diverges logarithmi-
cally. It is likely that the inclusion of a CS term will lead to
finite mass solutions also in that case.

Another very natural direction to be explored is the case
of zero cosmological constant, which would be outside the
context of N° = 8 supergravity but would nonetheless be
technically very interesting. For example, this would afford
a comparison with the corresponding 3 + 1 dimensional
asymptotically flat EYM solutions in [21], which involve
only a discrete spectrum of the shooting parameters.
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