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In usual particle models, sterile neutrinos can account for the dark matter of the Universe only if they

have masses in the keV range and are warm dark matter. Stringent cosmological and astrophysical bounds,

in particular, imposed by x-ray observations, apply to them. We point out that in a particular variation of

the inert doublet model, sterile neutrinos can account for the dark matter in the Universe and may be either

cold or warm dark matter candidates, even for masses much above the keV range. These inert-sterile

neutrinos, produced nonthermally in the early Universe, would be stable and have very small couplings to

standard model particles, rendering very difficult their detection in either direct or indirect dark matter

searches. Their existence could be revealed only by discovering other particles of the model in collider

experiments.
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I. INTRODUCTION

Since the first indications more than seven decades ago
[1], many different strong pieces of evidence supporting
the existence of dark matter have been accumulated (see
e.g. Refs. [2–4]). The presence of dark matter has been
revealed so far through its gravitational effects. Much
effort is being devoted to the detection of dark matter
annihilation or decay products or the scattering of dark
matter particles off nuclei. However dark matter may con-
sist of particles which will not be revealed (at least in the
near future) in this type of searches. We provide here an
example of a dark matter candidate found in a simple
extension of the standard model (SM), whose nature could
be indirectly proven only through the discovery and study
in colliders of other nonstandard particles predicted within
the model. The dark matter particle candidate we study
here is a sterile neutrino with mass in the tens of keV to the
tens of GeV range and produced nonthermally in the early
Universe, which can be either warm dark matter (WDM) or
cold dark matter (CDM).

One or more gauge singlet right-handed (sterile) neutri-
nos are included in simple extensions of the SM which can
easily accommodate neutrino oscillation data [5–8]. These
data show that at least two of the active neutrinos have a
nonzero mass. In many models sterile neutrinos are the
right-handed Dirac mass partners of the active neutrinos. In
some seesaw-inspired models, sterile neutrinos have large
Majorana masses, which lead to three light (mostly active)
neutrinos and several heavier (mostly sterile) neutrinos, the
lightest of which is an attractive dark matter candidate [8].
Since this candidate necessarily decays into a light neu-

trino and a photon, to constitute the dark matter its lifetime
must be much longer than the age of the Universe. Thus,
this dark matter candidate might be detected through the
photons produced in its decay in the dark halos of galaxies.
Moreover, to have the required dark matter relic density,
the lightest sterile neutrino must usually have a mass in the
keV range, although this depends on the mechanism
through which sterile neutrinos are produced in the early
Universe.
Relic sterile neutrinos with only standard model inter-

actions are produced in the early Universe through active-
sterile neutrino oscillations. Sterile neutrinos produced
through nonresonant oscillations [6–8] must have masses
Ms in the keV range to account for the whole of the dark
matter and are WDM. Through a combination of x-ray and
structure formation constraints, an upper bound Ms �
3–4 keV has been obtained [7–11] (see, however,
Ref. [12] for a very recent weak hint of a possible signal).
Lyman-� forest data have been used to impose the lower
bound of Ms � 5:6 keV [13] (see also Refs. [14,15] for
previous bounds) on nonresonantly produced sterile neu-
trinos, or the revised limit of Ms � 8 keV obtained by a
new analysis [16], which combined with the previous
upper bounds would exclude nonresonantly produced
dark matter sterile neutrinos. Even disregarding the con-
troversial Lyman-� bounds, the mass range allowed for
these neutrinos is very restricted because there is an inde-
pendent lower bound Ms � 1:8 keV [17,18] derived from
the analysis of phase space density evolution of dwarf
spheroidal galaxies. In general, these bounds do not con-
sider the possibility of a very large lepton asymmetry. In
the presence of a large lepton asymmetry L �
ðn�e

� n ��e
Þ=s > 10�6, where n�e

and n ��e
are the number

densities of neutrinos and antineutrinos and s is the entropy
density in the Universe, sterile neutrinos may be produced
in the early Universe through resonant oscillations [19,20].
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Considering the upper limit of the lepton asymmetry im-
posed by big bang nucleosynthesis (BBN), L< 2:5�
10�3 [20], the range 1 keV � Ms � 50 keV is in principle
allowed for sterile neutrino dark matter [17,20,21]. In
slightly more complicated models, sterile neutrino dark
matter may be produced as decay products of, for example,
a heavy singlet scalar [22,23], or may not completely
thermalize as in low reheating temperature scenarios
[24]. Yet, in all these models the x-ray constraints are
important.

Here, we consider a small variation of the SM in which
the lightest sterile neutrino is stable (hence it does not
produce photons as decay products) and may constitute
all of the dark matter. We study a variation of the inert
doublet model [25,26] (in itself an extension of the model
in Ref. [27]). We present the model in Sec. II. In Sec. III,
we describe the scenario we consider. We show the con-
ditions for the lightest sterile neutrino to constitute the dark
matter in Sec. IV and conclude in Sec. V.

II. THE MODEL

In this variation of the inert doublet model [25,26], one
scalar doublet �ð�þ; �0Þ and three sterile neutrinos, which
we call inert-sterile neutrinos, Ni with i ¼ 1, 2, 3 odd
under a new parity Z2, are added to the SM. All the
particles in the SM are even under the additional Z2

symmetry. These assignments make the new particles ‘‘in-
ert’’ because their couplings to the SM particles are very
limited. The leptonic Yukawa couplings in this model are

L Y ¼ fijð���i þ ��0liÞlcj þ hijð�i�
0 � lj�

þÞNj þ H:c:

(2.1)

Here � ¼ ð�þ; �0Þ is the SM scalar doublet field, and
Lð�i; liÞ are the SM lepton fields. Under the extended
electroweak symmetry SUð2ÞL �Uð1ÞY � Z2, the fields
�, N, �, and L are in the ð2; 1=2;�Þ, ð1; 0;�Þ,
ð2; 1=2;þÞ, and ð2;�1=2;þÞ representations, respectively.
The inert and the standard doublet scalar also couple
through the scalar potential [26],

V ¼ �2
1�

y�þ�2
2�

y�þ �1ð�y�Þ2 þ �2ð�y�Þ2
þ �3ð�y�Þð�y�Þ þ �4ð�y�Þð�y�Þ
þ 1

2�5½ð�y�Þ2 þ H:c:�: (2.2)

In particular the last quartic coupling provides the mass
splitting between the two physical inert neutral scalar

particles �H ¼ ffiffiffi
2

p
Imð�0Þ and �L ¼ ffiffiffi

2
p

Reð�0Þ [25,26],
which are the heaviest and the lightest for �5 < 0 (other-
wise the two would be exchanged)

m2
�H

�m2
�L

¼ j�5jv2: (2.3)

The masses of the inert scalar bosons are

m2
�þ ¼ �2

2 þ �3v
2=2;

m2
�H

¼ �2
2 þ ð�3 þ �4 � �5Þv2=2�2

2 þ ð�L � 2�5Þv2=2;

m2
�L

¼ �2
2 þ ð�3 þ �4 þ �5Þv2=2�2

2 þ �Lv
2=2: (2.4)

Here v=
ffiffiffi
2

p ¼ 174 GeV is the vacuum expectation value
(VEV) of the SM Higgs field (the inert scalar does not
acquire a VEV),m�� is the mass of the charged scalars, �5

has been chosen to be real, and we define �L ¼ �3 þ �4 þ
�5. The only other terms in the Lagrangian allowed by the
Z2 symmetry are Majorana mass terms for the inert-sterile
neutrinos,

1
2MiNiNi þ H:c: (2.5)

The Z2 symmetry forbids sterile-active neutrino mixings.
TheNi’s are not the Dirac mass partner of the �i as in usual
extensions of the SM and active neutrino Majorana masses
are generated at one-loop level. The active neutrino mass
matrix elements are [25]

ðM�Þij ¼
X
k

hikhjk
Mk

16�2

�
m2

�H

m2
�H

�M2
k

ln

�
m2

�H

M2
k

�

� m2
�L

m2
�L

�M2
k

ln

�
m2

�L

M2
k

��
: (2.6)

We will assume in what follows that m�H
is of the order of

100 GeVand m�L
of the order of tens of GeV; thus the first

term in Eq. (2.6) is dominant.
The Z2 parity implies that the lightest inert particle is

stable and thus a good dark matter candidate. Both the
lightest inert scalar [25,26,28–33] and the lightest sterile
neutrino [25,34,35] could be dark matter candidates. We
will assume the second possibility.
In Refs. [34,35] it was assumed that the mass difference

between �L and �H is small, i.e. the coupling �5 is very
small. In this case, in order to generate the observed active
neutrino masses, the hij couplings cannot be very small. In

addition, it was assumed thatm0 ¼ ðm2
�H

þm2
�L
Þ=2>M1,

M2, M3 and the lightest Ni is produced thermally. Under
these assumptions, Ref. [34] found that the lightest inert-
sterile neutrino can be CDM and account for the whole of
the dark matter if its mass is in the range 7–300 GeV.

III. PARAMETER CONSTRAINTS

Here we will explore a range of values of the coupling
constants different from those previously considered,
namely, �5 not very small and hij Yukawa couplings small

enough to ensure that the sterile neutrinos Ni are never in
equilibrium in the early Universe. We will not study the
flavor structure of the couplings hij, but only their order of

magnitude. We call generically h1, h2, and h3 the couplings
of N1, N2, and N3, respectively. We assume a hierarchy in
the couplings, with h1 < h2 ’ h3. We also assume that
only the lightest sterile neutrino, which we take to be N1,
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is lighter than the lightest inert scalar�L and hence, it is the
dark matter candidate. The �L particles are produced
thermally in the early Universe and decouple when they
are nonrelativistic. The subsequent late decay of the �L

produces the inert-sterile N1 relic particles that now con-
stitute the dark matter. In this scenario, depending on the
mass, abundance, and lifetime of �L, the N1 can be either
CDM or WDM and account for the whole of the dark
matter with mass in the range of �few keV to tens of
GeV. We will show that all requirements on the model
are fulfilled: active neutrino masses of the right order of
magnitude are obtained, the upper bound on the hi;j from

� ! e� is easy to fulfill, all Ni producing reactions in the
early Universe are out of equilibrium, and the necessary
relic density and decay rate of�L for different values of the
�L and N1 masses are obtained, while respecting all the
collider and other bounds imposed on the model.

Let us see first how large the Yukawa couplings h must
be to get reasonable values for the active neutrino masses,
i.e. ðM�Þi;j ’ 10�1 eV. Using Eq. (2.6), and assuming that

�L is significantly lighter than �H, thatM2;3 is of the same

order of magnitude but larger than m�H
, and that the

contributions of N2 and N3 are dominant, we get

h2;3 ’ 0:7� 10�5

�
M2;3

100 GeV

�
1=2

�
100 GeV

m�H

�

�
�
ln

�
M2

2;3

m2
�H

���1=2
: (3.1)

Notice that when m�H
is large with respect to m�L

,

Eq. (2.3) implies that m�H
’ ffiffiffiffiffiffiffiffiffij�5j
p

v. Moreover, when

M2;3 are larger than but similar to m�H
, the logarithm in

Eq. (3.1) is close to 1, thus

h2;3 ’ 3� 10�6ffiffiffiffiffiffiffiffiffij�5j
p

�
M2;3

100 GeV

�
1=2

: (3.2)

Lepton flavor transitions like the � ! e� process in Fig. 1
occur in this model. The branching ratio, B�!e� ¼
��!e�=��!e�� in the inert doublet model is [34,36]

B�!e� ¼ 192�3�

G2
F

���������
X
j

h�jhej

4ð4�Þ2m2
��

F2

�M2
j

m2
��

���������
�
2
;

(3.3)

where � is the fine structure constant and GF is the Fermi
constant. For M2;3 ’ m�� the function F2ðxÞ�
½1� 6xþ 3x2 þ 2x3 � 6x2 lnðxÞ�½6ð1� xÞ4��1 is F2ð1Þ ’
1=12, whereas for M1 <m�� it is F2ð0Þ ’ 1=6 [36]. The

experimental upper bound on the branching ratio, Bð� !
e�Þ � 1:2� 10�11 [37], implies

h2;3 � 2� 10�2

�
m��

100 GeV

�
(3.4)

for h1 	 h2;3.
Let us now see how small the couplings hij must be in

order for the Ni to never be in equilibrium in the early
Universe. The upper bounds are particularly important for
N2 and N3, whose generic couplings, h2 and h3, are larger
than the coupling h1 of N1. The Ni can be produced
through the reactions in Fig. 2, i.e. two to two reactions
L �L ! NiNi mediated by any of the four physical inert
particles �H, �L, �

þ, and ��, which we call now generi-
cally �, or �� ! NiNi mediated by L. The Ni could in
principle be produced through the decay � ! NiL and the
inverse decay of �L ! Ni. The production rate for N2, for
example, is

�N2
¼ X

L

ð2h	viL �L!N2N2
þ h	viL �L!N2N3

Þn2L=neqN2

þX
�

ð2h	vi��!N2N2
þ h	vi��!N2N3

Þn2�=neqN2
;

(3.5)

where n
eq
N2

is the N2 equilibrium number density which

appears in the equation as a normalization factor, and nL
and n� are the number densities of the standard leptons

and the inert scalars, respectively, at the temperature
considered.
Equation (3.5) is derived from the Boltzmann equation

for the production of Ni (i ¼ 1, 2, 3) in the process ab !
Nic, where a, b, and c are particles and we assume that
only the initial particles, a and b, have initially a nonzero
particle density. If the particles a and b are in equilibrium,
assuming Maxwell-Botzmann density distributions, the
time evolution of the number density nNi

depends on the

number densities of particles a and b in the following
manner [see e.g. Eqs. (5.8) and (5.23) of Chap. 5 of
Ref. [38]]:

dnNi

dt
þ 3HnNi

¼ X
a;b;c

nanbh	ab!Nicjvji: (3.6)

As usual, it is convenient to change variables to Y � nNi
=s

FIG. 1. Diagram for � ! e� transition in the variation of the
inert doublet model we consider here.

FIG. 2. Production processes of inert-sterile neutrinos in the
early Universe.
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and x � mNi
=T [see Eq. (5.16) of Ref. [38]] and obtain

dY

dx
¼ 1

Hxs

X
a;b;c

nanbh	ab!Nicjvji: (3.7)

Now, dividing and multiplying the right-hand side of
Eq. (3.7) by n

eq
Ni

as a normalizing function, one gets

x

Yeq

dY

dx
¼ �Ni

H
; (3.8)

where �Ni
is defined as in Eq. (3.5) above. Equation (3.7) is

equivalent in this case to Eq. (5.26) of Ref. [38] and shows
that YNi

is never significantly different from zero if

�Ni
=H < 1.

Following Refs. [39,40] and making use of
Refs. [41,42], for relativistic �, Ni, and L the thermal
averaged cross sections of L �L ! NiNi and of �� !
NiNi are approximately given by

h	viL �L!NiNi
’ 0:7� 10�1 h

4
i

T2
; (3.9)

h	vi��!NiNi
’ 3� 10�1 h

4
i

T2
ln

�
4T2

M2
i þm2

�

�
; (3.10)

which show that the process �� ! NiNi is dominant and

�Ni
’ ���!NiNi

’ 0:7� 10�1h4i T ln

�
4T2

M2
i þm2

�

�
: (3.11)

The production is out of equilibrium if the rate is smaller
than the expansion rate of the Universe, H,

�Ni
< H ¼ 1:66

ffiffiffiffiffi
g


p T2

MPl

; (3.12)

where g
 is the number of degrees of freedom and MPl is
the Planck mass. Since the right-hand side of Eq. (3.12)
decreases faster than the left-hand side for decreasing T, if
the condition is fulfilled for the smallest T value in the
range considered, i.e. the smallest T for which all the
particles involved in the production are relativistic, then
it is fulfilled for all larger T.

At high temperatures T >M2;3 ’ m�H
we need to write

the condition in Eq. (3.12) at T ’ Mk ’ m�H
. Thus, the

production of relativistic N2;3 is out of equilibrium at T >

M2;3 ’ m�H
if

h2;3 < 2� 10�4

�
g


106:75

�
1=8

�
M2;3

100 GeV

�
1=4

: (3.13)

Since we are assuming M1 <m�L
	 M2;3, the condition

in Eq. (3.12) for relativistic N1 and �L must be taken at
T ’ m�L

; thus the production of relativistic N1 from rela-

tivistic �L is out of equilibrium if

h1 < 2� 10�4

�
g


106:75

�
1=8

�
m�L

10 GeV

�
1=4

: (3.14)

At temperatures in the rangeM2;3 > T >m�L
, in which the

N2;3 are nonrelativistic (but �L and L are relativistic), the

relevant thermal average cross sections for N2;3 production

are approximately

h	viL �L!NiNi
’ 0:8� 10�2 h

4
i

T2
exp

�
� 2Mi

T

�
; (3.15)

h	vi��!NiNi
’ 2� 10�1 h

4
i

T2
exp

�
� 2Mi

T

�
: (3.16)

The production is again dominated by the �L�L ! NiNi

process, thus

�Ni
’ ��L�L!NiNi

’ 0:7� 10�1h4i
T5=2

M3=2
i

exp

�
�Mi

T

�
:

(3.17)

Because this rate decreases faster than H, if �Ni
< H is

fulfilled at T ¼ M2;3 where � is maximum within the T
interval, the process will be out of equilibrium for lower
values of T, and thus we obtain

h2;3 < 3� 10�4

�
g


106:75

�
1=8

�
M2;3

100 GeV

�
1=4

: (3.18)

For still lower temperatures T < m��;0 , for which all the

inert bosons are nonrelativistic but the N1 are relativistic,
we need to verify that the N1 are not produced thermally
(recall we are assuming that m�;0

� >M1). In this case

h	vi��!N1N1
’ 3

4�
h41

M2
1

m4
�

; (3.19)

and

�N1
’ ���!N1N1

¼ 10�2h41
M2

1

m�

exp

�
� 2m�

T

�
: (3.20)

This rate decreases faster than H as T decreases; thus if
�N1

=H < 1 at the highest temperature in the range consid-

ered, T ¼ m�, the condition is fulfilled at any lower T.

Thus,

h1 < 3� 10�2

�
g


106:75

�
1=8

�
m�L

10 GeV

�
3=4

�
MeV

M1

�
1=2

:

(3.21)

After considering all the required upper bounds on the hij
Yukawa couplings, we conclude that Eq. (3.13) provides
the most restrictive upper bound on the Yukawa couplings
of the heaviest inert-sterile neutrinos, h2;3, and they are

compatible with the value assigned to h2;3 in Eq. (3.1),

which is necessary to account for the active neutrino
masses. The most restrictive bound on h1, the Yukawa
couplings of the lightest inert-sterile neutrino N1, will be
given in Eq. (4.2) below and is derived from our require-
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ment of a long enough lifetime of the lightest inert bosons
�L into N1.

Let us now consider the decays of the �� and �H into
inert-sterile neutrinos. Ifm�

� > m0
� þmW , then the process

�� ! �0 þW can occur. The branching ratio of the decay
mode�� ! NiLwith respect to the dominant�� ! �0 þ
W mode is proportional to the ratio of the couplings
h2i =g

2
W , where gW is the weak coupling. Using the value

of h2;3 necessary to produce the active neutrino masses,

given in Eq. (3.2) with j�5j ’ 0:2, for example, h2i =g
2
W ’

10�10 (Mi=100 GeV), which is negligible. Thus, the heav-
ier inert-sterile neutrinos N2;3 are not produced in the

decays of the inert charged bosons. Neither is the lightest
inert-sterile neutrino produced in these decays, since h1 	
h2;3. If, insteadm�� <m�0 þmW , the 3-body decay�

� !
�0 þ Lþ �L dominates the decay of ��; the branching
ratio of �� ! NiL then goes as h2i =g

4
W ’ 10�11

(Mi=100 GeV) for the heavier inert-sterile neutrinos. The
branching ratio is even smaller for N1. Again, the decay of
the charged inert bosons into the inert-sterile neutrinos Ni

is negligible. For the decays of the heavier neutral inert
boson �H the same arguments apply but changing the W’s
by Z’s. Thus the inert-sterile neutrinos are not produced in
the decays of �� and �H.

IV. RELIC DENSITYANALYSIS

We need to insure that �L, the lightest inert scalar
particle, is produced thermally in the early Universe and
that it is in equilibrium before decoupling while it is al-
ready nonrelativistic, at freeze-out, Tf:o: < m�L

. The domi-

nant processes that maintain the�L particles in equilibrium
depend on the couplings of �L with the SM particles. The
�L gauge couplings and its couplings in the scalar potential
are the same that occur in the inert doublet model in the
absence of sterile neutrinos. Using the same couplings, in
Refs. [26,29,32] �L with mass in the GeV range are found
to be good dark matter candidates. We want instead for the
�L decay into the lightest inert-sterile neutrino N1, which
constitutes the dark matter now. After the �L particles
decay through the process �L ! N1�i, there is one N1

per each �L. In order for N1 to account for the whole of
the dark matter, the number density of �L at their decou-
pling must be larger for the case considered here than in the
scenarios in which they constitute the dark matter
[26,29,32]. The number density nN1

that is needed for

nonrelativistic N1 to be the dark matter at present must
be the same relic number density n�L

the �L should have at

present had they not decayed. Thus the relic density of N1

is now nN1
M1n�L

M1 and

�N1
h2 ¼ ��L

h2
�
M1

m�L

�
; (4.1)

where ��L
h2 is the relic density the �L would have at

present if they were stable. When the N1 can be either

CDM or WDM we require the N1 density to be that of the
observed relic density of dark matter �DMh

2 ¼ 0:1099�
0:0062 [43]. If the N1 are instead hot dark matter (HDM)
we should impose the upper bound �N1

h2 � 0:014 �
�HDM-maxh

2 (the 95% C.L. on the relic density of light
neutrinos) [43].
If m�L

> mW , the �L annihilate efficiently into two W

bosons and their relic density is too small even to constitute
the bulk of the dark matter; thus we are not interested in
this mass range. When m�L

< mW , the processes in Fig. 3

and their inverse processes keep �L in equilibrium. The
lightest scalar �L coannihilates with the heaviest inert
scalar partner �H. The coannihilation �H�L ! f �f into
SM fermions f is mediated by the Z boson and its cross
section depends on the mass splitting � ¼ m�H

�m�L

which in turn, depends on �5 [see Eq. (2.3)]. The �L also
coannihilates with ��, via W� exchange, with a cross
section which depends on the mass split between them.
The process �L�L ! f �f via Higgs exchange also keeps
�L in equilibrium, and in the particular range of masses we
explore below is the dominant process. We use the public
code MICROMEGAS [44] to compute the �L relic density.
The decay �L ! N1L must happen after the �L freeze-

out at Tf:o: ¼ m�L
=xf, where xf is in the 20–30 range.

Thus, the decay rate must be ��!N1L ’ h21m�L
=16�<H

for T > Tdecay and ��!N1L ’ H for T ¼ Tdecay with

Tdecay < Tf:o:. These conditions lead to the most stringent

bound on h1

h1 < 2� 10�9

�
20

xf

��
m�L

10 GeV

�
1=2

�
g


10:75

�
1=4

: (4.2)

Note that this bound on h1 is consistent with the previous
requirements.
We can now show that the inert-sterile neutrinos pro-

duced in this model may be either WDM or CDM, which
are characterized by the freestreaming length �fs [45,46]

�fs ¼ 2rtEQð1þ zEQÞ2

� ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

r2ð1þ zEQÞ2
s

þ 1

rð1þ zEQÞ2
�
: (4.3)

Here the subscript EQ denotes matter-radiation equality
and r ¼ aðtÞpðtÞ=M1, where aðtÞ and pðtÞ are the scale
factor of the Universe and the dark matter particle charac-
teristic momentum at time t, respectively. As the Universe
expands, the ratio r remains constant. At the time of

FIG. 3. Dominant �L annihilation channels into standard
model fermions f.
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matter-radiation equality, �fs must be 0.1 Mpc [47] for
WDM, which fixes r ’ 10�7. At the moment of decay of
the �L (we make the approximation of instantaneous de-
cays) the scale factor of the Universe is a ’ To=Tdecay,

where To is the photon temperature today, and the momen-
tum of the relativistic N1 decay products is m�L

=2. Thus,

r ’ Tom�L
=ð2TdecayM1Þ. Therefore, r ¼ 10�7 fixes the

mass of N1 to be

ðM1ÞWDM ’ 2:4 MeV

�
m�L

10 GeV

��
5 MeV

Tdecay

�
: (4.4)

Given a particular Tdecay, Eq. (4.4) provides theN1 mass for

which the N1 would constitute WDM. Heavier N1 (smaller
�fs) would be CDM and lighter ones (larger �fs) HDM.

We require the decay temperature to be Tdecay * 5 MeV,

in order not to affect the success of BBN predictions, and
Tdecay <m�L

=xf, because the decays of �L happen after

they decouple. Thus, the range of masses for which N1

could be a good WDM candidate is

24 keV

�
xf
20

�
< ðM1ÞWDM < 2:4 MeV

�
m�L

10 GeV

�
: (4.5)

Finally, in order to choose suitable sets of parameters
there are a number of constraints that need to be consid-
ered. The null result for the process eþe� ! Z
 ! �H�L

in LEP II searches for neutralinos, and imposes the bound
m�H

> 120 GeV when m�L
< 80 GeV [48]. Alternatively,

in a range of parameters we will not explore, the neutral
inert boson mass difference must be m�H

�m�L
< 8 GeV

[48] for m�L
þm�H

> mZ due to the LEP I measurement

of the Z width, which implies m�L
> 40 GeV. In addition,

the suitable set of parameters should also be within the
allowed range provided by electroweak precision measure-
ments [26,32].

There are also constraints on the � couplings in the
scalar potential, Eq. (2.2). Vacuum stability of the scalar
potential imposes [26]

�1;2 > 0; �2 < 1;

�3; �L � �5 � j�5j>�2
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
;

(4.6)

and perturbativity of the scalar potential imposes [26]

�3
2 þ ð�L � �5Þ2 þ �5

2 < 12�1
2: (4.7)

In Figs. 4 and 5, we show regions of them�L
�M1 plane in

whichN1 has the right dark matter density for two different
sets of parameters. The Higgs mass is MHiggs ¼ 160 GeV,

m�H
¼ 125 GeV, and m��130 GeV in Fig. 4 and the

Higgs mass is MHiggs ¼ 500 GeV, m�H
¼ 150 GeV, and

m��300 GeV in Fig. 5. The upper panels of the figures

show the bounds on �L obtained from vaccum stability
(cross-hatched violet regions) and perturbativity (shaded

FIG. 5 (color online). Same as in Fig. 4 but for
MHiggs500 GeV, m�H

¼ 150 GeV, and m�� ¼ 300 GeV.

FIG. 4 (color online). In both panels, MHiggs ¼ 160 GeV,
m�H

¼ 125 GeV, and m�� ¼ 130 GeV. Upper panel: The

shaded areas correspond to forbidden values of �L from vacuum
stability (cross-hatched violet region) and perturbativity (shaded
gray region) arguments. Lower panel: From top to bottom, the
(blue, red, and green colored) narrow strips show the regions
where N1 would have the right dark matter density for the
corresponding top to bottom values of �L given in the panel.
The unshaded (middle) background region labeled ‘‘WDM
Possible’’ corresponds to the range in Eq. (4.5), where the N1

may constitute WDM (above it, N1 can only be CDM and below
it, only HDM). For any particular value of Tdecay between 5 MeV

(upper boundary of unshaded region) and m�L
=xf (lower bound-

ary of unshaded region, which depends slightly on �L through xf
and is higher for larger �L) there is one value of M1 given by
Eq. (4.4), within the unshaded background region for which N1

would be WDM (and it would be CDM for all larger values of
M1 and HDM for all smaller ones). In order for N1 to be allowed
as HDM, its mass must be at least a factor of
�DMh

2=�HDM-maxh
20:1099=0:014 ’ 8 smaller than that corre-

sponding to the center of the narrow (colored) bands for a given
m�L

.
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gray region) arguments. From top to bottom, the (blue, red,
and green colored) narrow strips in the lower panels of
Figs. 4 and 5 show the regions in the m�L

�M1 plane in

which �N1
h2 in Eq. (4.1) is within the 3	 measured range

for the dark matter (either CDM or WDM). The top,
middle, and bottom strips corresponds, respectively, to
the top, middle, and bottom values of �L shown in the
panels. The unshaded background region labeled ‘‘WDM
Possible’’ corresponds to the range in Eq. (4.4), where the
N1 may constitute WDM (above it, it can only be CDM and
below it, only HDM). For any particular value of Tdecay

between 5 MeV (which defines the upper boundary of the
unshaded region) and m�L

=xf (which defines the lower

boundary of the unshaded region) there is one value of
M1 given by Eq. (4.4), within the unshaded background
region for which N1 would be WDM (N1 would be CDM
for all larger values of M1 and HDM for all smaller ones).
Notice that the lower boundary of the unshaded region
depends on �L through xf; it is slightly higher for higher

values of �L (thus the blue, red, and green colors of the
lower regions, for which the N1 can only be HDM).
Therefore, within the unshaded background region N1

could be WDM or CDM, depending on Tdecay. For a given

set of parameters defining the model (and hence a given
Tdecay), in order for N1 to be allowed as HDM, its massM1

must be, at least, a factor of �DMh
2=�HDM-maxh

2 ¼
0:1099=0:014 ’ 8 smaller than the value at the center of
the narrow strips defined by Eq. (4.1) for a given m�L

(for

the corresponding values of �L). The figures show that the
lightest inert-sterile neutrino could be HDM even for
masses as large as �1 keV.

V. CONCLUSIONS

In conclusion, we have shown that inert-sterile neutri-
nos, produced nonthermally in the early Universe, could be
a viable WDM or CDM candidate. They are virtually
nondetectable in either direct or indirect dark matter
searches because of their extremely weak couplings to
SM particles. Thus, their existence could be revealed
only by discovering other particles of the model in collider
experiments. We should keep in mind that the dark matter
may consist of an admixture of different types of particles
and that particles undetectable in dark matter searches may
be part of it. The existence of these particles could only be
inferred from collider data, supplemented by the null re-
sults from dark matter searches or with results from these
searches which find other detectable dark matter compo-
nents with a density smaller than required to constitute the
whole of the dark matter. Unveiling the nature of the dark
matter necessarily requires the combination of collider and
direct and indirect searches.
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