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The clustering of matter on cosmological scales is an essential probe for studying the physical origin

and composition of our Universe. To date, most of the direct studies have focused on shear-shear weak

lensing correlations, but it is also possible to extract the dark matter clustering by combining galaxy-

clustering and galaxy-galaxy-lensing measurements. In order to extract the required information, one must

relate the observable galaxy distribution to the underlying dark matter distribution. In this study we

develop in detail a method that can constrain the dark matter correlation function from galaxy clustering

and galaxy-galaxy-lensing measurements, by focusing on the correlation coefficient between the galaxy

and matter overdensity fields. Our goal is to develop an estimator that maximally correlates the two. To

generate a mock galaxy catalogue for testing purposes, we use the halo occupation distribution approach

applied to a large ensemble of N-body simulations to model preexisting SDSS luminous red galaxy

sample observations. Using this mock catalogue, we show that a direct comparison between the excess

surface mass density measured by lensing and its corresponding galaxy clustering quantity is not optimal.

We develop a new statistic that suppresses the small-scale contributions to these observations and show

that this new statistic leads to a cross-correlation coefficient that is within a few percent of unity down to

5h�1 Mpc. Furthermore, the residual incoherence between the galaxy and matter fields can be explained

using a theoretical model for scale-dependent galaxy bias, giving us a final estimator that is unbiased to

within 1%, so that we can reconstruct the dark matter clustering power spectrum at this accuracy up to

k� 1h Mpc�1. We also perform a comprehensive study of other physical effects that can affect the

analysis, such as redshift space distortions and differences in radial windows between galaxy clustering

and weak lensing observations. We apply the method to a range of cosmological models and explicitly

show the viability of our new statistic to distinguish between cosmological models.

DOI: 10.1103/PhysRevD.81.063531 PACS numbers: 98.80.�k

I. INTRODUCTION

The current paradigm for the history of our Universe,
also known as the �CDM cosmology, comes along with
dark ingredients that have not yet been directly detected:
cold dark matter (hereafter CDM) and dark energy [1].
CDM particles constitute about 20% of the total energy
budget of the Universe, and while there is no confirmed
direct detection of them in a laboratory experiment, the
indirect astrophysical evidence supporting their existence
is substantial. However, even more puzzling is the exis-
tence and true physical nature of dark energy, which con-
tributes roughly 75% of the total energy budget of the
Universe and is responsible for driving the late-time accel-
erated expansion of spacetime.

The dark matter power spectrum and its real space
equivalent, the correlation function, contain a wealth of
cosmological information, e.g. on neutrino mass, dark
energy equation of state, and the initial conditions of the

Universe. Thus, it is a key goal of cosmology to infer these
quantities from observables. However, to achieve this re-
quires a solid understanding of the galaxy bias—the rela-
tion between the observable galaxies and the underlying
dark matter density field. This understanding is especially
important for the interpretation of ongoing and upcoming
surveys, such as SDSS [2], DES [3], Pan-STARRS [4], and
EUCLID [5].
The reconstruction of the CDM distribution is usually

based on the assumption, that galaxies trace the matter
density field, i.e. that on large scales the galaxy density
field equals the matter density field times a parameter
known as the bias. The resulting galaxy correlation func-
tion can then be expressed as

�ggðrÞ ¼ b2�mmðrÞ; (1)

and similarly for the power spectrum in k space. The
subtlety in the standard approach is that the bias has to
be determined empirically, leading to uncertainties in the
amplitude of the matter correlation, which finally compli-
cates studies of the rate of change of matter fluctuations*baldauf@physik.uzh.ch
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with time (the growth factor). Furthermore, there is evi-
dence for a nontrivial scale dependence of galaxy bias [6–
8]. Hence, it is of great importance to devise methods that
allow a direct reconstruction of the dark matter correlation
function from observables. One of the most promising
observational probes of dark matter on cosmological scales
is the gravitational lensing.

We will focus our attention on a specific weak lensing
technique, halo-galaxy lensing, which involves measure-
ment of the shape distortions around foreground dark
matter haloes in which galaxies form. Often the foreground
object (lens) will be an individual galaxy, in which case
this technique is called galaxy-galaxy lensing, but it can
also be applied to groups and clusters. Since the first
attempts to detect galaxy-galaxy lensing by [9], the quality
of the data has been improved vastly by deeper and wider
surveys. Halo-galaxy lensing has now been measured with
relatively high signal to noise and as a function of a wide
variety of properties of the lens galaxies, groups, and
clusters [10–13]. It has become clear in these studies that
galaxy-galaxy lensing contains much information about
the mass distribution around galaxies, and has the potential
to measure dark matter halo radii, shapes, concentrations,
and masses [14–17] as well as the distribution of matter
within the Universe [18–22].

The interpretation of the signal in terms of the link
between galaxies and dark matter is, however, complicated
by the fact that (except for galaxy clusters) galaxy-galaxy
lensing is only detectable by stacking the signal frommany
lenses. Theoretical modeling of the galaxy-galaxy lensing
has been done both with numerical simulations [23,24] and
with the halo model [25,26]. The combination of lensing
and clustering seems to hold the potential to put constraints
on cosmological parameters [27,28].

In this paper our main objective is to develop a method
that recovers a statistic closely related to the matter corre-
lation function from a joint analysis of lensing and cluster-
ing observations. This method is presented together with a
theoretical motivation and tests on simulated galaxy
samples.

The starting point for these simulated galaxy samples
are cosmologicalN-body simulations, which are a standard
tool to investigate the nonlinear evolution of the CDM
density field. Despite their statistical power for describing
the large-scale structure of the Universe, pure dark matter
simulations have the disadvantage that one must supple-
ment them with a prescription for galaxy formation in
order to reproduce the surveyed galaxy distributions. We
work in the standard paradigm of hierarchical galaxy for-
mation: galaxies only form in dark matter haloes [29].
Hence, the problem is reduced to that of relating galaxies
to dark matter haloes, and we do this using the halo model
approach and, in particular, the halo occupation distribu-
tion [HOD] (for a review see [30]). Here, we are focused on
obtaining mock galaxy catalogues for the luminous red

galaxies (LRGs), a subset of galaxies observed with the
Sloan Digital Sky Survey (SDSS). Our modeling builds on
earlier approaches by [31,32].
The paper breaks down as follows: in Sec. II ,we review

the basics of weak gravitational lensing, an important
probe of the dark matter on cosmological scales. Then in
in Sec. III, we introduce our main analysis tool, the cross-
correlation coefficient. Theoretical modeling of the latter is
carried out in Sec. IV. In Sec. V, we describe the simula-
tions and the mock galaxy catalogues that we use to test our
new method. The results of the numerical studies on the
cross-correlation coefficient and the reconstructed matter
statistic are discussed in Sec. VI. The effect of redshift
space distortions and radial window functions on the ob-
servational implementation of our method are explored in
Sec. VII. Section VIII is devoted to the cosmology depen-
dence of our results. Finally, in Sec. IX we will summarize
and discuss our findings.

II. OBSERVABLES

A. Halo-galaxy lensing

Weak gravitational lensing is one of the main probes for
the dark matter distribution in the Universe (see [33–35]
for reviews). In this study we focus on a specific weak
lensing technique known as halo-galaxy or galaxy-galaxy
lensing. In this technique, one infers the tangential shear �t

around foreground objects from the deformation of back-
ground galaxy images. Since the shear is weak, one must
average over a large number of background galaxies to
obtain good signal to noise. The estimated �t can then be
related to the projected mass distribution around the fore-
ground lens galaxies. The key quantity is the differential
excess surface mass density [35,36],

��gmðRÞ ¼ ��gmðRÞ � �gmðRÞ ¼ �crith�tðR;’Þi’; (2)

where �gm is the projected surface mass density, R � �Dl

is the comoving transverse distance between lens and
source galaxies with angular separation �, and subscripts
g and m refer to galaxies and mass, respectively [37]. In the
above equation we also introduced the comoving angular
diameter distance to the lens galaxy Dl and the mean
surface mass density within a circular aperture,

�� gmðRÞ ¼ 2

R2

Z R

0
�gmðR0ÞR0dR0: (3)

The critical surface mass density

�crit ¼ c2

4�G

Ds

DlsDl

(4)

is a geometrical factor with Ds, Dl, Dls being the angular
diameter distances to the source, the lens and between lens
and source, respectively. Galaxy-galaxy lensing stacks the
signal of large numbers of foreground and background
galaxies and thus �crit has to be understood as an effective
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quantity for the lens and source distribution. It is sensitive
to the cosmological model, including the matter density
parameter �m.

Since the deflections are measured around foreground
galaxies, the mass profile is directly related to the galaxy-
matter cross-correlation function

�gmðRÞ ¼ �m�crit

Z þ1

�1
glð�Þ½1þ �gmð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ �2

q
Þ�d�;

(5)

with integration along the line of sight �. The critical
density is defined as �critðaÞ ¼ 3H2ðaÞ=8�G, where
HðaÞ � _a=a is the Hubble parameter. Here, we include
the radial window function glð�Þ (see, e.g. [25]) that de-
scribes the dependence of lensing strength on the distribu-
tion of the lens mass and depends on the lens and source
positions. Note that the additional constant 1 in the inte-
grand drops out on computing ��gmðRÞ with Eq. (2).

In principle, the excess surface mass density ��ðRÞ
could be integrated to yield the projected galaxy matter
correlation functionwðRÞ, which in turn can be deprojected
to �ðrÞ using an Abel formula. Lensing observations are,
however, subject to noise, that is amplified when recon-
structing the correlation function �gmðrÞ. Consequently, we
try to minimize the manipulations on the data, and rather
transform theoretical predictions accordingly.

B. Projected correlation functions

In addition to the mass distribution around galaxies one
may also observe the distribution of galaxies themselves. A
convenient way to quantify the clustering between the
tracer fields A and B is the projected correlation function
[38],

wABðRÞ ¼
Z þ1

�1
ggð�Þ�ABð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ R2

q
Þd�; (6)

where ggð�Þ is a window function and where for instance

we are interested in: AB ¼ fgg; gm;mmg. The line of sight
integration partially removes redshift space distortions,
which are an issue in the three-dimensional correlation
function �ðrÞ (see Sec. VII for a discussion of the residual
effects). Based on the projected galaxy clustering wggðRÞ,
we now define two statistics that correspond more closely
to the lensing observable �t:

��ggðRÞ � �crit½ �wggðRÞ � wggðRÞ�; (7)

��mmðRÞ � �2
m�crit½ �wmmðRÞ � wmmðRÞ�: (8)

In these equations, we have multiplied by the critical
density in order to achieve the same dimensions as
��gm. The prefactor �2

m in the definition of ��mm ac-

counts for the fact that it is a two-point statistic of matter
density. Lensing is sensitive to the total density of matter
�m (which is proportional to�m), while for galaxy cluster-

ing we usually remove the dependence on the mean density
of galaxies and work only with the density contrasts �g ¼
ð�g � ��gÞ= ��g.

So far we have not specified the window functions for
the line of sight integrations in Eqs. (5) and (6), glð�Þ and
ggð�Þ. In galaxy-galaxy lensing the inhomogeneous mass

distribution between the observer and the source contrib-
utes to the final distortion. Consequently, the window for
lensing is typically very broad and is fixed by the geomet-
rical setup of the source-lens-observer system, i.e. the
radial distribution of the lens and source samples. For
galaxy clustering studies, when provided with accurate
redshifts, the window function can be constructed straight-
forwardly and we shall assume a narrow top hat around the
lens positions. We take the thickness of the top hat to be
�� � 100h�1 Mpc, which is a compromise between add-
ing uncorrelated noise and increasing the signal.
To simplify our investigations further we measure

f��ggðRÞ;��gmðRÞ;��mmðRÞg from our simulations

with top-hat window functions of the same length. The
estimates are obtained in real space and we quantify the
effects of window functions, integration lengths and red-
shift space distortions on the result separately in Sec. VII.
This approach enables us to disentangle the intrinsic prop-
erties of the mass and tracer fields and the systematic
effects induced by the measurement technique.
Note that since our main goal is to develop an algorithm

for reconstructing the mass clustering, we have also as-
sumed that the correlation function is estimated over a
region of space where the galaxy selection function does
not vary significantly; hence, one must be careful when
applying it to the galaxies close to the edge of the survey.

III. CROSS-CORRELATION COEFFICIENT

The cross-correlation coefficient between two density
fields A and B may be defined using the correlation func-
tion � as [39]

rð�Þcc;ABðrÞ ¼
�ABðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�AAðrÞ�BBðrÞ
p ; (9)

and is a measure of the statistical coherence of the two
fields [40–44]. If rcc ¼ 1 then the fields are fully correlated
and there exists a deterministic mapping between the
fields. This behavior would be expected for any scale-
dependent, deterministic, linear bias model of haloes or
galaxies: �gmðrÞ ¼ bðrÞ�mmðrÞ, �ggðrÞ ¼ b2ðrÞ�mmðrÞ. On
the other hand, if rcc � 1 then the fields are incoherent, and
for the local model of galaxy formation, this may arise due
to stochasticity and nonlinearity in the bias relation [42].
The rcc constructed from real-space statistics can be >1
(unlike in Fourier space), since �gg has the shot noise

subtracted off; this behavior will be seen in several places
in this work.
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Studying the cross-correlation coefficient rð�Þcc;hm of the

haloes in the numerical simulations used for this work we
find that the cross-correlation coefficient of haloes is close
to unity on large scales and decreases below unity on scales
below 10h�1 Mpc similarly for a large range of halo
masses 1:3�1013h�1M��M�3�1015h�1M� [45,46].

As was already mentioned, it is a key goal of cosmology
to recover the dark matter correlation function from the
observations. In this context it is important to quantify how
well galaxies trace the underlying dark matter density field,
which inspires us to examine the cross-correlation coeffi-
cient between the matter and galaxy fields. One approach is
to measure the excess surface mass density from galaxy-
galaxy lensing using Eq. (5). In this case, we define cross-
correlation coefficient by replacing the correlation func-
tions in Eq. (9) with the corresponding excess surface mass
densities,

rð��Þcc;gmðRÞ ¼ ��gmðRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ggðRÞ��mmðRÞ

q : (10)

Because of our definition of ��mm and ��gg the prefac-

tors�m cancel and the resulting statistic is only dependent

on the ratio of the correlation functions. Thus rð��Þcc;gmðRÞ is
expected to approach unity on linear scales.

The excess surface mass density ��ðRÞ measures the
difference between the surface mass density averaged over
an aperture of radius R and the actual value at the boundary
of the aperture. Consequently, it combines information
from small scales, which are highly nonlinear and stochas-
tic, and larger, linear scales, where stochasticity is believed
to be small. To remove part of the incoherence introduced
by the nonlinear clustering process we introduce a new
statistic �ðRÞ, that we call the annular differential surface
density (hereafter ADSD). This statistic eliminates the
contributions to ��ðRÞ from small scales as follows:

�ðR;R0Þ � ��ðRÞ � R2
0

R2
��ðR0Þ; (11)

¼ 2

R2

Z R

R0

dR0R0�ðR0Þ � 1

R2
½R2�ðRÞ � R2

0�ðR0Þ�: (12)

Setting the cutoff radius to R0 ¼ 0 the new statistic �
reduces to ��. Note that � is completely independent of
the correlation function on scales below R0. Our motiva-
tion in subtracting out small-scale contributions was to
recover a statistic that does not mix small and large scales.
Thus, we suggest the choice R0 � 2rvir, where rvir is the
average virial radius of the host haloes of the galaxy
sample under consideration. On scales below two virial
radii, the intrahalo nonlinear clustering dominates,
whereas the weakly nonlinear scales exceeding 2rvir can
be modeled by simulations and perturbation theory. We
suggest a conservative choice of R0 to avoid problems in
the transition region between small and large scales even if

the signal-to-noise ratio is slightly degraded. The virial
radii have to be inferred from a mass estimator such as
X-ray or gravitational lensing. The latter has the advantage
that the same observation can be used to infer the mass and
the ADSD statistic. In a companion paper [47] we show
that the ADSD, with a cutoff radius R0 � 0:25rvir, can also
be used to avoid statistical and systematical uncertainties
about the inner parts of the halo profiles and thus is a viable
tool to calculate cluster masses using an iterative
procedure.
One may calculate the cross-correlation coefficient of

the ADSD

rð�Þ
cc ðRÞ ¼ �gmðRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ggðRÞ�mmðRÞ
q : (13)

In Fig. 1, we plot both the excess surface mass density and
the ADSD � defined from the galaxy autocorrelation,
matter autocorrelation and their cross correlation. As gal-
axies we choose a model for LRGs, as discussed in more
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FIG. 1 (color online). Top panel: Excess surface mass density
��ðRÞ (solid) and ADSD �ðR;R0Þ (dashed) with R0 ¼
3h�1 Mpc for our fiducial cosmological model and the
luminosity-threshold LRG sample. We show the statistics for
the galaxy autocorrelation (top red), the galaxy-matter cross-
correlation (central green) and the matter autocorrelation (bot-
tom blue). The upturn of the cross-correlation towards small
scales leads to a cross-correlation coefficient in excess of unity
as we will see later. Bottom panel: Cross-correlation coefficient
of the clustering statistics shown in the top panel. The bare
excess surface mass density (solid) leads to strong deviations
from unity, whereas the ADSD with R0 ¼ 3h�1 Mpc (dashed)
recovers a cross correlation close to unity.
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detail in Sec. V. We observe that the galaxy-galaxy and
galaxy-matter excess surface mass densities are not multi-
ples of the matter correlation function on small scales, so
that we expect a cross correlation different from unity for
the bare statistic. This result is seen in the bottom panel of
Fig. 1, where the deviations from unity extend to scales
above 10h�1 Mpc. Subtracting the signal at R0 ¼
3h�1 Mpc as in Eq. (12) to get �, we remove these
nonlinearities and recover similar shapes for all three
functions. As a result, the cross-correlation coefficient is
now much closer to unity on all scales above R0, as seen in
the bottom of Fig. 1.

Both the projected correlation function and the ADSD
are defined by integrals of the correlation function
weighted by a kernel. The projected correlation function
can be written as

wðRÞ ¼
Z þ1

0
�ðxÞWwðx;RÞxd lnx; (14)

where the window function is written,

WwðxÞ ¼ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � R2

p �ðx� RÞ�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
max þ R2

q
� xÞ: (15)

Here, �ðxÞ is the Heaviside step function. Thus, wðRÞ has
contributions only from scales x 	 R, and the window
function is peaked at x ¼ R.

The ADSD defined in Eq. (12) involves a radial average
and subtraction of wðRÞ. Both operations can be included
in the integration kernel, and we may write the ADSD as

�ðR;R0Þ
�crit

¼
Z þ1

0
�ðxÞW�ðx;R; R0Þxd lnx; (16)

where the window function for �ðR; R0Þ is written

W�ðx;R; R0Þ ¼ 4x

R2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � R2

0

q
�ðx� R0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � R2

p
�ðx� RÞ� � 2x

R2

�
R2�ðx� RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � R2
p

� R2
0�ðx� R0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � R2

0

q
�
: (17)

The scale dependence of the integration kernels reveals the
scales in the correlation function that are dominating.
In Fig. 2 we show the window functionW�ðx;R; R0Þ for

three different radii and R0 ¼ 3h�1 Mpc. Since �ðxÞ ap-
proximately follows a decreasing power law, the leading
contribution is at the scale R, where the sign changes. This
sign change is due to the subtraction��AB ¼ �½ �wABðRÞ �
wABðRÞ� and is the same as for ��. For �� the window is
exactly compensated, meaning that it integrates to zero;
hence, �� is insensitive to adding a mean density compo-
nent, the so-called mass sheet degeneracy. This compensa-
tion is fortunate, since it means that this statistic is
insensitive to the long wavelength modes that can move
wðRÞ up and down, i.e. the long wavelength sampling
variance affects wðRÞ on all scales. The compensated
window also makes �� less sensitive to the redshift space
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FIG. 2 (color online). Left panel: Window functions for �ðR;R0Þ with R0 ¼ 3h�1 Mpc in real space. We show the window function
for R ¼ 5, 10, 20h�1 Mpc as green solid, orange dashed and red dash-dotted lines, respectively. Right panel: Window functions for
�ðR;R0Þ with R0 ¼ 3h�1 Mpc in k space. We show the products of window function and power spectrum for R ¼ 5, 10, 20h�1 Mpc
as green solid, orange dashed, and red dashed-dotted line, respectively. For reference we also plot the window for the correlation
function as thin lines. Note that we multiplied with x and k, respectively, to account for the logarithmic scale on the ordinate axis.
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distortions, as discussed in Sec. VII. The statistic �,
though not exactly compensated, retains most of these
beneficial properties, while at the same time eliminating
small-scale clustering information.

The scales probed by the statistic � are however more
obvious in the power spectrum. The conversion from
PðkÞ ! �ðR;R0Þ can be written as

�ðR;R0Þ ¼
Z

PðkÞkW�ðk;R; R0Þd lnk; (18)

where the window function is no longer given by a simple
analytical form due to the spherical Bessel functions oc-
curring in the Fourier transform. In Fig. 2, we show this
window function multiplied with the power spectrum.
From this plot we see that for a cutoff radius R0 ¼
3h�1 Mpc, � essentially probes scales down to k �
1h Mpc�1. The integrand in (18) is peaked at the scale k �
�=R, and is strongly oscillatory on small scales.

For later use we plot the window function for the corre-
lation function W�ðk; rÞ ¼ k2 sinkr=kr that relates PðkÞ
and �ðrÞ via �ðrÞ ¼ V=ð2�Þ3 R kPðkÞW�ðk; rÞd lnk.

IV. THEORETICAL MODELLING OF SCALE-
DEPENDENT BIAS

In this section we will use cosmological perturbation
theory (for a review see [48]) to predict the cross-
correlation coefficient. Our discussion is based on a
Taylor expansion of the galaxy density field in terms of
the matter overdensity �

�g ¼ �0 þ �0
0�þ 1

2�
00
0�

2 þ 1
6�

000
0 �

3 þ �þOð�4Þ: (19)

Such an expansion is only valid on scales exceeding the
virial radius of dark matter haloes, since it contains no
mechanism of halo exclusion or the radial distribution of
galaxies within their host halo. Absorbing potentially di-
vergent terms into the bias and shot noise parameters,
[7,49] showed that the auto- and cross-power spectrum of
a biased tracer field can be written up to fourth order in the
matter density field as

PgmðkÞ ¼ b1PNLðkÞ þ b2AðkÞ; (20)

PggðkÞ ¼ b21PNLðkÞ þ 2b1b2AðkÞ þ b22
2
BðkÞ þ N; (21)

where N is the renormalized shot noise, b1 and b2 are the
renormalized bias parameters and PNL is the nonlinear
power spectrum. The calculation of the latter can be carried
out with any perturbative technique, e.g. standard pertur-
bation theory [48], renormalized perturbation theory
[50,51] or Lagrangian perturbation theory. The advantage
of this renormalization of the bias parameters is that there
is no artificial smoothing scale involved in the above
expansion. However, this comes at a price: the bias and

shot noise are no longer given ab initio from theory, but
have to be determined empirically.
The correction terms AðkÞ and BðkÞ introduced in the

above equation are defined as

AðkÞ ¼
Z d3q

ð2�Þ3 PlinðqÞPlinðjk� qjÞF2ðq; k� qÞ; (22)

BðkÞ ¼
Z d3q

ð2�Þ3 PlinðjqjÞ½Plinðjk� qjÞ � PlinðqÞ�; (23)

where

F2ðk1; k2Þ ¼ 5

7
þ 1

2

k1 
 k2
k1k2

�
k1
k2

þ k2
k1

�
þ 2

7

�
k1 
 k2
k1k2

�
2

(24)

is the second order standard mode coupling kernel. In the
above integrals, one can use the linear power spectrum,
because the integrals are already fourth order in the matter
density field �.
Because of the linearity of the expressions in Eqs. (20)

and (21) the transformation to real space is straightforward

�gmðrÞ ¼ b1�NLðrÞ þ b2AðrÞ; (25)

�ggðrÞ ¼ b21�NLðrÞ þ 2b1b2AðrÞ þ b22
2
BðrÞ; (26)

with �mmðrÞ ¼ �ðrÞ, and AðrÞ, BðrÞ being the Fourier trans-
forms of AðkÞ, BðkÞ, respectively. It is easy to show that
BðrÞ ¼ �2 � 	2�DðrÞ, where 	 is the variance of the
power spectrum. Figure 3 shows the terms contributing to
the galaxy auto- and cross-correlation functions as well as
a fit to the correlation functions measured in our numerical
simulations. The AðrÞ term is positive on small scales and
changes sign at r � 6h�1 Mpc. The BðrÞ term affecting the
autocorrelation dominates over the matter correlation func-
tion on scales below r & 4h�1 Mpc.
Let us for later convenience define the parameter com-

bination


 � b2
b1

: (27)

As shown by [46] in the regime where AðrÞ � �ðrÞ and
BðrÞ � �ðrÞ the cross-correlation coefficient can be writ-
ten as

rð�Þcc ¼ �þ 
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�þ 2
Aþ 
2B=2Þp ; (28)

� 1� 1

4

2 B

�
� 
2 A

2

�2
� 1

4

3 AB

�2
; (29)

� 1� 1

4

2 BðrÞ

�ðrÞ ; (30)
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� 1� 1
4


2�ðrÞ: (31)

Obviously the model predicts a scale-dependent cross cor-
relation that is below unity on small scales and asymptoti-
cally approaches unity for increasing r. As shown in [46],
the shape of the cross-correlation coefficient of haloes
measured in the simulations is well described by the func-
tional form of the above equation, and the prefactor 
 is a
weak function of halo mass. Clearly, this simple theoretical
model is not able to cover the nonlinear behavior inside the
virial radius after shell crossing. Qualitatively similar pre-
dictions were presented by [52] for the peak model of [53].

Wewill now proceed to develop the results repeated here
for the readers’ convenience for use in our investigations.
A result similar to Eq. (31) remains valid if we consider the
projected correlation function, since the integration along
the line of sight is a linear operation. We therefore have

wðRÞ ¼
Z þ�max

��max

�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ �2

q
Þd�; (32)

wAðRÞ ¼
Z þ�max

��max

Að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ �2

q
Þd�; (33)

wBðRÞ ¼
Z þ�max

��max

Bð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ �2

q
Þd�: (34)

Furthermore, the manipulations that lead to the excess
surface mass density, or more generally to the ADSD
�ðrÞ ! ��ðRÞ ! �ðRÞ are linear in the fields A, B and
�. Consequently, the corresponding terms have the same
order as their underlying statistic, and we can write

rð�Þ
cc ðRÞ ¼ 1� 1

4

2 �BðRÞ

�mmðRÞ : (35)

Note that to evaluate the term �BðRÞ we only need to
replace �ðrÞ with �2ðrÞ in Eq. (16). The effective value of

 ¼ hb2i=hb1i for our galaxy catalogues can be estimated
using the mean bias parameters from the peak-background
split [54,55],

hbii ¼
R
nðMÞhNðMÞibiðMÞdMR

nðMÞhNðMÞidM i ¼ 1; 2; (36)

where nðMÞ is the halo mass-function and hNðMÞi is the
halo occupation number. For the rest of this work we will
adopt 
 ¼ 0:26, which is close to peak-background split
predictions [46]. An alternative approach, accounting for
the renormalized nature of the parameters, would be to fit
for the model parameters by matching theoretical and
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FIG. 3 (color online). Left panel: Nonlinear corrections to the real space correlation function as function of radial separation
calculated for redshift z ¼ 0:23. We show the linear (black dotted) and nonlinear matter correlation function (thick blue solid) as well
as the B (red dashed-dotted) and A (green solid and dashed) correction terms. The dashed portion of the graph of AðrÞ denotes the range
where it is negative. Right panel: Perturbation theory fit (dashed) over scales 6h�1 Mpc � r � 80h�1 Mpc to the measured galaxy-
correlation functions (solid) of the luminosity-threshold sample. The fits to �gg (upper green), �gm (central blue) and a joint fit provide

consistent results. We are not expecting a good agreement on scales below r � 3h�1 Mpc, where the correlation function is dominated
by nonlinear clustering. For reference, we also plot the matter correlation function �mm as the bottom solid red line.
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measured correlation functions as shown in the right panel
of Fig. 3. This second approach provides results that are
consistent with the peak-background-split result.

In Fig. 4, we plot the correction terms contributing to the
projected correlation function and the ADSD. The prereq-
uisite for the Taylor expansion to be applicable is that the
correction terms wA=wmm � 1 and wB=wmm � 1 or
�A=�mm � 1 and �B=�mm � 1. We see that these as-
sumptions are violated below R ¼ 3h�1 Mpc for the pro-
jected correlation function and below R ¼ 9h�1 Mpc for
the ADSD. For the nonlinear correlation function � we use
the matter correlation function measured in the
simulations.

V. NUMERICAL MODELING

With modern large supercomputers and well developed
algorithms it is now possible to model the evolution of the
dark matter density field on cosmological scales reason-
ably well. However, what one observes are not dark matter
haloes but galaxies. Supplementing the distribution of dark
matter in a simulation box with the galaxy distribution
corresponding to a particular galaxy sample would in
principle require an understanding of the process of galaxy
formation. An ab initio treatment of all the baryonic pro-
cesses is difficult, and requires, e.g. full treatment of the
hydrodynamics, atomic and radiative heating and cooling

of gas at high resolution. Owing to the large computational
cost, state of the art simulations are restricted to relatively
small scales and lack sufficient volume to extract statisti-
cally relevant information on cosmological scales [56].
Thus, we pursue a statistical approach to populate the
haloes identified in a suite of large-scale N-body simula-
tions with galaxies.

A. The simulations

Our numerical results are based on the Zürich horizon
‘‘ZHORIZON’’ simulations, a suite of 30 pure dissipationless
dark matter simulations of the�CDM cosmology in which
the matter density field is sampled by Np ¼ 7503 dark

matter particles. The box length of 1500h�1 Mpc, together
with the cosmological parameters given in Table I, then
implies a particle mass ofMdm ¼ 5:55� 1011h�1M�. This
simulation volume enables high precision studies of the
fluctuations in the �CDM model on scales up to a few
hundred comoving megaparsecs [57].
The simulations were carried out on the ZBOX2 and

ZBOX3 computer-clusters of the Institute for Theoretical

Physics at the University of Zurich using the publicly
available GADGET-II code [58]. The force softening length
of the simulations used for this work was set to 60h�1 kpc,
consequently limiting our considerations to larger scales.
The transfer function at redshift z ¼ 0was calculated using
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FIG. 4 (color online). Left panel: Perturbation terms for the projected surface mass density w. We show the nonlinear matter
correlation function (black dotted) as well as the wB (red dashed-dotted) and wA (green dashed and solid) terms. Note that the dashed
part of the latter curve is negative. Right panel: Perturbation terms for the ADSD and R0 ¼ 3h�1 Mpc. Again we show the nonlinear
matter statistic (black dotted) together with the �A (green dashed and solid) and �B (red dashed-dotted) terms. Note that the scale at
which the �B term becomes comparable to the nonlinear correlation is shifted further out to R � 9h�1 Mpc.
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the CMBFAST code of [59] and then rescaled to the initial
redshift zi ¼ 50 using the linear growth factor. For each
simulation, a realization of the power spectrum and the
corresponding gravitational potential were calculated.
Particles were then placed on a Cartesian grid of spacing
�x ¼ 2h�1 Mpc and displaced according to a second or-
der Lagrangian perturbation theory. The displacements and
initial conditions were computed with the 2LPT code of
[60,61].

The cosmological parameters for the simulations were
inspired by the best fit values released by the WMAP3
analysis of the cosmic microwave background [62,63], and
can be taken from Table I. Throughout the paper we adopt
this parameter set as our fiducial cosmological model.

Our effective volume is V ¼ 27h�3 Gpc3. For each of
the simulation outputs, gravitationally bound structures
were identified using the B�FoF algorithm kindly pro-
vided by Volker Springel. The linking length in this
FRIENDS-OF-FRIENDS halo finder was set to 0.2 of the

mean interparticle spacings, and haloes with less than 20
particles were rejected. All together we resolve haloes with
M> 1:2� 1013h�1M�.

B. HOD modeling I—Luminosity-threshold sample

The statistical model used to populate the haloes with
galaxies is known as the HOD, which is closely related to
the halo model of large-scale structure (for a review see
[30]). The HOD assumes that galaxies form in the dark
matter potential wells, because only there can baryons cool
with sufficient efficiency. To translate this idea into a
quantitative model, one must fix the following ingredients:

(1) Number of galaxies that occupy a halo of mass M
(2) Radial distribution of galaxies within the halo

Theories of galaxy formation suggest a division into cen-
tral and satellite galaxies. Central galaxies are those that
reside at the minimum of the potential well for host dark
matter haloes. In contrast, satellite galaxies orbit the cen-
tral galaxy and are presumed to have their own associated
subhalo within the larger host halo. Furthermore, we will

assume that the number of satellite galaxies is a function of
host halo mass only and neglect any environmental influ-
ences. The basic assumption of the model is that bright
galaxies will not be able to live in low-mass haloes, since
there is not enough cold gas to form such galaxies.
Equivalently, the halo mass can be represented by the virial
radius rvir, defined by the condition that the density within
rvir equals 200 times the critical density �crit.
Let us start by considering the HOD required to model a

luminosity-threshold sample of galaxies, and later in
Sec. VC we will describe the necessary adaptations re-
quired for the more complex luminosity-bin sample.
First, we decide whether a halo of given mass contains a

central galaxy at its potential minimum. It is reasonable to
assume that a threshold in galaxy luminosity corresponds
to a threshold in halo mass, but in practice it is necessary to
take into account the scatter in the luminosity-mass rela-
tionship. We do this by appropriately smoothing the mass
threshold. Following [32,64], we take the mean number of
central galaxies occupying a mass M halo to be

hNceni ¼ erfc

�
� lnðM=McutÞffiffiffi

2
p

	

�
; (37)

where erfcðxÞ ¼ 1� erfðxÞ is the complementary error
function, and Mcut and 	 are parameters to be determined
from the data. This relationship is then used as a sampling
probability for the Bernoulli distribution: operationally this
amounts to drawing a random number, T 2 ½0; 1�, and if
T < hNceni then we place a central. This central galaxy is
assumed to be formed by the baryons cooling in the dark
matter potential well and subsequent collisions with satel-
lite galaxies that approach the halo center due to dynamical
friction.
Satellite galaxies that orbit the halo center mostly origi-

nate from the merging of haloes already containing a
central galaxy. Subhalo counts in high resolution N-body
dark matter simulations have shown that the number of
satellite galaxies follows a Poisson distribution around an
asymptotic power law [65]. Hence, we take

hNsaticðMÞ ¼
� ðM�Mmin

M1
Þ
; if M>Mmin ^ Ncen � 0

0; otherwise;

(38)

which introduces another three parameters to be deter-
mined: Mmin, M1 and 
. Finally, as a further constraint
we impose the condition that satellite galaxies can only
reside in haloes already containing a central galaxy.
The satellite galaxies are expected to be situated in the

subhaloes orbiting the halo center. Our simulations lack
sufficient resolution to identify such dark matter substruc-
tures, so we instead sample the galaxy positions from the
dark matter particle positions. Compared to a galaxy dis-
tribution following a profile this approach has several
advantages. First, we avoid the assumption of a functional
form for the halo profile, instead profiting from the full

TABLE I. Cosmological parameters adopted for our investiga-
tions. Matter density parameter, dark energy density parameter,
dimensionless Hubble parameter H0 ¼ 100h km s�1 Mpc�1,
power spectrum normalization, primordial power spectrum
slope, dark energy equation of state p ¼ !�, number of simu-
lation outputs. The first line is our fiducial model. In order to
evaluate the cosmology dependence of our results we use four
other cosmologies denoted as C1–C4.

�m �� h 	8 ns w Ne

FID 0.25 0.75 0.7 0.8 1.0 �1 8

C1 0.25 0.75 0.7 0.8 0.95 �1 4

C2 0.25 0.75 0.7 0.9 1.0 �1 4

C3 0.2 0.8 0.7 0.8 1.0 �1 4

C4 0.3 0.7 0.7 0.8 1.0 �1 4
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triaxial dark matter distribution. Second, we can assign the
dark matter particle velocities to the galaxies, which is
useful for studies of the redshift space distortions.

All together, we have five-dimensional parameter space
spanned by fMcut; 	;Mmin;M1; 
g. We vary these five pa-
rameters in order to generate galaxy catalogues that can
reproduce observed galaxy clustering and galaxy-galaxy
lensing measurements for the two LRG samples described
in [26] and Sec. VD below. For each point in parameter
space, we generate four galaxy catalogues per simulation
using different random seeds. We then calculate the aver-
age of the clustering statistics of these four catalogues to
remove some of the stochasticity intrinsic to the HOD
model, and finally compare to the data. To reduce the
dimension of the parameter space and thus the computa-
tional costs, we use the observed abundance of the LRG
sample to impose a further constraint on the cutoff mass
Mcut by demanding

�n obs ¼
Z

dMnðMÞhNtoti; (39)

where nðMÞ is the halo mass function [66], and the mean
total number of galaxies per halo is given by

hNtoti ¼ hNceni½hNsati þ 1�; (40)

where the form of hNceni accounts for the scatter in the
luminosity-mass relationship. Finally, we end up with a
four-dimensional parameter space, which is sampled on a
grid of points, for each of which we calculate Mcut.

Figure 5 shows the mass dependence of the central,
satellite and total halo occupation number for our best fit
luminosity-threshold galaxy samples. The total occupation
number is dominated by the central galaxies residing in the
highly abundant low-mass haloes. Satellite galaxies start to
dominate only for masses of M � 4� 1014h�1M�.

C. HOD modeling II—Luminosity-bin sample

To model a luminosity-binned galaxy sample it is nec-
essary to apply some minor changes to our HODmodeling.
First, the halo mass of the central galaxies will be a window
rather than a threshold. Second, we must drop the con-
straint that satellite galaxies live only in haloes already
hosting a central galaxy, because faint galaxies may orbit
in heavier haloes (that already host a central above the
luminosity cutoff) as satellites. For simplicity, we do not
use the information about central LRGs from the bright
sample, but rather model the two samples independently.
Again the number of central galaxies is assumed to follow
a Bernoulli distribution, but with mean given by

hNceni ¼ 1

4
erfc

�
� lnM=Mcut;1ffiffiffi

2
p

	

�
erfc

�
lnM=Mcut;2ffiffiffi

2
p

	

�
; (41)

where we have assumed that the central galaxy distribution
is symmetric in logM and that the mass-luminosity scatter
is independent of mass. This parametrization introduces

three free parameters: ½Mcut;1;Mcut;2� with a smoothing

parameter 	. One may of course conceive more compli-
cated window functions, however this approach introduces
the least number of additional free parameters into the
modeling procedure while being flexible enough to de-
scribe the data.
For the satellite galaxy distribution, we again assume

that the number follows a Poisson distribution, with mean
specified by

hNsaticðMÞ ¼
� ðM�Mmin

M1
Þ
; if M>Mmin

0; otherwise:
(42)

Thus, in total we must constrain six free parameters.
However, we may reduce the dimensionality of the prob-
lem by calculating the appropriate lower mass cutoffMcut;1

for each of the points in the five-dimensional space
spanned by fMcut;2; 	;M1;Mmin; 
g according to Eq. (39).

D. Reference sample

In this study, we develop our analysis for application to
the SDSS spectroscopic LRG sample [67,68]. The LRGs
are typically bright red ellipticals that are volume limited
within a much larger volume than the main galaxy sample
of the SDSS. Thus, they are frequently used as an efficient
tracer of large-scale structure. Furthermore, since the
LRGs have been shown to live in the most massive haloes
of the Universe [13,31,32,69], they can be effectively
probed with our N-body simulations.
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FIG. 5 (color online). Mean galaxy number per halo as a
function of halo mass for the luminosity-threshold sample and
our best fit parameters from Table II. We show the number of
central galaxies (blue dashed-dotted), satellite galaxies (red
dashed) and the total number of galaxies (black solid). Note
that the satellite number exceeds unity only for haloes withM>
6� 1014h�1M�, corresponding to virial radii exceeding rvir *
2h�1 Mpc.

BALDAUF et al. PHYSICAL REVIEW D 81, 063531 (2010)

063531-10



The specific LRG samples that we tune our HODs to are
presented in [13]. We model the galaxy-galaxy lensing
from that study, along with new projected correlation
function measurements of the same samples. In [13], the
LRG samples were split into two subsamples, LRGbright
and LRGfaint, based on the r-band luminosities kþ e
corrected to z ¼ 0. LRGbright is a luminosity-threshold
sample with a number density of �n ¼ 4� 10�5h3 Mpc�3,
whereas LRGfaint is a luminosity-bin sample with a num-
ber density of �n ¼ 8� 10�5h3 Mpc�3. As a result, differ-
ent strategies must be applied when modeling the
subsamples, as discussed in the previous two subsections.
The LRG sample under consideration spans a redshift
range 0:15 � z � 0:35 with an effective redshift of zeff ¼
0:24. This effective redshift was derived from the lensing
analysis, since higher redshift lens galaxies are down-
weighted by the lower number of source galaxies behind
them. As shown in [64,70], the clustering amplitude of
LRGs is independent of redshift due to a subtle balance
between the redshift evolutions of bias and growth.
Therefore we use the simulation outputs at zsim ¼ 0:23,
very close to the effective lensing redshift, for our numeri-
cal analysis.

E. Fit results

In Table II, we quote the inferred HOD parameters for
the bright and faint samples when using the fiducial cos-
mological model. We decided to use the full covariance
matrix for the fitting since there are non-negligible corre-
lations between R bins, both in the lensing and clustering
measurements. The noise in the covariance matrix in-
creases the inferred �2, an effect that has previously been
investigated by [71], and we think that theoretical covari-
ance predictions could improve the analysis. Imperfect
modeling might of course also arise from the fact that
our simulation cosmology is not a perfect representation
of the real Universe. Because of the computational costs
per model and the high dimensionality of the parameter
space we have to restrict to coarse sampling of parameter
space. It is however not our goal to precisely constrain the
HOD parameters, but rather to obtain reasonable galaxy
catalogues for the two LRG samples under consideration
and use them to test the � statistics. We compare to the
HOD parameters obtained by [32], who used an equivalent

model, finding a reasonable agreement, once we account
for the fact that they model the full LRG sample.
The galaxy catalogues have relatively low satellite frac-

tions of�4:5% for the threshold sample and�10% for the
bin sample. Fitting for the bias on linear scales
(18h�1 Mpc � r � 90h�1 Mpc) we obtain b ¼
2:20� 0:03 and b ¼ 1:97� 0:03 for the threshold and
bin sample, respectively.

VI. NUMERICAL RESULTS

To replicate the cross-correlation coefficient between
galaxies and matter that would be expected from real
observational data, we use the artificial galaxy catalogues
described in the previous section to measure all of the
statistics of interest. Figure 6 shows the resulting cross-
correlation coefficients of the luminosity-threshold (left
panel) and luminosity-bin (right panel) galaxy catalogues
and two values of R0. The ADSD is measured by counting
the number of pairs in cylinders with length 2�max ¼
100h�1 Mpc in real space. The error bars shown in these
figures are derived from the standard-deviation between
the eight simulation volumes and thus represent the cosmic
variance. We again see that �� (black), corresponding to
R0 ¼ 0, leads to a cross-correlation coefficient that is
strongly scale dependent and different from unity, with
5–10% deviations at 10h�1 Mpc. However, if we choose
R0 ¼ 3h�1 Mpc, then we find that a cross-correlation co-
efficient close to unity (blue with error bars), with rcc ¼
0:96 at 4h�1 Mpc, as predicted by perturbation theory for
biased tracers [46]. Furthermore, we observe this behavior
for both the luminosity bin sample and the luminosity-
threshold sample. This consistency suggests that the
cross-correlation coefficient is largely independent of the
specific choice of the HOD used to generate the galaxy
catalogues, which is again consistent with the arguments in
[46] that the cross-correlation coefficient is nearly univer-
sal in the sense of being only weakly dependent on the halo
mass. The theoretical prediction of Eq. (35) is plotted in
Fig. 6 as the blue solid line. For the latter we use �NL to
predict �mm ¼ �� and �B ¼ ��2 . We furthermore com-

pare to the full, nonexpanded expression

rð�Þ
cc ðRÞ ¼ �� þ 
�Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��ð�� þ 2
�A þ 
2�B=2
q

Þ
; (43)

shown as the red dashed-dotted line, whose range of va-
lidity is bounded by the breakdown of perturbation theory
rather than the relative magnitude of the perturbation
terms. Given the statistical uncertainties of the direct simu-
lation measurements, both expressions are viable because
the difference is �2% on the smallest scales considered.
The results discussed above suggest, that we may invert

Eq. (13) through the following:

TABLE II. Best fit HOD parameters for the faint (f) and bright
(b) sample: comoving number density, power law normalization,
low mass cutoff, high mass cutoff, power-law exponent, smooth-
ing and lower satellite cutoff. The number densities are in units
of 1� 10�5h3 Mpc�3, and masses are in units of 1013h�1M�.

�n M1 Mcut;l Mcut;u 
 	 Mmin

LRGbright 4.0 40.0 17.8 - 1.05 1.68 4.6

LRGfaint 8.0 45.0 5.0 12.4 0.40 1.55 5.7
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�mmðRÞ ¼
�2

gmðRÞ
�ggðRÞr2cc

/ �2
m	

2
8: (44)

The resulting statistic depends on the matter correlation
function and squared matter density, which is the usual

parameter dependence of weak lensing measurements.
This dependence enables us to constrain cosmological
parameters. Our theoretical model provides us with the

scale-dependent correction factor rð�Þ
cc . Note that the

cross-correlation coefficient is very close to unity on all
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FIG. 6 (color online). Cross-correlation coefficient of the ADSD � for the luminosity-threshold (left panel) and luminosity-bin
sample (right panel). The trivial case R0 ¼ 0 (black with error bars), corresponding to bare ��, leads to a cross-correlation coefficient
that is far from unity and furthermore strongly scale dependent. If we instead choose R0 ¼ 3h�1 Mpc (blue with error bars), inspired
by the virial radii of the haloes under consideration, we restore a cross-correlation coefficient close to unity on the 4% level for all
scales R> R0. Furthermore, we can model the residual scale dependence reasonably well using the perturbation theory expression of
Eq. (35) [solid blue line], whereas the bare �� deviates from the corresponding perturbation theory result (black dashed-dotted). Since
the Taylor expansion is no longer justified for scales below R ¼ 8h�1 Mpc, we also plot the full expression according to Eq. (43) [red
dashed] for �.
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measured matter-correlation of the simulations (red solid line) and the linear theory value (black dashed line). The nonlinear
correlation is well reproduced by the reconstruction, whereas there are remarkable deviations from linear theory on small scales.
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scales shown and even using rcc ¼ 1 is acceptable given
current observational constraints. However, future obser-
vations will measure galaxy-galaxy lensing with much
higher statistical precision. The extraction of the full
amount of information contained in these measurements
will require an accurate modeling of rcc. As argued in [46]
this can be done in a relatively robust and model indepen-
dent way.

In Fig. 7, we show the results of such a reconstruction
based on eight galaxy catalogues with the corresponding
cosmic variance errors. This reconstruction includes the
correction for the deviations of the cross-correlation coef-

ficient from unity. We see that the nonlinear �ðnlÞ
mm is repro-

duced with high accuracy, whereas the linear theory

prediction �ðlinÞ
mm deviates from our simulation result. This

finding is expected, because in Eq. (12) we subtract
��ðR0Þ at R0 ¼ 3h�1 Mpc, which is already at a nonlinear
scale. As we go to larger scales this contribution is sup-
pressed by R2

0=R
2, and we slowly approach the linear

theory predictions.
Our numerical study implicitly uses the distant observer

approximation, since we project the density field in the
simulation along one of the three Cartesian coordinate
axes. In a real observation, the lines of sight to two nearby
galaxies or to a foreground lens and a background source
galaxy are inclined. The question of whether the two
statistics agree is related to the extent to which the angular
and the two-dimensional projected power spectra agree. As
discussed in [72], the angular power spectrum corresponds
to the two-dimensional power spectrum if the Limber
approximation [73] is valid. The LRG sample under con-
sideration in our study has a median redshift of z ¼ 0:23
corresponding to a comoving distance �l ¼ 650h�1 Mpc.
Together with the maximum projection length �max ¼
�100h�1 Mpc and the maximum transverse distance to
the galaxy Rmax ¼ 70h�1 Mpc, this corresponds to a maxi-
mum angle of �max ¼ 7:3
. The Limber approximation is
typically precise to <1% for l � �=� > 10 [74], corre-
sponding to � < 18
, and thus we can safely use the
Cartesian analysis as an approximation for the
observations.

VII. SOURCES OF ERRORS

Accurate studies of cosmological parameters require a
careful consideration of all effects that might change the
signal. In this section, we explore how large-scale redshift
space distortions and the difference between lensing and
galaxy clustering window functions impacts the recon-
struction of the matter clustering. Finally, we will discuss
how strongly the radial bins are correlated.

A. Influence of redshift space distortions

In large redshift surveys, such as the SDSS [67] or the
Two-degree-Field Galaxy Redshift Survey [75], the radial

distance to a galaxy is inferred from the recession velocity,
under the assumption of a perfect Hubble law. In reality,
the coherent motions of galaxies and their virial motions
inside haloes will add to the redshift and thus distort the
inferred distance. In the linear regime, on large scales these
redshift space distortions can be quantified using linear
theory, neglecting virial motions within the bound struc-
tures (for a review see [76]). Following [77] we can write
the galaxy power spectrum in redshift space in the plane
parallel projection as

PsðkÞ ¼ PrðkÞ½1þ ��2�2; (45)

where PrðkÞ is the real space power spectrum of the tracer,
� ¼ k 
 x̂=k is the position angle with respect to the red-
shift axis x̂ and � ¼ fðaÞ=b1ðaÞ, where fðaÞ �
d lnD=d lna is the logarithmic growth rate of fluctuations.
We obtain this directly by numerically evaluating the exact
expression

fðaÞ ¼ d lnHðaÞ
d lna

þ a

ðaHðaÞÞ3
1R

a
0 da

0ða0Hða0ÞÞ�3
: (46)

In what follows it will be convenient to rewrite Eq. (45)
in terms of the Legendre polynomials Llð�Þ

PsðkÞ ¼ PrðkÞ½
0L0ð�Þ þ 
2L2ð�Þ þ 
4L4ð�Þ�; (47)

where the coefficients are given by


0ð�Þ ¼ 1þ 2
3�þ 1

5�
2; (48)


2ð�Þ ¼ 4
3�þ 4

7�
2; (49)


4ð�Þ ¼ 8
35�

2: (50)

The redshift space correlation function is then obtained by
a Fourier transform of the power spectrum

�gg;sðr; 
Þ ¼ V

ð2�Þ3
Z 1

0
dkk2PrðkÞ

Z 1

�1
d�½1þ ��2�2

�
Z 2�

0
d’ exp½ik 
 x�; (51)

¼ X2
l¼0


2lð�Þ�2lðrÞL2lð
Þ; (52)

where 
 is the angle between r and the axis along which the
redshift space distortion is present, i.e. 
 ¼ x̂ 
 r̂ ¼ x=r.
The correlation function multipoles in the above equation
are defined as

�2lðrÞ ¼ ð�1Þl V

2�2

Z 1

0
dkk2PrðkÞj2lðkrÞ; (53)

where the jl are the spherical Bessel functions: jlðxÞ ¼
Jlþ1=2ðxÞ=

ffiffiffiffiffi
2x

p
. We note that the above formulae are

equivalent to the formulation of [78].
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For our investigations, we are mainly concerned with the
projected correlation function or the closely related excess
surface mass density. The common assumption is that the
integration along the line of sight removes redshift space
distortions. This assumption, however, would only be cor-
rect in the limit of an infinite radial projection window,
which is not used in practice. Integrating Eq. (52) along the
line of sight, we obtain

wgg;sðRÞ ¼
Z �max

��max

�gg;sðr; 
Þd�

¼ 2
X2
l¼0


2lð�Þ
Z �max

0
d��2lð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ R2

q
Þ

� L2l

�
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ R2
p

�
: (54)

We shall use the above result to calculate the linear theory
predictions for the projected correlation functions in red-
shift space. In Fig. 8, we plot the ratio of the real to redshift
space projected correlation functions for the bright LRG
galaxy sample with b ¼ 2:2. We clearly see that the com-
monly used integration length of �max ¼ 50h�1 Mpc leads
to residual distortions of about 40% on scales R �
50h�1 Mpc. These residual redshift space effects on the
projected correlation function were previously discussed
by [79,80] (see also [81]). Moreover, we see that on these
scales the linear theory prediction is a very good descrip-

tion to the effects that we observe in our simulations. The
difference between linear theory and simulation, on small
scales, arises from the fact that we do not model the virial
motions, which cause the fingers of God. Furthermore, the
nonlinear correlation function is more cuspy than the linear
correlation function on small scales. Therefore, the linear
predictions in redshift space are boosted in amplitude by
the compression along the line of sight. The nonlinear
projected correlation function is however much more in-
fluenced by the increased small-scale clustering, and thus
at small separations transverse to the line of sight, it is less
sensitive to the compression.
Even though the linear prediction is a good description

of the effect, removing it requires knowledge of the red-
shift space distortion parameter �, which requires knowl-
edge of both the cosmological model and bias. Since these
are not known a priori but instead they must be determined
from the data. To do this accurately an iterative approach is
needed, which complicates the analysis and ultimately
limits the precision. Thus, it is advantageous if these
corrections can be made as small as possible from the
onset. As we show in the right panel of Fig. 8, for the
ADSD statistic � much smaller residual corrections are
required. The reduction is dramatic, with an order of
magnitude smaller effect at the same scale and for the
same radial window. As discussed above, this reduction
results from the compensated nature of these statistics,
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FIG. 8 (color online). Left panel: Residual effect of redshift space distortions on the projected galaxy-galaxy autocorrelation
function wgg. We show the simulation measurements for the bright sample as crosses with error bars for �max ¼ 50h�1 Mpc (upper

blue) and �max ¼ 100h�1 Mpc (lower red) and the corresponding linear theory predictions. Right panel: Residual effect on the annular
differential surface density �ggðR;R0 ¼ 3h�1 MpcÞ for the same integration lengths. As on the left panel, the upper blue curve and

points correspond to �max ¼ 50h�1 Mpc whereas the lower red curve and points correspond to �max ¼ 100h�1 Mpc.
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which makes them much less sensitive to the long wave-
length fluctuations, so that the limit �max ! 1 is ap-
proached faster. This makes these statistics more
attractive for practical applications than the projected cor-
relation function w. In the context of galaxy clustering,
similar compensated statistics have been proposed in [81].
Note that for lensing the typical radial window is hundreds
of h�1 Mpc wide, and for ��gm or �gm the effects of

redshift space distortions can be completely neglected on
scales below R � 100h�1 Mpc.

The analytical predictions for the impact of redshift
space distortions on � and w are based on the Kaiser
model and thus make use of the flat sky and distant
observer approximation. However, as we showed above,
the ADSD is very robust to redshift space distortions with
residual corrections on the Oð1%Þ level. Because of the
smallness of the correction and since our study is restricted
to transverse separations that are small compared to the
line of sight distance to the galaxies, our treatment is
justified.

B. Dependence on projection length

Our final goal is to compare a galaxy-matter cross
correlation corresponding to a very broad lensing window
and a galaxy-galaxy autocorrelation that is calculated from
a narrow top-hat window and thus, in contrast to the
lensing, subject to redshift space distortions. In this context

it is necessary to devise a correction that accounts for both
the redshift space distortions and the different window
functions. We already discussed the redshift space effects
and saw that they can be described by a scale-dependent

factor �ðclustÞ
gg;r =�ðclustÞ

gg;s given by linear theory. Here, we use

the superscript ‘‘clust’’ to denote that this statistic is mea-
sured with the top-hat window. A similar numerical factor
can be used to transfer from the clustering to the lensing

window �ðlensÞ
gg;r =�ðclustÞ

gg;r . The corrected galaxy correlation

function corresponding to the lensing measurements then
reads as

�ðlensÞ
gg;r ¼ �ðclustÞ

gg;s
�ðlensÞ

gg;s

�ðclustÞ
gg;s

; (55)

¼ �ðclustÞ
gg;s

�ðclustÞ
gg;r

�ðclustÞ
gg;s|fflffl{zfflffl}

redshift

�ðlensÞ
gg;r

�ðclustÞ
gg;r|fflffl{zfflffl}

integration length

; (56)

where �ðclustÞ
gg;s is the statistic that is measured in the cluster-

ing survey and �ðlensÞ
gg;r can be compared to �ðlensÞ

gm;r measured
from lensing.
Figure 9 shows the correction terms for the bright LRG

(b ¼ 2:2) sample both for the projected correlation func-
tion w and the ADSD �. The integration length correction
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FIG. 9 (color online). Correction factors that must be applied to the galaxy clustering measurements in order to remove redshift
space distortions and to construct a quantity equivalent to the lensing signal. The total correction (red solid) is a product of a window
correction (blue dashed) and a redshift correction (green dashed-dotted). Left panel: Projected galaxy-galaxy autocorrelation function
wgg. The size of the corrections is quite remarkable on the largest scales. The apparent effects on scales below 10h�1 Mpc arise from

the flattening of the linear power spectrum on these scales. Furthermore the correlation on these scales would be affected by the finger-
of-god effects not included in our analysis. Right panel: Annular differential surface density for R0 ¼ 3h�1 Mpc. The residual
correction is much smaller, 3% on the typical scales probed by galaxy-galaxy lensing.
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is shown as a blue dashed line. The window correction was
obtained from comparing the linear theory predictions for

�ðlensÞ
gg;r and �ðclustÞ

gg;r . Again we see that the resulting correc-
tions are much smaller for� than forw. This occurs for the
same reason as discussed above in the context of redshift
space distortions: by using a compensated window the
sensitivity to long wavelength modes is removed and the
limit �max ! 1 is approached faster, at which point the
differences between different radial integration lengths
disappear.

Figure 9 also shows the redshift factor as a green dashed-
dotted line and the final correction as a solid red line. The
redshift correction is the inverse of the curve plotted in
Fig. 8. We see that the projection length and redshift space
effects go in the opposite direction. This partial cancella-
tion further minimizes their effect, so that for the ADSD�,
their combined effect is less than 3% even at R �
50h�1 Mpc.

C. Covariance matrix

Another benefit of the compensated ADSD is that its

correlation matrix Corrij ¼ h�i�ji=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�i�iih�j�ji

q
has

weaker off-diagonal contributions than that for the pro-
jected correlation function. Usually two point statistics
such as the correlation function show strong correlations
between different radial bins, i.e. important off-diagonal
entries in the covariance matrix. The compensated window
Eq. (17) relating the ADSD to the correlation function
reduces these off-diagonal contributions remarkably. This
statement refers to the cosmic variance contribution to the
covariance matrix only. The shape noise adds predomi-
nantly to the diagonal error and thus further reduces the off
diagonals of the correlation matrix.

In Fig. 10 we show columns extracted from the correla-
tion matrices of w, �� and �, respectively, for the bright
LRG sample. The covariance matrix is estimated by cal-

culating the variance over 160 subvolumes of 750� 750�
300h�3 Mpc3. From this plot it is obvious that the off-
diagonal contributions to the covariance matrix are re-
duced as one transitions from the projected correlation to
the excess surface mass density and ADSD. One would
expect some additional covariance due to the subtraction of
��ðR0Þ in �, but it turns out that the reduced off-diagonal
covariance remains for the ADSD. We compare the signal
to noise ðS=NÞ2�� ¼ P

i;j��iC
�1
ij ��j and ðS=NÞ2� ¼P

i;j�iC
�1
ij �j, where C are the covariance matrices of

�� and �, respectively. The sum runs over radial bins
with Ri > 1h�1 Mpc for �� and Ri > R0 for �. We see
that the signal-to-noise ratio is degraded by a factor 0:38<
ðS=NÞ�=ðS=NÞ�� < 0:45 over a range of cutoff radii
5h�1 Mpc>R0 > 1h�1 Mpc. So the advantage of being
able to interpret the result in terms of perturbation theory
just has to be paid by a factor 2–3 decrease in signal to
noise.

VIII. VARIANT COSMOLOGIES

In the previous sections, we presented results for our
mass clustering reconstruction for one specific cosmologi-
cal model. In this section, we explore how well the �mm

reconstruction performs for four variations to our fiducial
model.
The four variations are presented in Table I, and we

denote them by C1–C4. Each of these models differs
from the fiducial model in exactly one parameter, and for
each variation we have performed four simulations provid-
ing a volume of V ¼ 13:5h�3 Gpc3. We populate these
simulations using the same HOD parameters inferred for
the luminosity-threshold LRG sample as described in
Sec. V.
Figure 11 shows the cross-correlation coefficient in-

ferred from the statistic �, for R0 ¼ 5h�1 Mpc for the
full LRG sample. The reason for increasing the cutoff
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FIG. 10 (color online). Columns extracted from the correlation matrix of the bright LRG sample Left panel: CorrðwÞ Central panel:
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and �� it is clear that the width of the off-diagonal contributions is larger for the projected correlation function than for the excess
surface mass density. The same remains true if one compares the correlation of the ADSD and the projected correlation function.

BALDAUF et al. PHYSICAL REVIEW D 81, 063531 (2010)

063531-16



radius is that the cluster masses for some of the variant
cosmologies are increased and thus we apply this more
conservative cutoff radius to ensure rcc � 1. We then see
that the variation of cosmology does not significantly
change the general trends observed for our fiducial model.
We notice that there is a weak scale dependence, and in all
cases the trend to lower rcc is well described by the
theoretical model given by Eq. (43), which is over plotted
as a green line. There appears to be some small (� 5%)
discrepancy for the higher 	8 model at smaller scales R<
10h�1 Mpc, where we see an increase in the cross-
correlation coefficient. This is likely due to the fact that
the cutoff scale R0, is actually less than twice the virial
radius of the most massive haloes, and so the statistics are
still sensitive to the internal structure of the haloes.

We examined whether the agreement might be further
improved through using only the central LRG galaxies in
the reconstruction. The results of this test are presented in
Fig. 12, and we indeed find better agreement. We believe
that this is due to the fact that the influence of satellite-
satellite pairs from massive clusters has been removed.
This means that the central galaxy sample is closer to a
mass-selected halo sample and is thus less influenced by
the details of how galaxies populate haloes.

A simple way to further reduce this sensitivity is to
eliminate the most massive haloes from the data. Since
these contain many galaxies, they are easy to identify in an
observation. In Fig. 13, we plot the cross-correlation coef-
ficient of a halo sample, from which we removed all the
clusters with mass exceedingM 	 3� 1014h�1M� and all
the central galaxies. Having removed the clusters, we can
lower the cutoff radius to R0 ¼ 3h�1 Mpc. Clearly the
cross-correlation coefficient shows stronger deviations
from unity. These are, however, better reproduced by our
model than the full or central sample. To achieve this
agreement we needed to change the bias ratio 
 accounting
for the new upper mass threshold. The corrections in
Fig. 13 use 
 ¼ 0:41 instead of our fiducial choice of 
 ¼
0:26.
Another way to improve agreement between theory and

simulation is to use a phenomenological correction factor.
Inspired by the fact that the correction for the cross-

correlation coefficient rð�Þcc in Eq. (31) is proportional to
the correlation function, we can simplify our correction

factor using the approximation rð�Þ
cc ðRÞ � 1�


2�ðR=2Þ=4. The argument R=2 in the correlation function
can be motivated considering the window for the correla-
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FIG. 11 (color online). Cross-correlation coefficient of the ADSD� for the full galaxy sample. The panels show simulation output as
circles with error bars and theoretical predictions of Eq. (35) for R0 ¼ 5h�1 Mpc (red solid lines). Top left panel: Reduced spectral
index ns ¼ 0:95 Top right panel: Increased normalization 	8 ¼ 0:9 Bottom left panel: Reduced matter density �m ¼ 0:2, �� ¼ 0:8
Bottom right panel: Increased matter density �m ¼ 0:3, �� ¼ 0:7 We see that the increased number of high mass haloes in the
�m ¼ 0:3 and 	8 ¼ 0:9 models leads to a higher number of satellite galaxies and thus partially compensates the drop of the cross-
correlation coefficient for haloes on small scales.
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thus better reproduce our theoretical expectations.
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line) The cluster subtraction also allowed us to reduce the cutoff radius to R0 ¼ 3h�1 Mpc.
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tion function plotted in the right panel of Fig. 2. There we
see that the windows for �ðR=2Þ and�ðRÞ peak at approxi-
mately the same scale in k space. We over plot the phe-
nomenological correction as the red dashed line in Fig. 13.
With this replacement we can slightly improve the agree-
ment between theory and measurement.

In Fig. 14 we reconstruct the matter correlation �mmðRÞ
from the simulation measurements of �gmðRÞ and �ggðRÞ
as the points with error bars. For this plot we use the full
galaxy samples, whose cross-correlation coefficient was
shown in Fig. 11. We see that the nonlinear matter corre-
lation function is reproduced for all the four variant cos-

mologies. Furthermore, there are clear differences both in
shape and amplitude between the different cosmologies, so
that inference of cosmological parameters should be fea-
sible. Differences in �m and 	8 are more prominent than
the effect of changing the slope of the primordial spectrum
ns. The small discrepancy between the simulations and the
theoretical prediction for the high 	8 model in Fig. 11
translates into a tension between inferred and real matter
ADSD.
The lower panel of Fig. 14 emphasizes the possibility of

inferring cosmological parameters by showing the frac-
tional differences in the recovered ADSD for the different
cosmologies C1–C4 with respect to the fiducial model.
Variations in the slope of the power spectrum differ from
the fiducial model only on the 5% level at R ¼
30h�1 Mpc, whereas the quadratic dependence of the es-
timator on 	8�m leads to a clear separation of the variant
	8 and �m models from the fiducial model (25% at R ¼
30h�1 Mpc). If the lensing study extends to sufficiently
large scales 	8 and�m are separable by their shape. Here,
we are using the fact that a change in �m or 	8 affects the
amplitude as well as the shape of the correlation function.
One caveat is that the inference of �mm requires the

assumption of an a priori cosmology. This assumption
enters the reconstruction in three places. First, we are using
the clustering and lensing measurements as a function of
the distance transverse to the line of sight. The observation,
however, provides both clustering and tangential shear
distortions as a function of angular separation. To relate
the two, one needs to calculate the angular diameter dis-
tance to the foreground galaxy sample, which depends on
�m. A wrong prior on the cosmological model would thus
cause a horizontal shift in the inferred statistic. Second, the
definition of the excess surface mass density includes the
critical surface mass density, a ratio of the angular diameter
distances to the lens, the source and between the two. The
latter affects the amplitude of�mm in quadrature. Third, we
use cosmology to compute the cross-correlation coefficient
[Eq. (35)]. This also only has a weak dependence on
cosmology, since the cross-correlation coefficient is close
to unity to start with.
In order to estimate the magnitude of the first two effects

we pose the following question: How is the inferred statis-
tic for �m ¼ 0:2 or �m ¼ 0:3 affected if we wrongly
assume the fiducial cosmology, �m ¼ 0:25, for the mea-
surement? As a reasonable example, we take zl ¼ 0:25 and
zs ¼ 0:5, for the lens and source redshifts. For these cases,
we obtain a 2% increase (decrease) in �crit for �m ¼ 0:2
(�m ¼ 0:3) with respect to the fiducial �m ¼ 0:25. These
results are shown as the thin lines in the lower panel of
Fig. 14. The shift caused by the cosmology dependence of
the angular diameter distance to the lens galaxy has a
smaller effect and is on the order of �1%. One route to
remove part of this dependence from the measurement is to
change the estimator �mm ! �mm=�

2
crit. This can be done
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FIG. 14 (color online). Top panel: Reconstructed matter
ADSD of the variant cosmologies for R0 ¼ 5h�1 Mpc. The
points with error bars show the simulation results for the four
variant cosmologies as measured in the simulations, whereas the
solid lines show the corresponding nonlinear matter correlation
function. From top to bottom: �m ¼ 0:3 (black stars), 	8 ¼ 0:9
(green squares), ns ¼ 0:95 (red circles) and �m ¼ 0:2 (blue
diamonds). The thick black line is the nonlinear matter correla-
tion function of our fiducial model plotted here for reference.
Bottom panel: Fractional difference of the reconstructed matter
statistics with respect to the fiducial model. From top to bottom
we show �m ¼ 0:3 (solid black), 	8 ¼ 0:9 (green dotted), ns ¼
0:95 (red dashed-dotted) and �m ¼ 0:2 (blue dashed). For the
�m ¼ 0:2 and�m ¼ 0:3 cosmologies we also include the effect
of wrong a priori cosmology as thin lines with corresponding
line style (for further discussion see text).
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by writing �gm ¼ �crit½ ��tðRÞ � R2
0=R

2�tðR0Þ� and substi-

tuting this expression into Eq. (44)

�mmðRÞ
�critð�mÞ2

¼ ½ ��tðRÞ � R2
0=R

2�tðR0Þ�2
�ggðRÞr2cc

: (57)

The benefit of this redefinition is that the quantity we
compare to theory has one cosmology dependence less,
and �crit can be calculated for each tested cosmological
model. However, the angular diameter distance still de-
pends on�m. We could introduce another factor that takes
care of this dependence, but for SDSS data at low redshift
the effect is small. In general one can use an iterative
procedure or check whether within the errors on �m the
effects exceed observational errors. A similar iterative
procedure can be used to verify the sensitivity to the
assumed value of the cross-correlation coefficient in the
reconstruction.

A. Reconstruction procedure

To conclude, we summarize our procedure for inferring
the matter clustering from lensing and clustering measure-
ments in terms of the following five steps:

(1) Measure galaxy-galaxy lensing signal �t for a cer-
tain lens galaxy sample, and calculate ��gmðRÞ
from the tangential shear. This first step requires
the assumption of an a priori cosmological model
that has to be confirmed or refuted by the final result.

(2) Measure the galaxy-galaxy clustering of the lens
galaxy sample and calculate the projected correla-
tion function wggðRÞ. Integrate the result to obtain

��ggðRÞ.
(3) Estimate the typical host halo virial radius of the

galaxy sample under consideration. Use this esti-
mated R0 to correct for the central contributions in
��ABðRÞ by calculating �ABðRÞ ¼ ��ABðRÞ �
��ABðR0ÞR2

0=R
2.

(4) Make predictions for the transfer function and re-
sulting matter autocorrelation functions for a set of
cosmological parameters and/or modifications of

gravity. Use these to calculate �ðtheoÞ
mm and find the

best fit parameters by comparison to the empirical
result.

(5) Iterate until convergence.

IX. CONCLUSIONS

In our study, we examined how well can one reconstruct
the dark matter clustering from observations of galaxy
clustering combined with galaxy-galaxy lensing. This re-
construction procedure could for instance be applied to the
SDSS galaxy survey, in particular, the luminous red gal-
axies. In a first step, we generated realistic LRG galaxy
catalogues for both a luminosity-threshold and a
luminosity-bin subsample of the LRGs. We then used these

galaxy catalogues to extract information about the cross-
correlation coefficient between galaxies and matter.
We introduced a new statistic �ðRÞ, which we termed

the ADSD, that removes the influence of small, nonlinear
scales on the excess surface mass density. This subtraction
is necessary since the scales smaller than the virial radius
of the haloes are dominated by the halo profile rather than
the pre-shell-crossing evolution of the large-scale cosmo-
logical fluid. Both numerical studies and theoretical calcu-
lations indicate that the cross-correlation coefficient of the
ADSD is close to unity and that the residual scale depen-
dence is well described by an analytic correction. Having
focused our investigations on the excess surface mass
density ��gm, our results can be directly applied to mea-

surements of galaxy-galaxy lensing and the projected gal-
axy correlation function.
We also studied systematic effects that might bias the

comparison of lensing and galaxy clustering measure-
ments. In terms of the projected correlation function,
both numerical studies and a linear theory treatment, fol-
lowing [77], show that the common integration over
�50h�1 Mpc along the line of sight is still biased by
redshift space distortions. We have shown the necessity
of correcting for the large-scale peculiar motions in any
such clustering measurement. We also investigated the
effect of different window functions used for lensing and
clustering. These introduce additional effects, that must be
accounted for in the final analysis. We have found that the
ADSD statistic �ðRÞ is much less sensitive to both of the
effects, and to long wavelength modes in general, than the
usual projected correlation function wðRÞ, because of the
(partially) compensated nature of its transverse window.
As our key result, we devised a method to recover the

dark matter clustering from galaxy-galaxy lensing and
galaxy clustering measurements using the cross-
correlation coefficient for the ADSD. Assuming rcc ¼ 1
for simplicity leads to at most 8% bias on scales below R �
5h�1 Mpc in the recovered statistic �mmðRÞ. We can how-
ever remove this bias based on our theoretical modeling of
the scale dependence of the cross-correlation coefficient.
The main advantage of our method is that the galaxy
dependence is scaled out of the equations, since the theo-
retical model predictions for the cross-correlation coeffi-
cient between haloes and dark matter are relatively
independent of the halo mass over a wide range of mass.
Thus, we believe that the method devised here is more
robust than the methods which are based on HOD fitting
(e.g. [82]), which fit for the cosmological parameters and
the HOD parameters jointly, marginalizes over the uncer-
tainties in the HOD parameters.
A study on four other cosmological models verified the

robustness of the new estimator. Varying one parameter of
the fiducial �CDM model at a time, we found that the
cross-correlation coefficient shows a scale dependence
consistent with the fiducial model. We were able to recon-
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struct the ADSD of the matter correlation function, and the
inferred statistic �mm can be used to distinguish cosmo-
logical models both, from the shape and the amplitude of
the recovered statistic. This study also showed that, if one
is capable of accurately distinguishing central from satel-
lite galaxies and/or remove clusters, then one can eliminate
the influence of satellite galaxies and so render the cross-
correlation coefficient closer to theoretical predictions for
haloes in numerical simulations. These advantages make it
worthwhile to define a clean central galaxy sample and to
remove the clusters. While the nonlinear matter correlation
can be recovered with high fidelity, the linear correlation is
only recovered at large scales. This fact strengthens the
need for a well developed and tested perturbation theory of
large-scale clustering that extends into the weakly non-
linear regime and which can thus provide us with an
estimator of �NL without having to carry out simulations
for each cosmological model.

The ADSD statistic subtracts out a lensing signal at R0

[Eq. (12)]. This subtraction procedure decreases the signal-
to-noise on the inferred statistic � as compared to ��.
This price seems worth paying, since it brings the cross-
correlation coefficient much closer to unity with residual
deviations from unity that are well understood theoreti-
cally. An application of this method to observational data
will have to address the problem of estimating ��ðR0Þ.
The cubic spline fit used for our numerical studies will not

be appropriate given the large statistical fluctuations in
observed lensing signal. Several alternatives to estimate
��ðR0Þ are explored in [47], with the most successful
being a fit with a running power law (three parameters)
to the radial bins around R0.
Our numerical results are based on the SDSS spectro-

scopic LRG sample, i.e. on the galaxies living in the most
massive haloes. Based on the success and generality of the
theoretical model we expect that a similar behavior for the
main spectroscopic sample galaxies in the SDSS, which
live predominantly in lower mass haloes. The lower halo
masses may also enable a lower cutoff radius R0, especially
if haloes with higher mass are effectively removed from the
sample. If the halo sample spans a wide range of masses, it
should be split into mass bins and R0 should be chosen
appropriately for each of the mass bins. We shall reserve
this topic for future investigation.
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