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The dynamical consistency of the nonprojectable version of Hořava gravity is investigated by focusing

on the asymptotically flat case. It is argued that for generic solutions of the constraint equations the lapse

must vanish asymptotically. We then consider particular values of the coupling constants for which the

equations are tractable and in that case we prove that the lapse must vanish everywhere—and not only at

infinity. Put differently, the Hamiltonian constraints are generically all second-class. We then argue that

the same feature holds for generic values of the couplings, thus revealing a physical inconsistency of the

theory. In order to cure this pathology, one might want to introduce further constraints but the resulting

theory would then lose much of the appeal of the original proposal by Hořava. We also show that there is

no contradiction with the time-reparametrization invariance of the action, as this invariance is shown to be

a so-called ‘‘trivial gauge symmetry’’ in Hořava gravity, hence with no associated first-class constraints.
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I. INTRODUCTION

Recently, Hořava proposed a candidate for a UV com-
pletion of the Einstein theory of gravity in which full
spacetime diffeomorphism invariance is abandoned and
recovered only at large distances [1,2]. Based on appealing
analogies with condensed matter physics and anisotropic
scaling à la Lifschitz (see [1,2] and references therein), it
has been proposed that this alternative to Einstein theory
might provide a renormalizable UV completion of general
relativity and therefore potentially yields a very attractive
approach that is worth being explored.

There are two classes of Hořava theories. One is the
class of the so-called ‘‘projectable’’ theories, in which the
lapse is restricted to depend only on time. The other one
is the ‘‘nonprojectable’’ class, where the lapse is allowed
to depend on both space and time. In the first case, there
is only one integrated Hamiltonian constraintR
d3xH ðxÞ ¼ 0. In the second case, there is an infinity

of Hamiltonian constraints H ðxÞ ¼ 0, one at each space
point, just as in general relativity. As we are interested in
theories that reproduce Einstein gravity in the IR limit,
with its full set of constraints, we shall consider in this
paper only the nonprojectable class of theories, although
comparison with the projectable case will be made when it
illustrates useful points. We shall also allow for all terms
compatible with formal renormalizability while keeping
the lapse and shift functions as Lagrange multipliers. In
particular, wewill not use the ‘‘detailed balance’’ condition
which has been shown to be problematic, for example, for
standard black hole solutions [3] (see also [4]).

We begin by showing that, in the asymptotically flat
case, the lapse must asymptotically tend to zero, thus

preventing any interesting dynamics. This, in itself, is al-
ready a serious drawback.
We then pursue the analysis for a special choice of

coupling constants that yields more tractable equations.
The results obtained in that case are argued to also hold
for general values of the couplings. The main result derived
then is that the Hamiltonian constraints H ðxÞ ¼ 0 are
generically all second-class. Namely, they completely de-
termine the lapse, which must then vanish everywhere and
not only at infinity. Put differently, there is generically no
first-class constraint among the Hamiltonian constraints.
The rank of the ‘‘matrix’’ of the Poisson brackets
½H ðxÞ;H ðx0Þ� of the constraints is generically maximal
and its corank is zero. This result might appear to be in
contradiction with the known time-reparametrization in-
variance of the theory, but we prove that this is not the case
as time-reparametrization invariance is in this instance a
so-called ‘‘trivial symmetry’’ with no implication on the
dynamics (see e.g., [5,6]).
By ‘‘generically,’’ we mean ‘‘at a generic point of the

constraint surface defined by the Hamiltonian and momen-
tum constraints.’’ Indeed, the rank of the matrix of the
brackets ½H ðxÞ;H ðx0Þ� does depend on the location on
the constraint surface (a situation already somewhat patho-
logical in itself and excluded by Dirac in his theory of
constrained systems [6,7]). When we consider generic
values of the couplings, generically also means ‘‘at a
generic point in the space of couplings,’’ often taken to
be in an open subset of maximal dimension in the space of
couplings.
The fact that the lapse must generically vanish every-

where (in the asymptotically flat case) appears to be a
serious blow to the theory in its original formulation.
One might try to rescue it by imposing further constraints
but the resulting theory, even if mathematically consistent,
would seem to depart sufficiently from general relativity so
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that it would cease to be a meaningful candidate for a UV
completion of the Einstein theory of gravity. We make
comments along these lines in the conclusions.

Our paper extends previous works which already ques-
tioned the consistency of Hořava theory [8,9] but we make
here a more complete analysis of the constraint equations
and show that there is no contradiction with explicit in-
variances of the action. Although we disagree with some
aspects of earlier analyses, as we shall comment below, we
agree with their final conclusion. Namely, we confirm the
inconsistency of Hořava theory in its original formulation,
which could only be regained at the price of drastic mod-
ifications that would make it lose much of its appeal.

The structure of our paper is as follows. In Sec. II, we
give the dynamics of Hořava gravity in Hamiltonian form
and derive an equation for the lapse function expressing
that the Hamiltonian constraints are preserved in time. This
crucial equation is analyzed in more detail in Sec. III in the
general case and in a specific and simpler model in Sec. IV.
A seeming paradox between the action possessing time-
reparametrization invariance and the absence of any asso-
ciated first-class constraint is resolved in Sec. V. We con-
clude the main part of the paper with comments on the
viability of Hořava gravity as a theory of gravitation.
Several more technical details of some of our arguments
have been relegated to appendixes.

II. DYNAMICS

We describe the dynamics of Hořava’s nonprojectable
class of theories in Hamiltonian form. The Hamiltonian
data consist in

(i) Canonical variables on phase space variables, gijðxÞ,
�ijðxÞ, with Poisson brackets

½gijðxÞ; �mnðyÞ� ¼ 1

2
ð�m

i �
n
j þ �n

i �
m
j Þ�ðx; yÞ; (2.1)

where x and y are points on a spatial slice and �ij is
the momentum conjugated to the spatial metric gij.

(ii) A constraint surface in phase space defined by con-
straints

H ðxÞ � 0 ð“Hamiltonian constraint”Þ; (2.2)

H kðxÞ � 0 ð“momentum constraints”Þ; (2.3)

where weak equality� means zero on the constraint
surface, as usual.

(iii) Equations of motion generated by a Hamiltonian

H ¼
Z

d3xðNðxÞH ðxÞ þ NkðxÞH kðxÞÞ (2.4)

with lapse function Nðx; tÞ and shift vector Nkðx; tÞ.1

The action is

S½gij; �ij; N; Nk� ¼
Z

dt

��Z
d3x�ij _gij

�
�H

�
:

(2.5)

The equations of motion follow by extremizing the action
with respect to gijðxÞ and �ijðxÞ (dynamical equations of

motion), as well as with respect to the lapse and the shift
functions that serve as Lagrange multipliers for the
constraints.
The form of the momentum constraints, which generate

spatial diffeomorphisms, is universal and given by

H k ¼ �2ri�
i
k; (2.6)

where r stands for the spatial covariant derivative opera-
tor. Indices are lowered and raised with the spatial metric
gij and its inverse gij.

By contrast, the Hamiltonian constraints depend on
various coupling constants and take the form

H ¼ H 1 þH 2; (2.7)

where H 1 is the kinetic term
2 (with � ¼ gij�

ij),

H 1 ¼ 1ffiffiffi
g

p
�
�ij�ij � �

3�� 1
�2

�
(2.8)

andH 2 contains the potential terms with up to six deriva-
tives of the spatial metric

H 2 ¼ ffiffiffi
g

p ð�þ �Rþ �R2 þ �RijRij þ �CijC
ij

þ 	R4 Rþ . . .Þ: (2.9)

Here, the spatial Laplacian is4 ¼ riri. The restriction to
six derivatives comes from the requirement of being
power-counting renormalizable [1,2]. Since we want to
keep the function NðxÞ as a Lagrange multiplier for the
Hamiltonian constraints, i.e., N must appear linearly in the
Hamiltonian, no integrations by parts are allowed within
the constraints (because N depends on space) if we are to
retain the canonical form for H (2.4). This entails a prolif-
eration of the number of terms that are allowed3 but we
have not written them all in (2.9) since our results will not
depend on the details of these terms. Note that standard
general relativity with Minkowskian signature can be de-
scribed in using the equations above and corresponds to the

1Very often, the time dependence is not written explicitly. We
focus on the space dependence. In that spirit, a ‘‘constant’’
means a function of t only.

2� is the parameter appearing in the modified DeWitt metric
on the space of metrics and is expected to go to one in the IR
limit if general relativity is to be recovered at low energies (see
[2] for the details).

3Effects of terms of the type N�1riN to remedy some of the
aspects of Hořava gravity have been studied, for example, in
[10]. This modified theory is Lorentz violating even at low
energies and will therefore also produce a very different con-
straint structure; see also [11,12].
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choice � ¼ 1, � < 0, � arbitrary and all the other parame-
ters equal to zero.

Contrary to what happens in standard general relativity
the lapse N is not arbitrary in Hořava gravity because the
theory is not invariant under all spacetime diffeomor-
phisms. An important requirement, however, is that
although N is not arbitrary, there is enough freedom in N
so that there exist acceptableN’s which do not vanish,N �
0. Otherwise, if the only acceptableN’s are zero, there is no
true dynamics. By contrast, the shiftNk is arbitrary, reflect-
ing full spatial diffeomorphism invariance. In the gauge
Nk ¼ 0, which we will use, the Hamiltonian reduces to
H ¼ R

d3xNðxÞH ðxÞ.

Condition on the lapse

The equations of motion are given by

_F ¼ ½F;H� (2.10)

for any function(al) F½gijðxÞ; �ijðxÞ� of the canonical var-

iables, together with the above constraints. The momentum
constraints, which generate a gauge symmetry (spatial
diffeomorphisms) are first-class. However, the
Hamiltonian constraints are not first-class in Hořava grav-
ity and as we will see below, their preservation in time is
more subtle as we now discuss.

Requesting that the constraint surface be preserved by

the dynamics, i.e., _H ðxÞ ¼ ½H ðxÞ; H� ¼ R
d3yGðx; yÞ�

NðyÞ � 0, withGðx; yÞ ¼ ½H ðxÞ;H ðyÞ�, leads to a partial
differential equation (in space) for the lapse function of the
form


ijklrijklN þ �ijkrijkN þ 	ijrijN þ �iriN þ!N � 0;

(2.11)

where 
ijkl ¼ 
ðijklÞ, �ijk ¼ �ðijkÞ, 	ij ¼ 	ji, �i and! are
functions of the canonical variables that depend on the
coupling constants and rij ¼ rðirjÞ etc. The explicit

form of the coefficients will not be needed here. We shall
only need two crucial facts: (i) The coefficient of a given
coupling constant in�ijk contains one more derivative than
the corresponding coefficient in 
ijkl, that in 	ij contains
two more derivatives, etc. This just follows from dimen-
sional analysis. Thus if the coefficient of one coupling
constant in 
ijkl generically goes like 1

ra at infinity (in the

asymptotically flat case), the corresponding coefficient in
�ijk will generically go like 1

raþ1 , that in 	ij will go like
1

raþ2 , that in �i will go like 1
raþ3 and that in ! will go like

1
raþ4 . (ii) Generically ! does not vanish, ! � 0, not even

weakly. This will be explicitly verified below.
In the case of general relativity, the functions 
ijkl, �ijk,

	ij, �i and ! are all zero on-shell and the Eq. (2.11) puts
therefore no restriction on N (reflecting full time-
reparametrization invariance). This also occurs for
Euclidean general relativity which has the same values of
the parameters as Minkowskian relativity except that � is

positive, � > 0, as well as for zero Hamiltonian signature
spacetimes [13–15], which have instead � ¼ 0. For generic
values of the coupling constants, the functions 
ijkl, �ijk,
	ij, �i and! do not vanish and the condition (2.11), which
expresses that

R
d3xNðxÞH ðxÞ is first-class, is then

nontrivial.4

In the case of closed spatial sections, there is no further
condition on the lapse and Eq. (2.11) is everything. In the
case of open spatial sections, the lapse should obey addi-
tional boundary conditions at infinity expressing that the
motion defines an asymptotic time translation. For asymp-
totically flat spaces, which we shall consider from now on
(we therefore set � ¼ 0), this means

N ! C for r ! 1; (2.12)

where C is a constant. (There are then also additional
surface terms at spatial infinity in the expressions for the
generators.)
The reason for which the Eq. (2.11) is rather complicated

to analyze is that the rank of the kernel Gðx; yÞ is not
constant on the constraint surface defined by the
Hamiltonian and momentum constraints. For instance,
for static hypersurfaces (vanishing extrinsic curvature,
Kij ¼ 0)—a case much studied in the literature

[3,17,18]—Gðx; yÞ is zero. Similarly, if the spatial sections
are of constant curvature and the extrinsic curvature is a
(time-dependent) multiple of the metric, as it is relevant for
cosmological models [19–21], the covariant derivatives of
the spatial Riemann tensor and of the extrinsic curvature
vanish so that Gðx; yÞ is also zero. In those instances,
Eq. (2.11) completely degenerates (0 ¼ 0) and brings no
restriction on N. These special cases of measure zero are
blind to the restrictions derived from (2.11).5 However, this
is not the case for generic configurations as we shall
analyze in more detail in the next section. It should be
stressed that the constraints (2.11) on the lapse have a
fundamental character and are different from the con-
straints that one gets by imposing a particular ansatz on
the fields. For instance, if one imposes staticity (zero
extrinsic curvature), the preservation in time of the equa-
tion Kij ¼ 0 leads to equations on the lapse. But contrary

to the constraints (2.11), which should be fulfilled by all
solutions, these particular equations are less fundamental
as they depend on the ansatz.

4The importance of the condition (2.11) and the fact that it is
nontrivial have been pointed out earlier in [16]. However, as far
as we can see, this interesting work does not provide a detailed
analysis of that equation (which always possesses the solution
N ¼ 0). We thank A.A. Kocharyan for pointing out his work to
us.

5With ‘‘measure zero’’ we here mean that these solutions are
defined by equalities [the vanishing of some leading coefficients
in (2.11)] and therefore form a space of nonmaximal dimension
in the space of solutions.
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Systems for which the rank of the brackets of the con-
straints is not constant on the constraint surface were
discarded by Dirac [6,7] in his analysis of constrained
systems. This is because the change in the rank is some-
what pathological as one cannot globally define the Dirac
bracket so that it is not clear how to consistently quantize
such systems. One can nevertheless try to apply Dirac
methods in regions of the constraint surface where the
rank is constant. Although there were no known physical
models exhibiting such a phenomenon at the time of [7],
examples have been encountered more recently [22–24].
The regions where the rank achieves its highest value
compatible with the constraints are open subsets of the
constraint surface and correspond to the generic situation.
Regions where the rank achieves smaller values are defined
by equations, namely, precisely the equations expressing
that the rank has a value smaller than the highest one.
These regions have thus smaller dimensionality and define
‘‘nongeneric’’ situations.

III. ANALYSIS OF THE EQUATIONON THE LAPSE

Before analyzing in more detail the Eq. (2.11) for N, let
us gain more insight into the model by studying its gauge
invariances.

A. Gauge invariances of the action

The action (2.5) is invariant under arbitrary spacetime-
dependent spatial diffeomorphisms,

�gij ¼ �kgij;k þ �k
;igkj þ �k

;jgik; (3.1a)

��ij ¼ ð�k�ijÞ;k � �i
;k�

kj � �j
;k�

ik; (3.1b)

�N ¼ �kN;k; (3.1c)

�Ni ¼ _�i þ �kNi
;k � �i

;kN
k; (3.1d)

where �kðt; xÞ are the components of the arbitrary vector
field defining the diffeomorphism and the comma denotes
partial differentiation. It is also invariant under space-
independent time reparametrizations �ðtÞ,

�gij ¼ � _gij; (3.2a)

��ij ¼ � _�ij; (3.2b)

�N ¼ ð�NÞ:; (3.2c)

�Nk ¼ ð�NkÞ:: (3.2d)

There is no other independent gauge symmetry for generic
values of the coupling constants.

To the spatial diffeomorphisms correspond the first-class
constraints H k � 0, as we already pointed out. This is in
agreement with the general rule that ‘‘gauge invariances
are generated by first-class constraints’’ [6,7]. One might
therefore conjecture on this basis that to the time-
reparametrization invariance of the action should also be
associated one first-class constraint, and that there should
be no other first-class constraints for generic values of the
coupling constants (a conclusion that we will show to be

wrong, but for now let us stick to that standard logic). Now,
the gauge symmetries in Hamiltonian form are generated
by combinations of the constraints of the form

H½�; �k� ¼
Z

d3xð�ðxÞH ðxÞ þ �kðxÞH kðxÞÞ;

where � should obey the same equation


ijklrijkl�þ �ijkrijk�þ 	ijrij�þ �iri�þ!� � 0

(3.3)

as the lapse (see Appendix A).
Since

@

@t
¼ Nnþ Nk @

@xk
;

where n is the unit normal to the hypersurfaces t ¼ const,
one finds that the component � along the normal of the
vector field

�� ¼ �ðtÞ @
@t

þ �kðt; xÞ @

@xk

is given by
� ¼ �N; (3.4)

where the space dependence of � occurs only through the
lapse, the function � depending only on time (and thus
being a constant at any given time).
Furthermore, because the Eq. (3.3) for � is linear homo-

geneous in �, one finds that if �0 is a solution, then any
multiple of �0 is also a solution. Thus, in view of (3.4) and
the fact that the equation for � is the same as the equation
forN, given a particular solutionN,�ðtÞN is also a solution
for any �. This means that a nontrivial time-
reparametrization invariance is guaranteed to hold, pro-
vided there exists a nontrivial solution of (2.11) for N. In
addition, since we do not expect other invariances besides
the diffeomorphisms described above, all the solutions of
(3.3) should be of the form�N, i.e., all the solutions should
be multiples of the lapse.

B. Three conjectures on the rank of Gðx; yÞ
(two false, one right)

In view of the above discussion, one might be led to
conjecture:
Conjecture 1: The corank of Gðx; yÞ is equal to one, i.e.,

the space of (admissible) solutions of the homogeneous
Eq. (2.11) or (3.3) is one dimensional. All solutions are
multiples of a given, nonvanishing solution.6

In the asymptotically flat case, the time reparametriza-
tions are true (‘‘proper’’) gauge symmetries only if they
vanish at infinity [25,26]. However, since in Hořava gravity
the time reparametrizations do not depend on space, they

6Here, ‘‘admissible’’ means ‘‘sufficiently smooth and obeying
appropriate boundary conditions at infinity in the case of open
spatial sections.’’
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are expected to vanish everywhere if they vanish at infinity
and we might again want to conjecture:

Conjecture 2: In the asymptotically flat case, the only
solution of (2.11) or (3.3) that vanishes at infinity is zero
everywhere. Put differently, the corank of Gðx; yÞ in the
space of functions that vanish at infinity is zero (and thus
Gðx; yÞ is formally invertible in that space).

The time reparametrizations that go to a nonvanishing
constant at infinity are not to be thought of as true gauge
tranformations but rather as rigid symmetries. They are
sometimes called ‘‘improper gauge transformations’’ [26].
This is because they are generated by a combination of the
constraints plus an appropriate, nonvanishing, surface term
at infinity that makes the functional derivatives of the
generator well defined [25].7

Since the difference between two solutions of (2.11) or
(3.3) that go to the same constant at infinity is a solution of
(2.11) or (3.3) that goes to zero at infinity, one might be
tempted to formulate the third conjecture:

Conjecture 3: In the asymptotically flat case, there is
only one solution of (2.11) or (3.3) that goes to a given
constant at infinity. Therefore, the space of solutions of
(2.11) or (3.3) that go to an arbitrary given constant at
infinity is one dimensional. That is, the corank ofGðx; yÞ is
equal to one in that space and all solutions are multiples of
a given, nonvanishing solution, which may be assumed to
go to one at infinity (the standard lapse).

We shall explicitly establish that, contrary to expecta-
tions, the third conjecture is incorrect for generic values of
the coupling constants. More precisely, there is no solution
that goes to a nonvanishing constant at infinity for generic
configurations gij, �

ij that solve the constraints and obey

the standard asymptotically flat space conditions (see be-
low). If the second conjecture is correct (and we believe it
is), this indicates that the corank of Gðx; yÞ is equal to zero
also in the enlarged space of functions allowed to go to a
nonvanishing constant at infinity. This would thus invali-
date conjecture 1. In fact, we shall be able to explicitly
prove the second conjecture for a specific choice of the
coupling constants that make the equations more tractable.
Thus conjecture 1 is evidently incorrect in that case and the
only solution of the Eq. (2.11) for the lapse is N ¼ 0,
making the Hamiltonian trivial and quite different from
that of general relativity. We shall also argue, using a
genericity argument, that this property remains true for
generic values of the coupling constants. In Sec. V, we
shall explain why there is no contradiction with the well-
established rule that gauge invariances imply first-class
constraints, because reparametrization in time turns out
to be an on-shell trivial gauge symmetry.

Before proceeding with the analysis of the conjectures in
the asymptotically flat case, we first clarify another seem-
ing paradox that might come to mind if one compares the
nonprojectable class of theories with the projectable one.
This will also shed some crucial light on the form of the !
coefficient in (2.11) or (3.3).

C. Comparison with the projectable case

The fact that the projectable theory where the lapse
depends only on time is invariant under time reparametri-
zation might suggest that Eq. (3.3) always possesses one
solution, namely, � independent of the spatial coordinates.
This would be the case if and only if the coefficient ! of
the undifferentiated � in Eq. (3.3) were equal to zero, ! ¼
0. However, this is generically not the case and � ¼ const
is therefore not a solution.
The reason for which there is no contradiction is the

following. The projectable case is described by the action

S½gijðx; tÞ; �ijðx; tÞ; NðtÞ; Nkðx; tÞ�

¼
Z

dt

��Z
d3x�ij _gij

�
�Hproj

�
(3.5)

with Hproj given by

Hproj ¼ N
Z

d3xH þ
Z

d3xNkH k: (3.6)

In that case, invariance of the action does not require the
local condition ! ¼ 0, but only its integrated version (see
Appendix A),

Z
d3x! ¼ 0: (3.7)

When (3.7) holds, then the action (3.5) is invariant under
the transformation generated by �

R
d3xH þ R

d3x�kH k

provided one transforms at the same time the lapse and the
shift as

�N ¼ _�; �Nk ¼ _�k þ �mNk
;m � Nm�k

;m:

Now, while ! � 0 in the generic case, its integral van-
ishes (for any choice of H ) by virtue of the antisymmetry
of the Poisson bracket. Indeed, ½H ðxÞ;H ðyÞ� ¼
�½H ðyÞ;H ðxÞ� implies

! ¼ �!þ @kV
k for some Vk; i:e:; ! ¼ @kðVk=2Þ;

which leads to (3.7). The same argument would hold if
instead of N ¼ NðtÞ one would take the lapse to be of the
form N ¼ �NðtÞfðxÞ for some fixed function f of the spatial
coordinates, and the gauge transformations to be generated
by

��
Z

d3xfH þ
Z

d3x�kH k with �� ¼ ��ðtÞ:

Note that, incidentally, it follows more generally from
the antisymmetry argument that �ð
ijkrijk�þ �ijrij�þ
	iri�þ!�Þ is a spatial divergence and so (A6) can be

7In addition, in order to preserve the boundary conditions, they
must fulfill _� ¼ 0 at infinity and thus everywhere; only time-
independent time translations are full symmetries among the
time reparametrizations.
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rewritten in the formrkðMkÞ � 0 for someMk quadratic in
� and its derivatives.

D. Asymptotically flat spaces— behavior of the fields at
spatial infinity

Since general relativity is supposed to be recovered at
large distances, we shall impose the familiar asymptotic
behavior of Einstein gravity on the metric, the extrinsic
curvature, the lapse and the shift. These are (in asymptoti-
cally flat coordinates [25])

gij ¼ �ij þO

�
1

r

�
; �ij ¼ O

�
1

r2

�
; (3.8)

N ¼ 1þO

�
1

r

�
; Nk ¼ O

�
1

r

�
: (3.9)

One should also impose appropriate parity conditions on
the leading orders of the deviation from Minkowski space,
but these will not be explicitly written here as they are not
relevant to the discussion. Note that most of the solutions
with � ¼ 0 given in [3,17,18] obey these boundary
conditions.

E. Conjecture 3 is false

We now turn to the Eq. (3.3) for �, requesting the
behavior � ¼ CþOð1rÞ at infinity (the lapse corresponds

to the constant C taken equal to one). One gets

ri� ¼ O

�
1

r2

�
; rij� ¼ O

�
1

r3

�
;

rijk� ¼ O

�
1

r4

�
and rijkl� ¼ O

�
1

r5

�
;

where ri� is two orders below the leading order of �
because C;i ¼ 0. Given this behavior, we find that the

only leading order term in the Eq. (3.3) comes from the
part involving ! and is given by

!leadingC:

If the leading term of ! does not vanish, imposing the
Eq. (3.3) forces C to vanish. Hence, there is no solution to
(3.3) that tends to a nonvanishing constant at infinity.

This result crucially depends on the fact that the leading
term of ! is not zero. One might argue that because the
coefficients 
ijkl, �ijk, 	ij, �i and ! are not independent
(they are functions of the canonical variables, which are
furthermore constrained by the Hamiltonian and momen-
tum constraints), it might happen that the leading term of!
vanishes when this dependence is taken into account. We
shall explicitly verify below that this ‘‘miracle’’ does not
occur for a particular choice of the couplings and for
generic values of the canonical variables fulfilling the
constraints. By continuity, it does not occur for neighbor-
ing values of the couplings (the property !leading � 0 is an

inequality).

IV. A TRACTABLE CHOICE OF COUPLING
CONSTANTS

Because the Eq. (2.11) for N is rather intricate, we now
turn to analyze it in the case of a simpler model that was
also studied in [9].

A. The model

The model [9] is obtained by setting all couplings equal
to zero, except � and �. In order to depart from general
relativity, we take � � 1. Defining u ¼ N2, the Eq. (2.11)
for the lapse then reduces to

riðuri�Þ ¼ 0 (4.1)

which can be rewritten as

ri�riuþ4�u ¼ 0: (4.2)

We note the asymptotic behaviors (again in asymptotically
flat coordinates)

u ¼ Oð1Þ; riu ¼ O

�
1

r2

�
;

ri� ¼ O

�
1

r3

�
; 4� ¼ O

�
1

r4

�
:

The problem is now to determine the general solution of
(4.1) that goes to a constant at infinity, given that the metric
and its conjugate momentum are subject to the momentum
and Hamiltonian constraints and to the boundary condi-
tions. We consider generic metric and conjugate momen-
tum configurations compatible with the constraints and the
boundary conditions, and not particular configurations
subject to additional restrictions (of symmetry nature or
of a different type).
What enables one to proceed in this case are results on

the solutions of the constraint equations established long
ago for general relativity in [27–29]. What these authors
show is that one can freely choose the trace � of the
conjugate momentum and its traceless transverse part.
The momentum constraints determine then its longitudinal
(or ‘‘vector’’) part. Similarly, one can freely specify the
spatial metric up to a conformal factor, which is fixed by
the Hamiltonian constraints (we refer to the original works
for the details). In these works, the Hamiltonian constraints
are those of general relativity (� ¼ 1) but the equation for
the conformal factor keeps the same form if one changes �,
thus allowing us to analyze (4.1) assuming that � and the
spatial metric (up to the conformal factor) are completely
independent and unconstrained.8

8Actually, the authors of [28,29] assume that � decreases
slightly faster than Oð 1

r2
Þ, namely, � ¼ Oð 1

r2þ�Þ with � arbitrarily
small but strictly positive. This makes 4� ¼ Oð 1

r4þ�Þ, which still
dominates the first Oð 1

r5
Þ term [which is actually Oð 1

r5þ�Þ in (4.1)].
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B. Analysis of Eq. (4.1)

In order to further analyze the Eq. (4.1), let us rewrite it
in terms of K ¼ gijKij. The advantage of this is that K is a

scalar, making the transition from Cartesian to polar coor-
dinates easier. The Eq. (4.1) then becomes @iðu ffiffiffi

g
p riKÞ ¼

0. Now, similarly to �, K can be chosen at will, so that the
coefficient !�4K of the undifferentiated lapse in (2.11)
does not generically vanish on the constraint surface, in
agreement with our claim above.

Using Eq. (4.1) written in terms of K, we now prove that
its solutions of generically blow up at infinity. To that end,
we first consider a configuration in which K does not
vanish and depends only on r, while the metric is diagonal.
In polar coordinates, (4.1) then becomes

@rðu ffiffiffi
g

p rrKÞ ¼ 0

whose solution is u ¼ 
ð;�Þffiffi
g

p rrK . Since
ffiffiffi
g

p rrK goes to zero in

polar coordinates like Oð1rÞ,9 we conclude that u blows up

at infinity unless 
 ¼ 0, in which case u vanishes every-
where. Thus, the only solution that goes to a constant at
infinity vanishes identically.10 We show in Appendix B that
this result remains valid when we no longer impose any
restriction on K and gij.

The general conclusion is then that the only solution of
(4.1) that goes to a constant at infinity is the identically
vanishing solution. In particular, the only solution that
tends to zero at infinity is then generically the solution u ¼
0, which establishes conjecture 2 for the above choice of
coupling constants.

Note again the importance of the word generically in this
sentence. Indeed, there exist specific configurations of the
metric and of the extrinsic curvature compatible with the
constraints such that u � 0, e.g., K ¼ 0, but these only
represent a particularization of the generic case we want to
study (if one considers K ¼ 0, just perturb generically K
away from zero, which is permissible on the constraint
surface according to [28,29]).

C. Mathematical consistency versus physical
considerations

The fact that the Hamiltonian constraints are second-
class is not, in itself, a mathematical inconsistency. It
simply tells us that the lapse is uniquely fixed, and, because
the equation for N is a homogeneous equation always
possessing N ¼ 0 as a solution, it means that N ¼ 0. The
theory then possesses 5=2 degrees of freedom per space
point since there are 6 conjugate pairs, 3 first-class con-
straints and 1 second-class constraint (per space point). We
thus agree with Ref. [9], which also concluded that the

Hamiltonian constraints were (generically) second-class
and determined the lapse. However, we go beyond this
work by proving more completely that the constraints are
indeed second-class and drawing the inevitable conclusion
that then, necessarily, N ¼ 0 (homogeneity of the equation
for N).
The extra 1=2 degree of freedom (the so-called ‘‘extra

mode’’) might be thought of as contained in the pair
formed by � and the conformal factor (and not in N, which
is identically zero). The conformal factor is determined by
the Hamiltonian constraints. In general relativity, where
the constraints are first-class, one uses the corresponding
gauge freedom to impose a gauge condition on the con-
jugated �ðxÞ. Here, the constraints are second-class, thus
expressing instead that �ðxÞ is self-conjugate in the corre-
sponding Dirac bracket (whose expression is rather intri-
cate and will not be worked out here). We note that the
extra mode is somewhat analogous to a chiral boson
[30,31], for which there is also a single second-class con-
straint per space point.
Since N ¼ 0, the dynamics is very simple: the

Hamiltonian vanishes (in the gauge where the shift is
zero) and any function of the canonical variables is a
constant of motion. This is mathematically consistent but
the theory not only differs in a drastic way from general
relativity but is also physically rather meaningless as there
is no time evolution. One can therefore say that there is a
dynamical inconsistency with what one requests from the
theory on physical grounds, i.e., the lapse should be non-
zero and belong to a one-parameter family of solutions
(away from the general relativity values). An everywhere
vanishing lapse N cannot be obtained from a physically
sensible solution by a regular coordinate transformation
and hence signals a genuine inconsistency of the theory
rather than a poor choice of coordinates.

D. Extension to other values of the couplings
by continuity arguments

We have shown that the rank of the matrix
½H ðxÞ;H ðx0Þ� is (generically) maximum for the specific
values of the couplings considered in this section. What
about other values of the couplings? If the matrix under
consideration were a finite N � N matrix, one could use
continuity arguments to argue that it has also the maximum
rankN for neighboring values of the couplings. Indeed, if a
matrix Mð�iÞ depending continuously on a set of parame-
ters is invertible for some specific values f�0

i g of these
parameters, then it is generically invertible by continuity
[the equation detMð�iÞ ¼ 0 is a submanifold of lower
dimension in parameter space]. More generally, the highest
value of the rank achieved by M, which might be smaller
than N if the matrix is nowhere invertible, is in that sense
generic. One may invoke the same arguments here, but
they should be taken with a grain of salt since we are
dealing with infinite matrices.

9Even like Oð 1
r1þ�Þ if one adopts the stronger boundary con-

ditions mentioned in footnote 8.
10Note that if 
 � 0, there is also a singularity at the origin
r ¼ 0.
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The fact that conjecture 3 has been explicitly shown to
be incorrect, and that conjecture 2 seems plausible in the
philosophy of Hořava theory, gives further support to the
belief that all the Hamiltonian constraints are second-class
for generic values of the coupling constants and not just for
those considered here.

V. REPARAMETRIZATION INVARIANCE AS AN
ON-SHELL TRIVIAL SYMMETRY

A. A paradox?

As we stated, it might seem paradoxical that all the
Hamiltonian constraints (2.2) are second-class, while the
action is invariant under time reparametrizations as in (3.2)
. This invariance would seem to imply that at least one
combination of the Hamiltonian constraints (2.2) should be
first-class and generate the time reparametrizations rewrit-
ten in Hamiltonian form. This combination would neces-
sarily correspond to a nontrivial solution N for the key
Eq. (2.11).

However, the point is that the time reparametrizations
(3.2) are ‘‘on-shell trivial’’ gauge symmetries when the
Hamiltonian constraints are all second-class and therefore
have no nontrivial physical content and need not be asso-
ciated with first-class constraints among the Hamiltonian
constraints, thus implying that a nontrivial solution to the
Eq. (2.11) is not needed (so that no contradiction arises).

We will show this below on a simpler example but, first,
let us say a word about these so-called ‘‘on-shell trivial’’
gauge symmetries. It is well known that any action S½yA� is
always invariant under the transformations

�yA ¼ �AB
�S

�yB
; �AB ¼ ��BA; (5.1)

where �AB are arbitrary spacetime functions and A, B run
over all canonical variables. These fake gauge transforma-
tions, which vanish on-shell, are always present and have
no implication on the (classical or quantum) dynamics of
the theory (see e.g., [5,6]). They have been studied at
length in the BRST approach to the quantization of gauge
systems with an ‘‘open algebra’’ [6,32–36]. They do not
need any ghost and have been shown to be associated with
canonical transformations in the antibracket (see [37]).

B. A simpler example

To illustrate the point that the time reparametrizations
(3.2)) are ‘‘on-shell trivial’’ gauge symmetries, we consider
a model with the same features but with a finite number of
degrees of freedom, whose action reads

S½qi; pi; N

� ¼

Z
dtðpi _q

i � N
H 
Þ: (5.2)

We assume that the constraints are all second-class, so that
defining ½H 
;H �� � C
� we have detðC
�Þ � 0, and

denote the inverse matrix by C
�, so that C�
C
� ¼ ��

.

The multipliers N
 of this simpler model are to be
thought of as being the analog of the lapse NðxÞ in
Hořava’s theory. There is no analog of the spatial diffeo-
morphisms here and hence no analog of the shift.
The action (5.2) is clearly invariant under the time

reparametrizations

�qi ¼ � _qi; �pi ¼ � _pi; (5.3)

�N
 ¼ ð�N
Þ:; �H 
 ¼ � _H 
; (5.4)

but these transformations, which vanish when the equa-
tions of motion are satisfied, are on-shell trivial as they can
identically be rewritten as antisymmetric combinations of
the equations of motion as

�qi ¼ �

�
�S

�pi

þ @H �

@pi

C�


�
� d

dt

�S

�N
 � @H 


@qj
�S

�pj

þ @H 


@pj

�S

�qj

��
; (5.5)

�pi ¼ �

�
� �S

�qi
� @H �

@qi
C�


�
� d

dt

�S

�N


� @H 


@qj
�S

�pj

þ @H 


@pj

�S

�qj

��
; (5.6)

�N
 ¼ d

dt

�
�C�


�
� d

dt

�S

�N
 � @H 


@qj
�S

�pj

þ @H 


@pj

�S

�qj

��
; (5.7)

where we have used

N� ¼ C�


�
� d

dt

�S

�N
 � @H 


@qj
�S

�pj

þ @H 


@pj

�S

�qj

�
:

(5.8)

We note that the appearance of the inverse C
� clearly
signals that this argument only holds if all the constraints
are second-class. But this is generically the case in Hořava
gravity so that there is no nontrivial time reparametrization
even thought the action is invariant under (3.2) (which is
said to be ‘‘on-shell trivial’’).

VI. CONCLUSIONS

In this paper, we have uncovered several problems in the
nonprojectable class of theories considered in [1,2].
Besides the fact that these theories do not fulfill the stan-
dard regularity condition on the rank of the matrix of the
Poisson brackets of the constraints, we have generically
shown that they do not admit solutions for the lapse that go
to a nonvanishing constant at infinity, i.e., the lapse must
asymptotically go to zero, thus preventing any asymptotic
dynamics. Particular solutions, corresponding to points on
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the constraint surface where the rank of the matrix of the
Poisson brackets of the constraints is not maximum
[3,17,18,38], fail to reveal this problem.

We have then considered a particular choice of the
coupling constants (which is tractable and which is be-
lieved to be representative of the general situation) and
have shown that the lapse must vanish in that case every-
where and not just at infinity (again, for generic solutions
of the constraint equations). There is no contradiction with
time-reparametrization invariance, because this invariance
then turns out to be an ‘‘on-shell trivial’’ gauge symmetry
with no physical implication.

In order to avoid such serious difficulties, one might try
to take advantage of the nonconstancy of the rank of the
matrix ½H ðxÞ;H ðx0Þ� of the Poisson brackets of the con-
straints and force the system, by additional constraints, to
be on a subset of the constraint surface where the equation
for the lapse admits nontrivial solutions (i.e., one forces the
system to be on nongeneric subsets). This is the approach
explored in [8] (which, however, did not recognize the fact
that generically the constraints are second-class). One such
extra condition might be Kij ¼ 0 as this makes

½H ðxÞ;H ðx0Þ� identically zero. This choice yields a the-
ory with nontrivial solutions havingN � 0 [3,17,18] and in
that sense is consistent. However, these extra constraints,
together with the constraints following from _Kij ¼ 0, con-

stitute a violent simplification of the theory which dramati-
cally reduces its number of degrees of freedom and bears
little resemblance with full general relativity (it is certainly
not a UV extension).

Another possible choice would be !ðxÞ ¼ 0 since this
allows N ¼ NðtÞ. These extra constraints reduce the num-
ber of degrees of freedom to 2 per space point or even to
lower values if their preservation in time yields further
constraints (an analysis which appears to be rather in-
volved to be carried out). However, these extra constraints
do not have a clear geometrical interpretation and in any
case deviate from the original proposal by Hořava, which
would lose much of its appeal. The resulting theory would
again not be a UV extension of general relativity. It is
amusing to note that the extra constraints ! ¼ 0 yields
the condition � ¼ 0 for the particular values of the cou-
plings explicitly studied above. This may be viewed in
general relativity as a gauge condition fixing the slicing
[27,39,40]. If � ¼ 0, one may set � ¼ 1: the resulting
theory is consistent, but is just general relativity in disguise
(in a gauge-fixed formulation where its geometrical con-
tent is somewhat obscure).11

Although we have not investigated the equation for the
lapse in the compact case, one might anticipate that diffi-
culties in the analysis will also arise in that case since the

solutions must be globally well defined. Locality require-
ment for the lapse as a function of the other variables
should presumably also be imposed in order to be able to
apply the methods of local quantum field theory. This
appears to be also a very restrictive condition.
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APPENDIX A: GAUGE SYMMETRIES IN
HAMILTONIAN FORM

The gauge symmetries in Hamiltonian form (after time
derivatives of the dynamical variables have been elimi-
nated through the addition of trivial transformations) are
the space reparametrizations, generated by

H½�k� ¼
Z

d3x�kðxÞH kðxÞ; (A1)

where �kðxÞ is an arbitrary vector field (that may depend on
time). In addition, the theory is also gauge invariant under
the transformations generated by

H½�� ¼
Z

d3x�ðxÞH ðxÞ; (A2)

if �ðxÞ is chosen so that H½�� is first-class.
Indeed, one finds that the variation of the action under

the transformations

�gijðxÞ ¼ ½gijðxÞ; H½�� þH½�k��;
��ijðxÞ ¼ ½�ijðxÞ; H½�� þH½�k�� (A3)

is given (up to surface terms at the time boundaries) by

�S ¼
Z

dtd3xð _�H þ _�kH k � �NH � �NkH k

� N�H � Nk�H kÞ; (A4)

where �N and �Nk are the variations of the Lagrange
multipliers N and Nk and where �H and �H k read

�H ðxÞ ¼
�Z

d3yGðx; yÞ�ðyÞ
�
þ ð�kH Þ;kðxÞ;

�H kðxÞ ¼ ð�;kH þ ðH k�
mÞ;m þH m�

m
;kÞðxÞ:

11One might in fact take as extra consistent constraint H �
H GR ¼ 0 when this constraint is an acceptable gauge condition
for fixing the slicing of Einstein theory, recovering in this way a
gauge-fixed version of ordinary general relativity.
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Inserting these expressions in the action, one gets, upon
setting

�N ¼ _�þ �kN;k � �;kN
k þ �N;

�Nk ¼ _�k þ �mNk
;m � �k

;mN
m þ�Nk;

that the variation �S reduces to

�S ¼ �
Z

dtd3x

�
�NH þ�NkH k

þ N
Z

d3yGðx; yÞ�ðyÞ
�
: (A5)

The variations of the Lagrange multipliers N and Nk

should be such that �S ¼ 0 for any gij, �
ij, N and Nk (as

these are freely varied in the variational principle). Thus
the expression (A5) should vanish for any N. Taking the
functional derivative of �S ¼ 0 with respect to N, one gets
the condition that

R
d3yGðx; yÞ�ðyÞ should vanish when the

constraints hold, i.e.,


ijklrijkl�þ �ijkrijk�þ 	ijrij�þ �iri�þ!� � 0:

(A6)

Conversely, when (A6) holds, one can adjust �N and �Nk

such that �S ¼ 0. Thus
R
d3x�ðxÞH ðxÞ generates a gauge

symmetry if and only if (A6) holds.
The condition (A6) for � to define a gauge transforma-

tion is then, not surprisingly, exactly the same equation as
the Eq. (2.11) that the lapse must fulfill on-shell.

APPENDIX B: MORE DETAILED ANALYSIS OF
EQ. (4.1)

We analyze in this appendix the Eq. (4.1), which can be
rewritten as (upon dividing by

ffiffiffi
g

p
)

mi@iu ¼ �ðrim
iÞu; (B1)

where mi is the vector field riK. The Eq. (B1) is a
homogeneous partial differential order equation giving
the variation of u along the integral curves of mi. To
integrate this equation, one needs to specify u on a two-
dimensional surface transverse to these integral curves
(‘‘initial data’’ for u).

In polar coordinates, the vector fieldmi and its covariant
divergence are given by functions of the asymptotic form

mr ¼ a

r3
; m ¼ b

r4
; m� ¼ c

r4
; �rim

i ¼ z

r4

(B2)

with a, b, c and z functions on the 2-sphere S2 which have
the same dimensionality. There are terms decreasing faster
to infinity than the terms written in (B2), but these are not
relevant for the asymptotic analysis and are set to zero.

In the particular case considered in the text, one sets

a ¼ 1; b ¼ c ¼ 0; z ¼ 1 (B3)

and the equation can be rewritten @rðu=rÞ ¼ 0. We will
study the Eq. (B1) in an open region of ‘‘parameter space’’
(i.e., an open region in the space of the mi’s) that contains
this spherically symmetric situation. We will prove explic-
itly in that case that if u � 0, then u blows up at infinity, so
that the only nonpathological solution at infinity is u ¼ 0
(in the open region we shall consider). One can probably
refine the argument to exhibit pathologies for a bigger
range of the mi’s, but we shall not attempt to do it here
as we do not feel it is worth it. Together with the results of
the previous sections, we think indeed that the point made
here provides enough evidence of problems of the theory,
which are believed to be insuperable if we are to retain the
original physical meaning of the theory.
The restrictions we shall impose, which define our open

region, are
(i) a > 0 on S2;
(ii) z0 � z

a > 0 on S2, implying z > 0 on S2.
Since the sphere is compact, a and z0 are bounded from
below by some strictly positive number C, allowing us to
set

0<C � z0:

If a does not vanish on S2, the spheres are transverse to
the integral curves of mi. One can thus give ‘‘initial data’’
for u on the sphere S2 defined by r ¼ 1. Furthermore, if
one divides by a the Eq. (B1) one gets as new asymptotic
equation

m0i@iu ¼ z0

r
u (B4)

with m0i ¼ r3mi=a, b0 ¼ b=a, c0 ¼ c=a and thus

m0r ¼ 1; m0 ¼ b0

r
; m0� ¼ c0

r
; z0 ¼ z

a
:

Since m0r ¼ 1, we can take r as parameter of the integral
curves of the vector field, which have then the form r ¼ r,
 ¼ �ðrÞ, � ¼ �ðrÞ with

d�

dr
¼ m0;

d�

dr
¼ m0�:

Along a given integral curve (determined by the value
0, �0 of its intersection with the ‘‘initial sphere’’ r ¼ 1),
the function u fulfills

du

dr
¼ z0ð�ðrÞ;�ðrÞÞ

r
u: (B5)

This implies that if u vanishes at one point of the integral
curve, then it vanishes everywhere on the integral curve
(uniqueness of the solution of the first order differential
equation in normal form for given initial data that can be
taken anywhere along the curve). Thus, if u0 (value at r ¼
1) does not vanish initially at 0, �0, it vanishes nowhere
on the corresponding integral curve.
Consider a point on the unit sphere with u0 � 0. The

equation for u along the corresponding integral curve can
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be rewritten as

dU

dr
¼ z0ð�ðrÞ;�ðrÞÞ

r

with U ¼ lnjuj. Since z0 is bounded from below, one has

dU

dr
� C

r

and by integrating from r ¼ 1 to r, one gets

U � U0 þ C lnr;

where C> 0. This implies thatU, and thus also u blows up
at infinity (u goes to þ1 if u0 > 0 and to �1 if u0 < 0).
Thus, if we want u to go to a constant at infinity, we must

take u0 ¼ 0 and u is then equal to zero everywhere. This is
what we wanted to prove: the only solution that tends to a
constant at infinity is u ¼ 0 and the constant is then equal
to zero.
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