
Perturbations of black p-branes

Elcio Abdalla*

Instituto de Fı́sica, Universidade de São Paulo, CP 66318, 05315-970, São Paulo-SP, Brazil

Owen Pavel Fernandez Piedra†

Departamento de Fı́sica y Quı́mica, Facultad de Mecánica, Universidad de Cienfuegos, Carretera a Rodas, km 4, Cuatro Caminos,
Cienfuegos, Cuba

Jeferson de Oliveira‡

Instituto de Fı́sica, Universidade de São Paulo, CP 66318, 05315-970, São Paulo-SP, Brazil

C. Molinax

Escola de Artes, Ciências e Humanidades, Universidade de São Paulo Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP, Brazil
(Received 7 December 2009; published 2 March 2010)

We consider black p-brane solutions of the low-energy string action, computing scalar perturbations.

Using standard methods, we derive the wave equations obeyed by the perturbations and treat them

analytically and numerically. We have found that tensorial perturbations obtained via a gauge-invariant

formalism leads to the same results as scalar perturbations. No instability has been found. Asymptotically,

these solutions typically reduce to a AdSðpþ2Þ � Sð8�pÞ space which, in the framework of Maldacena’s

conjecture, can be regarded as a gravitational dual to a conformal field theory defined in a (pþ 1)-

dimensional flat space-time. The results presented open the possibility of a better understanding the AdS/

CFT correspondence, as originally formulated in terms of the relation among brane structures and gauge

theories.
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I. INTRODUCTION

String theory and the subsequent idea of branes have
been, in recent years, the almost standard theory describing
the physics of quantum space-time, especially near the big
bang or even before it [1]. The discovery of the relation
between anti–de Sitter (AdS) space physics and conformal
field theories (CFT) on the boundary of that space, the so-
called AdS/CFT correspondence [2,3] implied further in-
terest in the structure of the string-membrane theory.

The p-brane extended solutions are considered funda-
mental in the understanding of the nonperturbative string
theory regime. They interpolate AdSpþ2 � Sd�p�2 and

d-dimensional Minkowski space-time [4]. This connection
was important for the conjecture presented by Maldacena
in 1997 [2], which opened the way for the gravitation-field
theory dualities. In this context, a better understanding of
the perturbative dynamics of the p-brane solutions are
relevant for the structural aspects of the AdS/CFT corre-
spondence and its latter extensions. Such extensions can
provide new hints about Yang-Mills theory with special
interest in what concerns the difficult question of a quark
gluon plasma; see for instance [5–7]. Besides, in the frame-
work of AdS/CFT correspondence it is possible to study

the glueball mass spectrum analyzing the dynamics of a
scalar field in the near horizon limit of the black p-brane
solutions [8–10]. The poles of the retarded function of the
simplest glueball state, generated by the operator O ¼
TrðF2Þ, are the quasinormal modes of the dual AdS black
hole in the corresponding near horizon limit.
A fundamental feature of the p-brane backgrounds is the

possible existence of event horizons. In this sense, they
may be viewed as generalizations of the usual four-
dimensional black holes. Perturbations of black hole solu-
tions are well known [11,12] and several numerical meth-
ods exist, being under full control to handle the
information gathered from such perturbations [13–15].
We intend here to first define a perturbation of a p-brane

solution using standard separation of variables and subse-
quently treat, analytically and numerically, the wave equa-
tion for the scalar perturbation. The employed methods are
largely independent, aiming to a cross-check of the results.
We also consider gauge-invariant gravitational perturba-
tions. The results turn out to be exactly the same as scalar
case.
One very recent work complements our analysis pre-

sented here [16]. But although the presented work and [16]
are complementary and relevant in terms of the AdS/CFT
correspondence, they treat different geometries and focus
on different issues. The results presented in this paper
address directly the role of the brane structure (in the sense
presented in [2,4]) on the gravitation-field theory duality,
specifically searching for possible instabilities.
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The paper is organized as follows. Section II provides
reviews of p-brane background considered in this work. In
Sec. III, the perturbative dynamics is formulated and de-
veloped, followed by Secs. IVand V where the nonextreme
and extremal scenarios are specifically treated. In Sec. VI
some final comments are presented.

II. p-BRANE SOLUTIONS

Solutions of ten dimensional supergravity describing the
so-called p-branes are well known. Let us consider the
bosonic sector of type II supergravity in ten dimensions,
given by [3,17]

S ¼ 1

ð2�Þ7ðlsÞ8
Z

dx10
ffiffiffiffiffiffiffi�g

p �
e�2�ðRþ 4ðr�Þ2Þ

� 2

ð8� pÞ!F
2
pþ2

�
; (1)

where ls is the string length, g the determinant of the metric
tensor gab, R the Ricci scalar,� the dilaton field, and Fpþ2

the field strength of the potential Apþ1.

The solution of Einstein’s equations with N electric
charges and p dimensions is obtained from the ansatz [17]

ds2 ¼ ds210�p þ e�
Xp
i¼1

dyidyi; (2)

where ds210�p is the line element with Lorentzian signature

in (10� p) dimensions, � is a function of x, that is the
bulk’s radial coordinate, and the meaning of N as a charge
arises from the Gauss law. We can write a full solution as

ds2 ¼ �AðxÞdt2 þ BðxÞ½dr2 þ r2d�2
p�1� þ CðxÞdx2

þ x2DðxÞd�2
8�p; (3)

where AðxÞ ¼ ð1� ða=xÞ7�pÞð1� ðb=xÞ7�pÞ�1=2, CðxÞ ¼
ð1� ðb=xÞ7�pÞ�1ð1� ða=xÞ7�pÞ�1, BðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðb=xÞ7�p

p
, DðxÞ ¼ ð1� ðb=xÞ7�pÞ�2 , with �1 ¼

� 1
2 � ð5�pÞ

ð7�pÞ and �2 ¼ 1
2 � ð5�pÞ

ð7�pÞ . The mass per unit volume

is M ¼ 1
ð7�pÞ�1

½ð8� pÞa7�p � b7�p�, the electric charge

N ¼ 1
�2
½ab�ð7�pÞ=2, �1 ¼ ð2�Þ7dpl8p, �2 ¼ dpgsl

7�p
s , and

gs is the string coupling, lp the Planck length in ten

dimensions, and dp ¼ 25�p�ð5�pÞ=2�ðð7� pÞ=2Þ.
Absence of naked singularities implies

M � N

ð2�Þpgslpþ1
s

: (4)

Considering the nonextreme scenario, the maximal ex-
tension of the metric describes a black brane geometry,
with an event horizon located at x ¼ a. If p � 3, a curva-
ture singularity is present at x ¼ b, while if p ¼ 3 we
observe that, in addition to the outer horizon at x ¼ a,
there is also an inner horizon at x ¼ b, with the singularity
at x ¼ 0. That behavior is observed in the Kretschmann

scalar KpðxÞ ¼ RabcdR
abcd, where Rabcd are the compo-

nents of the Riemann tensor, as seen in the expression for
the divergent term

K pðxÞ � 1

ð1� ðbxÞ7�pÞ�ðpÞx2ð9�pÞ ; (5)

where �ðpÞ ¼ 1
7�p ½ð1þ pÞ þ 2ð5� pÞ� if p is even,

and �ðpÞ ¼ 30p
40 ðp� 1Þðp� 3Þ � p

6 ðp� 1Þðp� 5Þ þ
8p
35 ðp� 3Þðp� 5Þ if p is odd.

For extremal p-branes the metric reads

ds2 ¼ EðxÞ½�dt2 þ dr2 þ r2d�2
p�1� þ FðxÞdx2

þ x2GðxÞd�2
8�p; (6)

where EðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða=xÞ7�p

p
, FðxÞ ¼ ð1� ða=xÞ7�pÞ�1 ,

GðxÞ ¼ ð1� ða=xÞ7�pÞ�2 , �1 ¼ �1 � 1.
In the extreme case, the curvature singularity is located

at r ¼ a and the metric does not have an extension if p �
3. We have a curvature singularity, but its structure depends
on the value of p. If p ¼ 6 the singularity is timelike, and
the proper definition of a Cauchy problem is delicate. On
the other hand, if p ¼ 0; 1; 2; 5, the singularity (r ¼ a) is
null [3], and therefore much milder. In spite of the absence
of an event horizon, the manifold is globally hyperbolic,
and the wave problem is well-posed. For the extreme case
and p ¼ 3, there is an analytic continuation of the metric
beyond r ¼ a and we have again a black hole solution as
pointed out in [3].

III. SCALAR AND GRAVITATIONAL
PERTURBATIVE DYNAMICS

We initially consider a massless scalar field in the back-
ground of our 10-dimensional solution. Wewill show in the
following that this scenario is more general. This perturba-
tion is described by the Klein-Gordon equation

�10� � ½�pðr; �ðp�1ÞÞ þ �10�pðt; x; �ð8�pÞÞ�� ¼ 0; (7)

where the first term refers to the subspace dr2 þ r2d�2
p�1

and the second to the bulk coordinates ðt; x; �ð8�pÞÞ. We

denote the angular coordinates in d�2
p�1 and d�2

8�p re-

spectively by �ðp�1Þ and �8�p.

Such equation can be separated by the ansatz �ðxAÞ ¼P
l;mRlðrÞYlmð�iÞPL;q�Lðt; xÞYLqð�jÞ, where Ylmð�iÞ and

YLqð�jÞ are the well-known spherical harmonics in (p�
1) and (8� p) dimensions respectively [18], resulting in
the differential equations

1

rðp�1Þ
d

dr

�
rðp�1Þ dRl

dr

�
þ

�
	2 � lðlþ p� 2Þ

r2

�
Rl ¼ 0;

(8)

� @2�L

@t2
þ 1

AðxÞ�x�L þ uðxÞ�L ¼ 0; (9)
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where uðxÞ ¼ � AðxÞ
BðxÞ ½	2 þ BðxÞ

x2DðxÞLðLþ 7� pÞ�. More-

over, 	 is a constant arising from the brane fr; �ðp�1Þg
and bulk ft; x; �ð8�pÞg variables separation. The differential
operator �x is given by

�x ¼
@
@x ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞBðxÞCðxÞDð8�pÞ

q
x8�p @

@xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞBðxÞCðxÞDð8�pÞ

q
x8�p

: (10)

The solution of Eq. (8) is RlðrÞ ¼
A1r

1�p=2J�ð	rÞ þ A2r
1�p=2Y�ð	rÞ, with � ¼ 1

2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4pþ 4þ 4lðlþ p� 2Þp

, A1 and A2 being con-
stants, J�ð	rÞ and Y�ð	rÞ the Bessel functions.

Finiteness at origin implies A2 ¼ 0 and RlðrÞ ¼
A1r

1�p=2J�ð	rÞ. Therefore, 	 has a continuous spectrum

of allowed values, and we notice in (9) that its square acts
as a mass for the Klein-Gordon field. Performing the same
analysis for a time-independent scalar field in the near
horizon limit of the metric (3), the 	2 parameter can be
interpreted as the glueball mass.

A ‘‘time-independent approach’’ can be explored ex-
panding the function �Lðt; xÞ with a Laplace-like trans-
form [19]. Within this approach, we obtain the equation

d2

dr2�
ZL þ ½k2 � VðxÞ�ZL ¼ 0; (11)

where we defined the tortoise coordinate as dr�=dx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðxÞ=AðxÞp

, �Lðt; xÞ ¼
R
ei!tbðxÞZLðxÞd! with bðxÞ ¼

1
xð8�pÞ=2BðxÞp=4DðxÞð8�pÞ=4 , k

2 ¼ !2 � 	2 and the effective po-

tential is given by the expression

VðxÞ ¼
�
AðxÞ
BðxÞ � 1

�
	2 þ AðxÞ

x2DðxÞLðLþ 7� pÞ

� 1

bðxÞ ½hðxÞbðxÞ
00 � gðxÞbðxÞ0�; (12)

where the primes denotes differentiation with respect to x,

hðxÞ ¼ AðxÞ=CðxÞ, and gðxÞ ¼ AðxÞ
CðxÞ

d
dx fln½AðxÞBðxÞðDðxÞxÞ8�p

CðxÞ �g.
We can also consider the problem of the linear pertur-

bations using the gauge-invariant formalism proposed by
Ishibashi et al. [12]. In this formalism we expand the
gravitational perturbations in terms of tensor harmonics
�ij, and perturbations of Einstein equations are expressed

as a group of equations for gauge-invariant quantities. Such
quantities are grouped in three types: tensor, vector, and
scalar. For the sake of simplicity, we only consider in the
following the tensor sector of gravitational perturbations.
The space-time is considered as describing an mþ
n-dimensional manifold M, which is locally written as
the warped product g�	dz

�dz	 ¼ gabðyÞdyadyb þ
fðyÞ�ijdx

idxj, where �ijðyÞ is the metric of an

n-dimensional maximally symmetric space of constant

spatial curvature, and gabðyÞ the metric of an arbitrary
m-dimensional space-time.
Following Ref. [12] the following equation for the

gauge-invariant quantity HT can be obtained:

hHT þ 8� p

f
Dr �DHT � lðlþ 7� pÞ

f2
HT ¼ 0; (13)

where h is the d’Alembert operator written on the metric
gabðyÞ. Introducing in the above equation the master vari-

able � ¼ fð8�pÞ=2HT we found the same result that we
have already obtained from the scalar Klein-Gordon
equation.
At this point it is appropriate to make the following

important observation: the spectrum of quasinormal fre-
quencies for the scalar field perturbations contains extra
modes with respect to the tensor perturbations, because the
modes for the last case only appear for multipole numbers
equal to or greater than 2. Thus, for the black p-brane, we
need only to consider a test scalar field perturbation.
Extracting the l � 2 terms for the obtained spectrum of
scalar quasinormal frequencies, we obtain the spectrum for
the tensor gravitational perturbations.

IV. NONEXTREME CASE

The effective potentials derived above determine the
perturbative dynamics. Of particular importance for this
dynamics are the quasinormal modes. They are defined as
solutions of the wave equations which satisfy the in-going
and out-going boundary conditions. These modes are par-
ticularly relevant in the intermediate time behavior of the
perturbation.
With arbitrary L, two different and independent numeri-

cal tools will be used in this work to calculate the quasi-
normal frequencies: a ‘‘frequency domain’’ approach
based on a sixth order WKB technique [20], and a ‘‘time
domain’’ method based on a numerical characteristic in-
tegration scheme [21–23]. Both algorithms are well
established.
The WKB expressions are usually accurate and straight-

forward. But the approach is not generally applicable. For
instance, in Fig. 1 the effective potential is presented for a
few values of 	 with p ¼ 3; 6. We observe that the maxi-
mum of the effective potential decreases as 	 increases for
a given p. For a sufficiently large value of 	 the potential
becomes negative. This behavior appears explicitly for
p ¼ 6 with 	 ¼ 1. Therefore, we cannot obtain the qua-
sinormal frequencies for all values of p and 	 using the
WKB formula. The instability for effective potentials that
exhibit a negative gap is not excluded [24,25]. Direct time
integration can be used for such scenarios. We have found
no instabilities after an extensive exploration with 	2 � 0.
Within the ‘‘time-domain’’ approach, we have observed

the usual picture in the perturbative dynamics. After the
initial transient regime, the quasinormal mode phase fol-
lows as well as a late-time tail. The tail phase is strongly
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dependent on the value of the parameter 	. For 	 ¼ 0, we
have a nonoscillatory power-law decay. But if 	 � 0, the
tail is oscillatory, with a power-law envelope. Typical
profiles are shown in Fig. 2.

Given the potential, we use the sixth order WKB tech-
nique [20] to obtain the quasinormal frequencies k. From
the numerical data ZLðt; xfixedÞ, it is possible to estimate the
fundamental quasinormal frequency with reasonable accu-
racy. Some results from both methods are given in Tables I,
II, and III for 	 ¼ 0. The concord between them is good.
However, notice that for p ¼ 6 and L ¼ 0, our result
should be taken with reservation. Higher overtones are

not accessible by the ‘‘time-domain’’ technique. The cor-
responding WKB results are presented in Table III.

The dependence of the frequencies ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 	2

p
on 	

was also investigated. Both WKB and direct integration
methods were employed, although the time evolution ap-
proach is not applicable for large	, since in this regime the
massive tail dominates from a very early time. Never-
theless, it should be reliable for small 	. Generally, we
observed that for large values of the mass parameter, as 	
increases the frequencies becomes more oscillatory and
less damped. One intriguing point was seen in a specific
choice of parameters, namely a ¼ 2, b ¼ 0:5, L ¼ 0, and
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FIG. 2. Log-log graph of the absolute value of ZLðt; xfixedÞ. The quasinormal and tail phases are indicated. The p-brane parameters
are p ¼ 0, a ¼ 2, b ¼ 0:5, L ¼ 1 and 	 ¼ 0 (top), 	 ¼ 1 (bottom).
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FIG. 1 (color online). Effective potential for several values of 	. The p-brane parameters are a ¼ 2, b ¼ 1, L ¼ 1; and p ¼ 3 (left),
p ¼ 6 (right).
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p ¼ 2. In this case, the WKB and time evolution methods
give discrepant results near 	 ¼ 1, as shown in Fig. 3.

It is worth noticing that the frequency k shows an almost
scaling behavior on functions of a�1, as shown in Fig. 4.
That happens for the imaginary as well as for the real parts
of k except for very small values of a. We found a different
behavior just in the case L ¼ 2, n ¼ 2, for the values of
a < 2 near the extremal case a ¼ b. No instability has
been found. For higher dimensions the real and imaginary
parts of the frequency decrease. An exception is the case
L ¼ 2, n ¼ 2: the real part of the frequency increases in
the range 0 	 p 	 3 and decreases for the others values of
p, but the imaginary part decreases when p increases as for
all others values of L and n that we considered in this work.
We have found that, for a given value of L increasing the
overtone number n, the frequencies become more damped,
as we expected.

Although in general the calculation of the quasinormal
frequencies can only be made using numerical methods, in
the present scenario there is an important limit where an
analytic expression is available. Expanding the effective
potential in terms of small values of 1=L and using the
WKB method in the lowest order (which is exact in this

TABLE II. Fundamental quasinormal frequencies with a ¼ 2
and b ¼ 0:5 for p ¼ 4; 5; 6.

p ¼ 4
WKB Time evolution

L ReðkÞ �ImðkÞ ReðkÞ �ImðkÞ
0 0.4632 0.2514 0.4449 (4.0) 0.2555 (1.6)

1 0.7211 0.2607 0.7244 (0.46) 0.2438 (6.4)

2 1.0081 0.2512 1.008 (0.012) 0.2509 (0.13)

p ¼ 5
WKB Time evolution

L ReðkÞ �ImðkÞ ReðkÞ �ImðkÞ
0 0.2825 0.1828 0.2697 (4.5) 0.1990 (8.8)

1 0.5179 0.1843 0.5187 (0.16) 0.1828 (0.83)

2 0.7690 0.1804 0.7691 (0.010) 0.1802 (0.082)

p ¼ 6
WKB Time evolution

L ReðkÞ �ImðkÞ ReðkÞ �ImðkÞ
0 0.3135 0.05970 0.1485 (52.6) 0.1290 (116.1)

1 0.3608 0.1154 0.3616 (0.22) 0.1150 (0.34)

2 0.5890 0.1135 0.5889 (0.021) 0.1134 (0.042)

TABLE I. Fundamental quasinormal frequencies with a ¼ 2
and b ¼ 0:5 for p ¼ 0; 1; 2; 3.

p ¼ 0
WKB Time evolution

L ReðkÞ �ImðkÞ ReðkÞ �ImðkÞ
0 1.2889 0.5506 1.250 (3.0) 0.4980 (9.6)

1 1.5047 0.5876 1.606 (6.7) 0.4867 (17.2)

2 1.9638 0.4812 1.962 (0.092) 0.4805 (0.15)

p ¼ 1
WKB Time evolution

L ReðkÞ �ImðkÞ ReðkÞ �ImðkÞ
0 1.0812 0.4670 1.042 (3.6) 0.4498 (3.7)

1 1.3245 0.4963 1.604 (21.1) 0.463 (6.7)

2 1.7264 0.4301 1.725 (0.079) 0.4295 (0.13)

p ¼ 2
WKB Time evolution

L ReðkÞ �ImðkÞ ReðkÞ �ImðkÞ
0 0.8714 0.3911 0.8346 (4.2) 0.3926 (0.38)

1 1.1311 0.4137 1.161 (2.64) 0.3803 (8.1)

2 1.488 0.3754 1.488 (0.013) 0.3749 (0.13)

p ¼ 3
WKB Time evolution

L ReðkÞ �ImðkÞ ReðkÞ �ImðkÞ
0 0.6633 0.3202 0.6376 (3.9) 0.3279 (2.4)

1 0.9284 0.3363 0.9413 (1.4) 0.3204 (4.7)

2 1.2489 0.3162 1.249 (0.0056) 0.3157 (0.14)

TABLE III. High overtone quasinormal frequencies with a ¼
2 and b ¼ 0:5.

p ¼ 0 p ¼ 1
L n ReðkÞ �ImðkÞ ReðkÞ �ImðkÞ
1 1 0.985 828 1.799 11 0.892 835 1.582 05

2 1 1.470 92 1.617 06 1.3581 1.390 48

2 2 0.408 755 2.806 27 0.538 849 2.555 82

p ¼ 2 p ¼ 3
L n ReðkÞ �ImðkÞ ReðkÞ �ImðkÞ
1 1 0.798 307 1.340 85 0.693 083 1.092 24

2 1 1.222 35 1.188 43 1.0673 0.990 437

2 2 0.638 727 2.209 14 0.690 423 1.820 98

p ¼ 4 p ¼ 5
L n ReðkÞ �ImðkÞ ReðkÞ �ImðkÞ
1 1 0.572 698 0.841 449 0.439 874 0.587 662

2 1 0.895 481 0.781 983 0.710 916 0.557 03

2 2 0.681 196 1.409 16 0.609 848 0.980 543

p ¼ 6
L n ReðkÞ �ImðkÞ
1 1 0.325 148 0.365 934

2 1 0.568 875 0.345 275

2 2 0.537 292 0.587 244
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limit), we obtain

!2 ¼ L2�ðxmÞ � i

�
nþ 1

2

�
L�ðxmÞ; (14)

where �ðxÞ ¼ AðxÞ
x2DðxÞ , �ðxÞ ¼ � 2AðxÞ

CðxÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðxÞ0
2 ½lnðAðxÞ=CðxÞÞ�0 þ �00

q
. The peak of effective poten-

tial is determined by VðxÞ0, and occurs at xm ¼
½�2c1=ðc2 þ ðc22 � 8c1Þ1=2Þ�1=ð7�pÞ, with c1 ¼ ð7� pÞ�
ðabÞ7�p and c2 ¼ �ð9� pÞa7�p.
Far from the horizon the effective potential (with 	 ¼

0), in terms of r?, assumes the form

Vðr?Þ ¼

8>>><
>>>:

ðLþ 8�p
2 ÞðLþ 6�p

2 Þ 1
r2?
þOð 1

r8�p
?

Þ if 0 	 p < 6

LðLþ 1Þ½ 1
r3?
þ ð2a� bÞ lnr?

r4?
� þOðlnr?

r5?
Þ if p ¼ 6 and L ¼ 0

LðLþ 1Þ½ 1
r2?
þ ð2a� bÞ lnr?

r3?
� þOðlnr?

r4?
Þ if p ¼ 6 and L > 0:

(15)
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FIG. 3. Effect of 	 on the behavior of ! for p ¼ 2 with a ¼ 2, b ¼ 1, and L ¼ 0. Two different numerical methods were employed.
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With this effective potential, it is shown [26,27] that initial
data with compact support evolves, at late time, according
to

�L � t��ðp;LÞ: (16)

Therefore, at asymptotically late times the massless per-
turbation decays as a power-law tail.

The power-law coefficient �ðp; LÞ reflects the potential
asymptotic behavior. For p ¼ 1; 3; 5; 6, �ðp; LÞ can be
analytically determined using the results in [27]:

�ðp; LÞ ¼
�
2L� pþ 8 with p ¼ 1; 3; 5
2Lþ 3 with p ¼ 6:

(17)

For p ¼ 0; 2; 4, our numerical results suggest a similar
expression

�ðp; LÞ ¼ 2L� pþ 10 with p ¼ 0; 2; 4: (18)

The tails are confirmed by the time-dependent approach.
We illustrate these results in Fig. 5.
In the massive case, the asymptotic form of the effective

potential changes. For large r? we have

Vðr?Þ ¼

8>>>>>><
>>>>>>:

	2 þ ðLþ 8�p
2 ÞðLþ 6�p

2 Þ 1
r2?
þOð 1

r8�p
?

Þ if 0 	 p < 5

	2 þ ½	2 þ L2 þ 2Lþ 3
4� 1

r2?
þOð 1

r3?
Þ if p ¼ 5

	2ð1þ b�a
r?

Þ þOð 1
r3?
Þ if p ¼ 6 and L ¼ 0

	2ð1þ b�a
r?

Þ þ ½	2bðb� aÞ þ LðLþ 1Þ� 1
r2?
þOðlnr?

r3?
Þ if p ¼ 6 and L > 0
:

(19)

We have observed from the numerical simulations that the
late-time tail has the form

�L � sinð	tÞt��ðp;LÞ: (20)

If p ¼ 6, the results in [28–30] apply, and the coefficient in
the power-law envelope can be determined analytically:

�ðp ¼ 6; LÞ ¼ 5=6. This result is illustrated in Fig. 5. For
other values of p the analytical problem remains open.

V. EXTREME CASE

The analysis of the extreme case geometry is more
subtle. If p ¼ 3, we have a black-hole solution and the
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problem is clearly formulated. If p ¼ 6, we have a naked
timelike singularity and the Cauchy problem is not well-
posed (without additional conditions at the singularity).
This class of solution will not be treated in the present
work.

The novelty is the geometry with a null singularity. As
discussed before, we have a well-posed initial value prob-
lem. We propose here to define the quasinormal modes in
the same way they were defined in the black-hole scenario.
This definition will be justified considering the wave prob-
lem in the following.

The effective potential for the scalar field perturbation in
the extreme case scenario is obtained by taking a ¼ b in

(12). This potential looks similar to the nonextreme case
analog, and in terms of the tortoise coordinate, it tends to
zero as r? ! �1 and r? ! 1, which implies that the
effective one-dimensional wave problem is similar to the
previous nonextreme case. A bounded perturbation will
therefore decay in time, which justifies the quasinormal
mode definition adopted. As a side remark, we observe that
for p ¼ 6 the potential diverges near the horizon, a con-
sequence of the timelike nature of the singularity at r ¼ a.
We have computed the quasinormal frequencies for p < 5.
The results are shown in Table IV. We have sensible
differences, by factors of order three.
For L ¼ 2, from n ¼ 0 to n ¼ 1 we observe an increase

in the decay rate. We found that the imaginary part in-
creases, in the case p ¼ 0 from L ¼ 2, n ¼ 2 to n ¼ 1, in
contrast with the behavior found in the nonextreme case.
Otherwise, results are very similar to the nonextreme case.

VI. FINAL REMARKS

We studied the scalar perturbations of the full black
p-brane solutions of ten-dimensional type IIB supergrav-
ity. The near the horizon limit of extremal p-branes is an

AdSðpþ2Þ � Sð8�pÞ space-time, which is dual to a (pþ 1)-

dimensional conformal field theory at zero temperature. If
we have an event horizon, the near horizon limit is a
(pþ 2)-dimensional AdS black hole times a sphere

Sð8�pÞ, dual to a field theory at finite temperature in (pþ
1) dimensions. We obtained the same quasinormal spec-
trum using the standard procedure of considering a probe
scalar field in the background geometry with a gauge-
invariant formalism. The quasinormal mode structure in
such a complex problem is amazingly simple. Allowing for
a nonvanishing separation constant, later related to the
glueball mass, the result is also very simple, displaying
an almost scaling behavior. The tensor and scalar modes
are exactly the same, leading to a simplicity of the results
as well. Implications for the quark gluon plasma using the
AdS/CFT relation awaits further analysis.
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