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A quintessence scalar field or cosmon interacting with neutrinos can have important effects on

cosmological structure formation. Within growing neutrino models the coupling becomes effective

only in recent times, when neutrinos become nonrelativistic, stopping the evolution of the cosmon.

This can explain why dark energy dominates the Universe only in a rather recent epoch by relating the

present dark energy density to the small mass of neutrinos. Such models predict the presence of stable

neutrino lumps at supercluster scales (� 200 Mpc and bigger), caused by an attractive force between

neutrinos which is stronger than gravity and mediated by the cosmon. We present a method to follow the

initial nonlinear formation of neutrino lumps in physical space, by integrating numerically on a 3D grid

nonlinear evolution equations, until virialization naturally occurs. As a first application, we show results

for cosmologies with final large neutrino average mass �2 eV: in this case, neutrino lumps indeed form

and mimic very large cold dark matter structures, with a typical gravitational potential 10�5 for a lump

size �10 Mpc, and reaching larger values for lumps of about 200 Mpc. A rough estimate of the

cosmological gravitational potential at small k in the nonlinear regime, �� ¼ 10�6ðk=k0Þ�2, 1:2�
10�2 h=Mpc< k0 < 7:8� 10�2 h=Mpc, turns out to be many orders of magnitude smaller than an

extrapolation of the linear evolution of density fluctuations. The size of the neutrino-induced gravitational

potential could modify the spectrum of CMB anisotropies for small angular momenta.

DOI: 10.1103/PhysRevD.81.063525 PACS numbers: 95.36.+x, 13.15.+g, 98.80.Es

I. INTRODUCTION

The presence of an interaction between a quintessence
scalar field or cosmon and other species in the Universe
[1,2] influences the nature and properties of dark energy,
with relevant effects on structure formation [3–14].
Recently, N-body simulations have been performed for
dark matter particles interacting with dark energy [15–
17]. We concentrate here on growing neutrino models
[18,19], where the neutrino-cosmon coupling can explain
the ‘‘why now?’’ problem of dark energy. It has been
recently shown [20] that this predicts the existence of
very large (supercluster) structures.

Indeed, the key ingredient of growing neutrino quintes-
sence is the presence of a coupling between dark energy
and neutrinos. The latter have a mass that grows with the
evolution of the Universe—m�ð�Þ being a function of the
cosmon field �. The cosmon-neutrino coupling � is given
by the logarithmic derivative � ¼ �d lnm�=d�. Since
neutrino masses become cosmologically relevant only for
redshift z � 5, this framework can naturally answer the
question why only in recent times dark energy leads the
Universe expansion to accelerate, thus providing a solution
to the coincidence problem.

In these models, as long as neutrinos stay relativistic, the
coupling plays no role and dark energy tracks the back-
ground along the attractor trajectories characterizing the
cosmon evolution in the presence of an exponential poten-
tial [1,21–24]. When neutrinos become nonrelativistic

(NR), the coupling between neutrinos and quintessence
becomes relevant and almost stops the evolution of the
cosmon. Then dark energy starts to resemble a cosmologi-
cal constant with roughly the value of the exponential
potential at the end of the attractor era. The transition
from the attractor solution to an almost static solution is
therefore strictly connected to a cosmological event, that is
neutrinos becoming nonrelativistic. This ‘‘trigger event’’
leads dark energy to dominate over cold dark matter,
naturally starting the recent era of accelerated expansion.
Growing neutrino quintessence requires a cosmon-

neutrino interaction somewhat stronger than gravity—typi-
cally the attraction between nonrelativistic neutrinos ex-
ceeds gravity by a factor 103. This coupling is substantially
larger than a possible cosmon coupling to atoms. This may
be motivated by the particular particle physics mechanism
responsible for the neutrino mass, which typically involves
a heavy singlet field and not only the standard Higgs
doublet [19]. Even much larger neutrino couplings leading
to a strongly coupled ‘‘acceleron-neutrino fluid’’ have been
investigated within mass varying neutrino models
[5,25,26]. In particular, mass varying neutrino models
employ a scalar field with a mass much larger than the
Hubble parameter. For growing neutrino models, in con-
trast, the time dependent cosmon mass equals the Hubble
parameter up to a factor of order one, similar to many
models of coupled quintessence. (For coupled quintes-
sence with neutrinos at the linear level see
Ref. [10,20,27–29].) For this reason, the cosmon and the
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neutrinos always have to be treated as separate ingredients
rather than as a common fluid. We remark that the small
time dependent cosmon mass follows naturally from pos-
sible explanations of an exponential potential in forms of
an asymptotically vanishing dilatation anomaly [30]. It
requires no additional fine tuning of particle physics
parameters.

Furthermore, in growing neutrino cosmologies the cou-
pling is ineffective for most of the cosmological evolution
and only becomes active when neutrinos become nonrela-
tivistic, relating naturally dark energy and neutrino prop-
erties. In view of bounds on the present neutrino mass,
m�ðt0Þ< 2:3 eV [31], and the time dependence of m�,
which makes the mass even smaller in the past, the time
when neutrinos become nonrelativistic is typically in the
recent history of the Universe, say zNR � 5–10 [18]. It is
only from this time on that neutrinos start feeling the
effects of the coupling, manifesting effectively as a new
attractive interaction between neutrinos. The ‘‘fifth force’’
responsible for the formation of neutrino lumps ‘‘switches
on’’ only in rather recent cosmology.

Neutrino fluctuations on length scales larger than the
free streaming length are still present at zNR, and they start
growing for z < zNR with a large growth rate. As illustrated
in [20], this opens the possibility that neutrino perturba-
tions rapidly grow nonlinear on supercluster scales and
beyond. Neutrino nonlinear fluctuations later turn into
bound neutrino lumps of the type discussed in [32], thus
opening a window for observable effects of the growing
neutrino scenario. The linear analysis [20] has already
provided an estimate of this effect as a function of redshift
and scale. Typically large scale neutrino fluctuations with
size * 10 Mpc become nonlinear at a redshift z � 1.

As noted in [20], a continuation of the linear evolution
beyond the time when the neutrino fluctuations are of order
unity can easily produce erroneous results. In the linear
approximation, the neutrino density contrast would quickly
reach huge values, producing a very large gravitational
potential. Then a very strong ISW effect would seemingly
indicate a strong conflict with the cosmic microwave an-
isotropies (cf. Ref. [29] for a linear analysis). The true
physics differs very strongly from the linear behavior, for
example, by the asymmetry between very large positive
density contrasts, while a negative density contrast is
bounded by �� � �1 since the neutrino density cannot
be negative. In order to understand the true gravitational
potentials that will be generated by the neutrino lumps, one
has to understand the nonlinear dynamics of how local
neutrino lumps form, how they are distributed in mass
and size and how they may merge into larger lumps as
time goes on.

In this work we investigate the formation of individual
neutrino lumps at a nonlinear level and in the Newtonian
limit. One may wonder if a spherical collapse approach
suffices to give a meaningful description of the lumps. We

find that this is not the case, as the major force driving
neutrinos to collapse is not gravity but the additional fifth
force introduced by the coupling to the cosmon and domi-
nant once neutrinos decouple from the background expan-
sion. The evolution of the effective cosmic scale factor for
the space occupied by the neutrino lump is only a sublead-
ing effect, in contrast to the formation of dark matter halos.
We have therefore developed a numerical method for
solving the hydrodynamic equations for the neutrino fluid,
coupled to the cosmon and gravity. We have also included
dark matter, but this is a subleading effect.
The nonlinear analysis developed in this work provides a

self-consistent way of analyzing the growth of neutrino
perturbations in growing neutrino models. We show that
neutrinos indeed form stable structures on large subhorizon
scales and we estimate the properties of the lump as a
function of redshift and scale. In particular, we compute
the gravitational potential of the lump at a time when the
collapse ends due to virialization. This is a key quantity for
an estimate of the effects of neutrino lumps on a large scale
structure—as large scale peculiar velocities—or on the
cosmic microwave anisotropies in the form of the inte-
grated Sachs-Wolfe (ISW) effect.
This paper is organized as follows. In Sec. II we recall

the framework of growing neutrino cosmologies in which
neutrino lumps form. In Sec. III we introduce the set of
equations describing the evolution of neutrino overden-
sities at a nonlinear level. We comment on the methods
used in the numerical integration and present our results for
the case of large present neutrino masses in Sec. IV.
Section VI discusses the initial conditions used for the
nonlinear analysis. In Sec. VII we relate the nonlinear
equations to relativistic linear ones. Finally, we draw our
conclusions in Sec. VIII.

II. GROWING NEUTRINO COSMOLOGIES

Growing neutrino models are described by the set of
equations illustrated in [20] both for the evolution of the
homogeneous and isotropic background and for linear
perturbations. Here we recall for convenience the essential
ingredients characterizing these models. At the back-
ground level, the Universe evolves in time according to
the Friedmann and acceleration equations:

H 2 �
�
a0

a

�
2 ¼ a2

3

X
�

�� � k

a2
(1)

and

a00

a
¼ H 2 � a2

6

X
�

½��ð1þ 3w�Þ�; (2)

where primes denote derivatives with respect to conformal
time �, the sum is taken over all components � of the
energy density in the Universe. We use k ¼ 0 for a spa-
tially flat background. The equation of statew� is related to
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the energy density �� for each species in the usual way,
w� � p�=��. A crucial ingredient in this model is the
dependence of the neutrino mass on the cosmon field �,
as encoded in the dimensionless cosmon-neutrino coupling
�,

� � � d lnm�

d�
: (3)

For increasing � and �< 0 the neutrino mass increases
with time

m� ¼ �m�e
���; (4)

where �m� is a constant. The coupling� is chosen here to be
a constant but can be, in general, a function of �, as
proposed in [19] within a particle physics model, leading
to similar effects. The cosmon field � is normalized in

units of the reduced Planck mass M ¼ ð8�GNÞ�1=2, and
�2 gives the strength of the cosmon mediated interaction.
The case �� 1 corresponds to a strength comparable to
gravity. For a given cosmological model with a given time
dependence of �, one can determine the time dependence
of the neutrino mass m�ðtÞ. For three degenerate neutrinos
the present value of the neutrino massm�ðt0Þ can be related
to the energy fraction in neutrinos (h � 0:72)

��ðt0Þ ¼ 3m�ðt0Þ
94 eVh2

: (5)

The dynamics of the cosmon can be inferred from the
Klein Gordon equation, now including an extra source due
to the neutrino coupling,

�00 þ 2H�0 þ a2
dU

d�
¼ a2�ð�� � 3p�Þ; (6)

with �� and p� ¼ w��� the energy density and pressure of
the neutrinos. We choose an exponential potential [19,22–
24,33]:

Vð�Þ ¼ M2Uð�Þ ¼ M4e���; (7)

where the constant � is one of the free parameters of our
model and determines the amount of non-negligible dark
energy at early times. Current bounds constrain it to be of
the order �� 10 or bigger [34].

The homogeneous energy density and pressure of the
scalar field � are defined in the usual way as

�� ¼ �02

2a2
þVð�Þ; p� ¼ �02

2a2
�Vð�Þ; w� ¼ p�

��

:

(8)

Finally, we can express the conservation equations for dark
energy and growing neutrinos as follows [1,2]:

�0
� ¼ �3H ð1þ w�Þ�� þ ��0ð1� 3w�Þ��; (9)

�0
� ¼ �3H ð1þ w�Þ�� � ��0ð1� 3w�Þ��: (10)

The sum of the energy-momentum tensors for neutrinos
and dark energy is conserved, but not the separate parts.
We neglect a possible cosmon coupling to cold dark matter
(CDM), so that �0

c ¼ �3H�c.
Given the potential (7), the evolution equations for the

different species can be numerically integrated, providing
the background evolution shown in Fig. 1. (Here we choose
� ¼ �52, � ¼ 10 as in the original proposal [18].) The
initial pattern is a typical early dark energy model, since
neutrinos are still relativistic and almost massless, with
p� ¼ ��=3 so that the coupling term in Eqs. (6), (9), and
(10) vanishes. Dark energy is still subdominant and falls
into the attractor provided by the exponential potential (see
[1,2,21] for details), in which it tracks the dominant back-
ground component with an early dark energy fraction
�h ¼ n=�2 and n ¼ 3ð4Þ for the matter (radiation) domi-
nated era. Radiation dominates until matter radiation
equality, then CDM takes over. As the mass of the neutri-
nos increases with time, the coupling term ���� in the
evolution equation for the cosmon (6) [or equivalently in
(9) and (10)] starts to play a significant role, kicking � out
of the attractor as soon as neutrinos become nonrelativistic.
In Fig. 1 this is visible in the modified behavior of �� and
�� for z < 10. Subsequently, small decaying oscillations

characterize the �� � coupled fluid and the two compo-
nents reach almost constant values. The values of the
energy densities today are in agreement with observations,
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FIG. 1 (color online). Energy densities of neutrinos (red, solid
line), cold dark matter (green, long-dashed line), dark energy
(blue, dot-dashed line), and photons (black, short-dashed line)
are plotted vs the redshift. For all plots we take a constant � ¼
�52, with � ¼ 10 and large average neutrino mass m� ¼
2:11 eV.
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once the precise crossing time for the end of the scaling
solution has been fixed by an appropriate choice of the
coupling �. At present the neutrinos are still subdominant
with respect to CDM, though in the future they will take the
lead.

For completeness, note that the unperturbed neutrino
pressure reads

p� ¼ 1

3
a�4

Z
q2dqd�

q2

	ð�Þ f0ðqÞ; (11)

where q ¼ ap ¼ qn̂ is the comoving 3-momentum, 	 ¼
	ð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þm�ð�Þ2a2p
, f is the phase space distribu-

tion, and f0 its zeroth-order term (Fermi-Dirac distribu-
tion). The neutrino energy density can either be given by
solving the conservation equation (10) or equivalently via
the integral:

�� ¼ a�4
Z

q2dqd�	ð�Þf0ðqÞ: (12)

III. NON-LINEAR EVOLUTION EQUATIONS

Once neutrinos become nonrelativistic (z� 5–10), they
start feeling an attractive force stronger than gravity and
mediated by the cosmon field. Neutrino perturbations rap-
idly grow and become nonlinear at a redshift z� 1–2 [20],
when they might form stable lumps, whose solutions have
been described in [32]. Our intent in this section is to
investigate, via a nonlinear analysis in physical space, the
formation and evolution of neutrino lumps and their prop-
erties in redshift, in order to estimate the final gravitational
potential characterizing the lumps as a function of their
final scale.

With this aim in mind, we solve the nonlinear Navier-
Stokes equations in an expanding universe and position
space with comoving coordinates x:

�0
� ¼ �v� � r�� � ð1þ ��Þr � v�; (13)

v 0
� ¼ �ðH � ��0Þv� � ðv� � rÞv� þrð�� þ ���Þ;

(14)

��� ¼ ��a2�� ���; (15)

��� ¼ �a2

2
�� ���: (16)

Here ��� is the background neutrino energy density and
�� � ���= ��� is the relative neutrino density perturbation
(� 1 when reaching nonlinearity). The vector v� is the
velocity for neutrinos. More precisely, it describes the
peculiar comoving velocities—it vanishes for neutrinos
with constant comoving coordinates. The evolution of the
velocities is driven by the gradients of the gravitational
potential and cosmon field, with the usual Hubble damping
and quadratic term arising from particle number conserva-

tion. The velocity dependent term ��0v� in Eq. (14) is not
present in the standard Navier-Stokes equations. It ac-
counts for momentum conservation, reflecting the fact
that the neutrino mass changes in time as m0=m ¼
���0. This friction term can be rigorously derived within
the fully relativistic equations, as outlined in the last sec-
tion of this paper.
Equation (16) is the Poisson equation for the gravita-

tional potential that we have indexed as�� to clarify that it
only comprises the neutrino contribution. [The sign con-
vention for the gravitational potential in Eqs. (14) and (16)
matches the linear equations in [20] with � corresponding
to �k2 in momentum space.] Equation (15) is the per-
turbed Klein Gordon equation in the limit in which time
derivatives are negligible with respect to the spatial ones,
as it holds in the Newtonian approximation. Effectively,
Eq. (13) relates the time evolution of the neutrino over-
density �� to the divergence of its corresponding momen-
tum density. The time dependence of the momentum
density itself is directly connected, via Eq. (14), to the

given forces: in addition to the gravitational force ~Fg ¼
~r��, the cosmon mediated fifth force ~F ¼ � ~r�� is
present, in the form derived already at a linear perturbation
level (see Sec. VII). Combining Eqs. (15) and (16) imme-
diately shows that ��� 2��, clarifying that the scalar

field mediates a force of order j ~Fj ¼ j� ~r��j � 2�2j ~Fgj.
For a choice of ���50 this is about 5000 times stronger
than gravity.
In Sec. VII we will show that Eqs. (13) and (14) can be

obtained by considering the appropriate limits of the fully
relativistic equations derived from the Bianchi identity in
presence of an external source [35]

r
T


� ¼ Q� ¼ � �

M
T


@��; (17)

where T

� is the stress energy tensor of the neutrino fluid.

For convenience we display Eqs. (13)–(16) also in terms
of cosmic time t and physical (not comoving) coordinates:

@��

@t
¼ �rð��vtotÞ � � _��� � �r���vtot; (18)

@vtot
@t

¼ ðrvtot þ� _�Þvtot þrð�� þ��Þ � ðvtot � rÞvtot;
(19)

Here �� and � are the local neutrino density and cosmon
fluid including the fluctuations and vtot is the total neutrino
velocity, composed of Hubble flow and peculiar velocity as

v tot ¼ dr

dt
¼ Hrþ v�: (20)

Eqs. (18) and (19) may be combined to yield the conser-
vation equation of the momentum density p � ��vtot,
namely,
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_p i ¼ fdispðiÞ þ fattrðiÞ; (21)

where we have defined

f dispðiÞ � �@j½��vtotðiÞvtotðjÞ�;
fattrðiÞ � ��@ið�� þ ��Þ: (22)

The attractive force fattr may eventually be balanced by the
countering force associated to the velocity dispersion, fdisp.

We have omitted in Eq. (22) and (18) an additional pres-
sure force

f pressðiÞ � �3ðH � � _�Þp�vtotðiÞ;

p� ¼ w�ð�� þ ���Þ;
(23)

which is important only when neutrinos are still relativis-
tic. It prevents the growth of neutrino overdensities for z *
10.

IV. EVOLUTION OF NEUTRINO LUMPS

A. Method

We integrate the set of nonlinear equations (13)–(16) on
a 128� 128� 128 point 3-dimensional spatial grid of
fixed size L3, by means of a method of lines with an
adaptive time stepper. The length L is chosen to match
the given initial profile, such that a good resolution around
its maximum can be obtained. We impose cubic periodic
boundary conditions, �ðxÞ ¼ �ðxþLÞ with Li ¼ 0, L.
For each time step, the Poisson equations (15) and (16)
are solved employing a fast Fourier transform routine.

We start by considering the formation of a single lump
within our box. As an initial density profile we consider a
Gaussian:

��ðxÞ ¼ hine
�x2=r2

in : (24)

The initial density amplitude hin is chosen to match the
corresponding linear overdensities at the matching redshift
zm, an issue which will be discussed in more detail in the
next section. A convenient width of the box corresponds to
about L� 6rin. We start the numerical integration early
enough (z� 9) in order to allow us to start with rather
arbitrary small neutrino velocities vin (see below).
Independently of their precise values there is enough
time for their radial component to adapt such that linear
perturbations are matched by the time we reach the range
of validity of the nonlinear equations specified above. We
also investigate alternative initial conditions for the veloc-
ities. The dependence of our results on initial conditions is
discussed in the next paragraph, while illustrating our
results.

B. Turn over and free fall

One of our aims is to understand and illustrate the
evolution of neutrino lumps in time: we expect that after
a first phase in which the lump expands with the back-

ground, peculiar velocities will take over. The lump will
then decouple from the background expansion and contract
with increasing inward velocities. A useful quantity to
illustrate the rapid increase in velocity is the kinetic energy
of the lump, defined in physical coordinates as

Ekin ¼ 1

2

Z
V
���v

2
totd

3x; (25)

with total velocity vtot ¼ v� þHx ¼ v� þHr being the
sum of peculiar and expansion contributions. Comparing
the kinetic contribution to the potential energy can give us
an indication of when and how fast the lump approaches
virialization. The potential energy is defined as

Epot ¼ � 1

2
�
Z
V
�����d3x; (26)

where V denotes the physical volume of the overdensity.
We have omitted here the small gravitational potential
energy. Both Ekin and Epot are evaluated in practice in

Cartesian coordinates rather than in spherical ones, as
late phases of the collapse might involve important
anisotropies.
The nonlinear evolution of a perturbation as resulting

from the integration described above is shown in Fig. 2. It
is compared to the corresponding linear evolution.We have
chosen rin ¼ 45 Mpc (4.46 Mpc) in comoving (physical)
units and find a characteristic final size of the lump Rf ¼
3:21rin ¼ 14:3 Mpc in physical units. The precise defini-
tion of Rf will be given below. The ratio of kinetic to

potential energy is also shown in the plot. The evolution

0.001
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 2.2  2.4  2.6  2.8  3  3.2  3.4

1+z

linear δν
nonlinear δν

Ekin/Epot

FIG. 2 (color online). Linear (red, solid line) and nonlinear
(green, long-dashed line) neutrino overdensity �� vs the redshift,
until virialization occurs. The nonlinear overdensity is evaluated
in the center of the lump. The ratio of kinetic over potential
energy associated to the lump is also shown (blue, short-dashed
line). The comoving (physical) initial lump radius rin ¼ 45 Mpc
(4.46 Mpc) fixes the box size L ¼ 270 Mpc for the simulation
and corresponds roughly to a scale k=h ¼ 0:1 Mpc�1 for h ¼
0:72. It also determines a final physical radius of the lump Rf ¼
3:21rin ¼ 14:3 Mpc.
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of the potential energy and of the kinetic energy, together
with the split of the kinetic energy into expansion and
peculiar components, is further shown in Fig. 3 for the
same final scale. For the quantitative evaluation of the
energies we choose a volume that extends to a radius where
the density contrast reaches (1=50) times the central den-
sity contrast.

By looking at Fig. 2 and 3, we can identify three redshift
ranges:

(i) 1þ z > 3: In this range, density perturbations are
still linear; total velocities and therefore kinetic en-
ergy are dominated by the expansion term
���H 2x2ð¼ ���H

2r2Þ present in Eq. (25) while
the peculiar velocities v are negligible. At this stage,
both potential and kinetic energy are increasing due
to the accretion of more neutrinos in the lump and to
the increase in the neutrino mass. The potential
energy Epot increases somewhat faster (both ���

and �� are proportional to m�), which results in a
decreasing ratio Ekin=Epot.

(ii) 2:5< 1þ z < 3: At z� 2 the attractive fifth force
starts to become the dominant contribution in Eq.
(21). In this regime we can trust the nonlinear evo-
lution for the chosen scale. The nonlinear density
perturbation detaches from the linear one. Also the
radial peculiar velocities start to become non-
negligible, adding an inward contribution to the out-
ward expansion term. As a consequence, for 1þ z <
3 the increase of the kinetic energy is slowed down.
The latter effect is more pronounced for the inner
shells of the profile, for which the radial velocities
change sign, while outer shells still tend to expand
with the background universe. During this period

Epot keeps increasing, with a slightly steeper slope

than in the previous range due to the effects of
nonlinearity on the neutrino density perturbation.

(iii) 2:3< 1þ z < 2:5: The nonlinear effects on the den-
sity perturbation become very pronounced. Peculiar
velocities dominate over the expansion term and
induce a rapid increase of the kinetic energy, due
to the inward velocities. As a consequence, the char-
acteristic scale of the lump shrinks until virialization
is reached. Equation (14) is now completely domi-
nated by the fifth force. The lump has effectively
decoupled from the background and evolves accord-
ing to the laws of free fall. At the end of this period
the tangential peculiar velocities as well as irregu-
larities in the spherical symmetry of the lump grow
rapidly. The borders of numerical precision are
reached. The latter effects lead to a highly aniso-
tropic behavior, gradients become very large, and
velocities change directions almost randomly. The
time stepper eventually stops the integration. Note
that our code stops as the ratio jEkin=Epotj ap-

proaches the value of 1=2, corresponding to the
virialization condition. The latter has not been intro-
duced by hand in the equations but is automatically
reached due to increasing tangential peculiar mo-
tions and deviations from spherical symmetry.

As the neutrino lump undergoes the different evolution-
ary stages, the density profile adapts according to our
equations once the nonlinear regime is reached. While
density perturbations are still linear, the profile expands
with the background, leaving its shape almost unaltered.
The only major change is the buildup of a surrounding
underdensity as neutrinos flow into the lump. Note that for
a single lump the underdensities are always much smaller
than the background density, even when the overdensities
become large. When collapse is approached, the profile
changes its shape. As outer shells turn around at smaller
redshifts, the slope of the profile changes. Its initial
Gaussian shape changes into a profile which resembles
common density profiles for dark matter halos, such as
the Navarro-Frenk-White profile. We plot the density pro-
file for different redshifts in Fig. 4.
The size of the neutrino lump is the most characteristic

quantity which distinguishes the evolution of different
types of inhomogeneities. If we start with vanishing initial
peculiar velocities and adjust hin (rin) according to the
linear evolution of small perturbations, our initial condi-
tions depend on only one relevant parameter rin. We are
interested to determine the final size Rf of the neutrino

lump in terms of rin. An understanding of the time evolu-
tion of the different length scales in the lump is also
important for the precise definition of the volume integral
in Eqs. (25) and (26).
It is therefore interesting to consider the different radii of

the profile, characterizing shells at a different distance

 1e+59
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E
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FIG. 3 (color online). Evolution of potential (pink, dotted line)
and kinetic energy (red, solid line) vs the redshift. The two main
contributions to the kinetic energy are also shown: the energy
associated with the Hubble expansion is depicted in green (long-
dashed line) and the one due to peculiar motion in blue (short-
dashed line). The size of the lump is the same as in Fig. 2. An
energy of 1066 erg corresponds to roughly 6� 1077 eV.
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from the center of the lump. In order to define radii
corresponding to inner or outer shells, we consider the
physical radius Rð�; zÞ for which the amplitude reaches a
given fraction � of the central amplitude: �ðz; Rð�; zÞÞ �
��ðz; 0Þ. The radius Rð�; zÞ depends on the redshift z.
Higher values of � correspond to amplitudes which are
closer to the central value and therefore to inner shells
inside the lump. Since the lump has no spherical symmetry
we have to make the definition of Rð�; zÞ more precise by
taking the largest value of ~r for which the density ��ð0Þ is
reached, or formally define the radius Rð�; zÞ as the supe-
rior limit of the f ~rg ensemble. In formulas we have:

Rð�; zÞ :¼ supfj ~rjj��ðz; ~rÞ � ���ðz; 0Þg: (27)

Here the factor � is a constant 0 	 � 	 1 and all spatial
coordinates ~r are again physical.

We show the time evolution of Rð�; zÞ in units of rin in
Figs. 5 and 6. We have chosen four different values for �,
i.e. � 2 f0; 1=50; 1=4; 3=4g and display R0ðzÞ ¼ Rð� ¼
0; zÞ, R1=50ðzÞ ¼ Rð 150 ; zÞ, R1=4ðzÞ ¼ Rð14 ; zÞ, and R3=4ðzÞ ¼
Rð34 ; zÞ. As expected, for larger values of � the correspond-

ing shell turns around earlier. For comparison, we have also
plotted the slope corresponding to the scale factor aðzÞ. As
expected it corresponds to the slope of R� within the
redshift regime in which the expansion is still dominant.
As a measure of the size of the lump we employ RlðzÞ ¼
R1=50ðzÞ. We assume that the change of R after virialization

can be neglected, such that the final size Rf is given by

Rf ¼ RðzvirÞ ¼ Rð1=50; zvirÞ.

C. Onset of virialization

The late evolution of the different radii displayed in
Fig. 6 shows a rather irregular behavior. This indicates
the onset of virialization, as also suggested by the ratio
Ekin=Epot in Fig. 2. The reason is that transversal velocities

become important in this redshift range. In order to illus-
trate this we analyze the evolution of nonradial velocities
within the lump. In Fig. 7, we plot the ratio
Ekin;nonradial=Ekin;peculiar, with

E kin;nonradial ¼ 1

2

Z
V
����v

2
�d

3x; (28)

E kin;peculiar ¼ 1

2

Z
V
���v

2
�d

3x; (29)

where �v � v� ðR0=RÞr, v is the peculiar velocity, R the
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FIG. 6 (color online). Late evolution of different radii for a
final maximal radius of Rf ¼ 14:3 Mpc. This plot zooms Fig. 5

to a smaller range of z, such that the more irregular behavior
close to virialization becomes visible.
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FIG. 5 (color online). Radii of the neutrino overdensity profile
at different amplitudes, for a final maximal radius of Rf ¼
14:3 Mpc. We plot the time evolution of the physical radii where
the neutrino overdensity reaches a certain fraction of the core
density.
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FIG. 4 (color online). Neutrino overdensity profiles at redshifts
z ¼ 8:9 (red, solid line), z ¼ 2:2 (green, long-dashed line) and
z ¼ 1:3 (blue, short-dashed line) in terms of physical distance r
from center, averaged over all angles. The central overdensities
are �0 ¼ �ð0; zÞ ¼ 1:1� 10�5, 1:6 � 10�2, 250, respectively. To
illustrate the change in shape we have normalized the profiles by
dividing out �0. The radius is given in physical units. An initial
broadening due to the expansion is followed by a strong con-
centration process. An apparent discrepancy between the width
of the profiles and the radii shown in Fig. 5 is caused by the
different definition (27).
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radius of the lump, and r is the radial coordinate. While for
higher redshifts the nonradial contribution to the peculiar
kinetic energy is entirely negligible, it increases rapidly
once the evolution of the lump has predominantly turned
around.

In order to understand this, it is useful to consider a shell
with a given radius Rsð�Þ and analyze Eq. (13) to see how
deviations from its mean velocity evolve [36]. For this
purpose, we transform into a coordinate system in which
the mean of the shell is at rest, ~x ¼ Rs

�1ð�Þr ¼ ða=RÞx,
where r and x are the physical and comoving spatial
coordinates, respectively. We then decompose the peculiar
velocities into a radial part vk ¼ x0 and a nonradial part �vs
and insert it into Eq. (14). Appropriately transforming
spatial derivatives leads to the expression.

�v0s ¼ �
�
R0
s

Rs

� ��0
�
�vs � a

Rs

½ð�vs � rÞ�vs
�r?ð�� þ ���Þ�:

(30)

The gradient r? in front of the potentials shows that only
nonradial components influence the evolution. This may
also be understood by noting that the underlying situation
is formally equivalent to the evolution of the velocity
perturbation within a universe expanding with the rate
R0=R. The structure should thus simply resemble Eq. (14)
with an altered Hubble function. The additional factors of
a=R are due to the choice of the time coordinate.

As long as the shell is expanding, the friction term R0=R
behaves as a damping force. Once the shell turns around,
however, R0 becomes negative, and the term effectively
enhances the buildup of nonradial velocities. Because of
the large modulus of the collapse rate, this happens quite
rapidly. Of course, an exact radial flow will remain radial
by virtue of rotation symmetry (up to numerical errors). We
have therefore started initially with small anisotropies in
the velocity (or density) distribution. For this purpose, we

have imposed an additional initial velocity field vrand,
whose directions were randomly distributed. Its amplitude
at each space point jvrandj was chosen to be of an order of a
few percent of the mean initial expansion velocities. We
find that the late stages of the flow are independent of the
precise choice of initial conditions for the nonradial
velocities.

V. GRAVITATIONAL POTENTIAL OF NEUTRINO
LUMPS

A. Single lump potential

The key quantity of interest is the characteristic gravi-
tational potential of a neutrino lump. This will influence
the peculiar velocities of galaxies or gas, or the CMB
anisotropies via the ISWeffect. Of course, the gravitational
potential depends on the distance from the center of the
lump as shown in Fig. 8. We have indicated the scale Rf ¼
R1=50ðzvirÞ by a dot. Figure 8 demonstrates that the radius

R1=50 is a typical scale which characterizes the gravita-

tional potential of the lump. We may define ��;0 as the

gravitational potential in the center of the lump,��;Rl
as its

value at the radius Rl defined in Eq. (27), and ��;Rl=3 a

corresponding value at distance Rl=3 from the center. We
plot in Fig. 9 the time evolution of the gravitational poten-
tial, for a lump with final radius Rf ¼ 14:3 Mpc. Note

again that �� is obtained as the solution to the Poisson
equation (16).
In Fig. 10 we consider families of lumps with different

initial conditions and show the gravitational potential of
the lump versus its final size Rf. We plot the nonlinear

value of the gravitational potential�� as obtained from the
numerical solution of Eqs. (13)–(16) for the definition of
Rf ¼ Rð1=50; zvirÞ according to Eq. (27). This value has to
be handled with care. We have investigated in this paper
only the situation where a single lump forms, essentially
independently of possible surrounding lumps. In our nu-
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FIG. 8 (color online). Dependence of gravitational potential on
the distance from the center at the redshift of virialization z ¼
1:3. The dot indicates Rf.
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merical work, this follows from the choice of initial con-
ditions. In the true Universe, the situation may be much
more complicated. Many lumps of different sizes are ex-
pected to form, competing for the available neutrinos. Even
though these ‘‘initial lumps’’ may eventually merge to
bigger structures, such a merging process can be very
different from the essentially spherical infall investigated
in this paper. One typically expects a smaller gravitational
potential for a big structure arising from merging as op-
posed to spherical infall, since the ‘‘substructures’’ carry
tangential velocities. In this respect our result for ��

should be considered as an upper bound, in particular, for
large values of R. It should become a good approximation
for small enough R where the possible merging processes
do not play a dominant role. Without extended numerical
simulations it is difficult to assess the value of R beyond
which the true characteristic gravitational potential re-
mains substantially below the values in Fig. 10. With these
words of caution the final value for a virialized structure of
typical size �10ð100Þ Mpc is �� � 10�6ð10�4Þ.

B. Neutrino-induced cosmological
gravitational potential

For an estimate of the cosmological impact of the gravi-
tational potential of the neutrino lumps one needs a relation
between the characteristic potential for a single lump and
the average cosmological value of the gravitational poten-
tial at a given scale, expressed as the Fourier component

�ðcÞ
�;k. One expects a typical suppression factor 
c for the

cosmological gravitational potential as compared to the
potential of a single lump with size Rf ¼ �=k,


cðkÞ �
j�ðcÞ

�;kj
j�ðlÞ

�;Rj
; k ¼ �

R
: (31)

For clarity we here indicate the cosmological potential and
the single lump potential by superscripts ðcÞ and ðlÞ. If all
lumps would have the same size, the suppression should be
roughly given by the fraction of the volume occupied by
neutrino lumps. For a rough numerical estimate of 
c we
may then use the relations

�� ðlÞ
� Vlumps ¼ N

ðlumpsÞ
� ; �ðcÞ

� Vhor ¼ N�; (32)

with Vlump the total volume occupied by neutrino lumps

and Vhor the volume within the cosmological horizon,

Vhor � 4�
3 ð3000 MpcÞ3, and define by FðlÞ

� � NðlumpsÞ
� =N�

the total fraction of neutrinos which are bound in lumps of
size R ¼ �=k. This estimates 
c in terms of the ratio of the

average energy density ��ðlÞ
� of the neutrinos in the lumps

and the cosmological background density �ðcÞ
�


c �
Vlumps

Vhor

¼ FðlÞ
�
�ðcÞ
�

��ðlÞ
�

: (33)

For a typical neutrino density averaged over the volume of

the lump within radius R ¼ R1=50 we find ��ðlÞ
� =�ðcÞ

� � 100.

In our simulation we find typical values for FðlÞ
� for single

lumps in a box to be FðlÞ
� � 0:1 at zvir; but this depends of

course on the size of the box. Even if all neutrinos are

finally bound in some lump one typically has FðlÞ
� ðkÞ< 1

since not all are in lumps of size �=k. We will take FðlÞ
� ¼

1=4.
For an alternative rough estimate of 
c we have ran-

domly distributed virialized neutrino lumps with a final
profile according to our numerical solution over a cosmo-
logical volume Vc. The number of lumps was chosen such

that the total number of bound neutrinos matches FðlÞ
� N�.

The corresponding gravitational potential �ðcÞ
� ðxÞ has then

been Fourier transformed in order to extract �ðcÞ
�;k ¼ 1

Vc
�R

d3x�ðcÞ
� ðxÞ expð�ikxÞ. We show in Fig. 11 oversimpli-
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FIG. 10 (color online). Gravitational potential as a function of
the final size R of the neutrino lump (at redshift z ¼ 0). We
define R as the radius at virialization Rf, assuming that it

remains approximately constant from virialization up to now.
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FIG. 9 (color online). Neutrino gravitational potential �� as a
function of the redshift for a fixed final scale Rf ¼ 14:3 Mpc.

We evaluate �� for different distances from the center of the
lump, namely, at Rl ¼ R1=50, Rl=3 and in the center of the lump

(��;c).
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fied distributions where all lumps correspond to a single
size R. Nonetheless, using Eq. (31), the order of magnitude
of 
c can be extracted from Fig. 11. We show the resulting


cðkÞ in Fig. 12, together with the estimate (33), for FðlÞ
� ¼

1=4. We also show a mixed distribution of lumps with final
radii of Rf ¼ 14:3 Mpc, 31.8 Mpc, and 63.6 Mpc, with

equal numbers of neutrinos in each sort of lumps and a total

FðlÞ
� ¼ 1=4, as well as an analogous mixed distribution

where the mass of the lumps is concentrated in the center
(point masses).

A suitable interpolation of Fig. 12, as indicated by the
dot-dashed light blue line, corresponds to a simple fitting
formula

j�ðcÞ
� ðkÞj ¼ 10�6

�
k

k0

��

;

k0 ¼ 3:9� 10�2 h=Mpc; 
 ¼ 2:

(34)

This fit should only be taken as a useful order of magnitude
estimate. Figure 12 illustrates that the final order of mag-
nitude of the gravitational potential is quite sensitive to the
choice of distribution. The expected cosmological distri-
bution of neutrino lumps involves a distribution over a
substantial range of lump sizes. Moreover, large lumps
may have substructures. This makes it hard to estimate

the relevant numberNðlumpsÞ
� ðkÞwithout explicit cosmologi-

cal simulations of structure formation. On the one side, the
total fraction of neutrinos found in lumps may come close
to 1. On the other hand, the distribution of the available
neutrinos over lumps with various sizes may reduce the

effective fraction FðlÞ
� relevant for a given scale. Especially

for small k near the horizon the clumping may not have had
enough time to bind a large fraction of neutrinos. Small

FðlÞ
� ðkÞwould result in a further suppression of the effective


cðkÞ. Furthermore, note that our fit is likely to overesti-
mate the power on small scales, i.e. for large k. At these
scales, the exact shape of the profile is still of substantial
importance, as can be seen from Fig. 12. However, the
simple fitting formula (34) with 
 ¼ 2 is a good estimate at
large scales and therefore a viable mean to illustrate the
cosmological implications of neutrino lumps.

In Fig. 13 we plot j�ðcÞ
�;kj as a function of k according to

Eq. (34). The substantial uncertainties in this estimate are
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FIG. 11 (color online). Gravitational potential as obtained by
Fourier transforming distributions of lumps of the given size. For
comparison we have included the single lump gravitational
potential at distance R ¼ R1=50 from the center.
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FIG. 12 (color online). Suppression factor 
cðkÞ as obtained by
using the definition (31) for distributions of lumps of size Rf ¼
14:3 Mpc (red solid line), Rf ¼ 63:6 Mpc (green, long-dashed

line) and a mixed distribution (blue, short-dashed line). The
dotted pink line marks the gravitational potential of the mixed
distribution of point masses, while the dot-dashed light blue line
corresponds to a suitable interpolation. The estimate (33) is also
shown (black, double-dashed line). It almost coincides with the
interpolation of the mixed point mass distribution. The error
bounds displayed (light blue, shaded) correspond to 4
c and
0:1
c.
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FIG. 13 (color online). Gravitational potential as a function of
the scale k obtained from the nonlinear (red, solid line) evolu-
tion. The error bounds (red, shaded) arise from the bounds for

c. For scales k smaller than kPN (solid square) the Newtonian
approximation is no longer valid and the extrapolated nonlinear
potential is drawn as a dotted line. The dot-dashed black line
corresponds to the extreme bound (35).
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reflected by error bounds which correspond to a multi-

plication of 
cðkÞ by factors of 4, corresponding to FðlÞ
� ¼

1, and 0.1. The upper limit may be regarded as a rather

solid bound—effects of merging dynamics and FðlÞ
� < 1

reduce ��ðkÞ as compared to this bound. A more reliable

estimate of �ðcÞ
�;k needs the actual distribution of neutrino

lumps as a function of size and mass—this may perhaps
require extended N-body simulations. In Fig. 13 we have
also included the strongest possible upper bound for the
cosmological gravitational potential, obtained by assuming
all neutrinos in the horizon are bound within a single,
pointlike lump. This results in the following expression:

�ðcÞ
� ðkÞ ¼ ���ðt0Þ

2k2
¼ m�ðt0Þ n�ðt0Þ

2M2k2

¼ m�ðt0Þ
2 eV

1:07� 10�8 ðh=MpcÞ2
k2

: (35)

Any physically realistic scenario will lead to substantially
lower gravitational potentials.

For scales R> RPN � 500 Mpc, k=h < 6:3 �
10�3 Mpc�1, the Newtonian approximation breaks down
and our estimate of the nonlinear �� would have to be
corrected by non-Newtonian effects. The exact matching
of the linear evolution of �� for scales outside the horizon
and the nonlinear results would require a nonlinear analy-
sis which also includes post-Newtonian terms. This un-
known region 10�3 & k=h & 6� 10�3 may leave the
strongest observational imprint by the ISW effect.

Figure 13 can be taken as a clear illustration that the
formation of nonlinear structures makes the output of
linear Boltzmann codes unreliable when density fluctua-
tions become nonlinear. Instead of increasing continuously,
the gravitational potential will saturate at the typical values
found by the nonlinear analysis. An unjustified extrapola-
tion of the linear approximation overestimates the gravita-
tional potential by many orders of magnitude for scales of a
few hundred Mpc. For the parameters used in this paper,
m� ¼ 2:1 eV, � ¼ �52, the linear extrapolation would
predict enormous oscillations in the spectrum of CMB
anisotropies for angular momenta l � 100, very strongly
in contradiction with observation. Placing reasonable
bounds on the gravitational potential, consistent with our
findings for the nonlinear evolution, completely eliminates
this feature and makes the spectrum of anisotropies insen-
sitive to growing neutrinos in this range of l.

On the other hand, in the range of smaller l � 10, a large
time variation of the gravitational potential for scales
10�3 h=Mpc & k & 10�2 h=Mpc could leave a big im-
print on the CMB spectrum. A too large ISW effect could
rule out such a scenario. We conclude that in principle the
ISW effect provides a viable mean to constrain growing
neutrino cosmologies, at least in the case of large neutrino
masses. For smaller neutrino masses the neutrino fraction

�� of the energy density is smaller, thereby presumably
reducing the ISW signal.

VI. INITIAL CONDITIONS

A. Matching of the radius

The size of a given neutrino lump under investigation is
determined by the parameter rin. For a comparison with
linear perturbation theory, as in Fig. 10, we have to relate
rin to an appropriate comoving wave number k. We will see
in the next section that for a given scale there is a range of
redshifts at which the fully relativistic linear and the
Newtonian nonlinear evolution coincide. We can make
use of this in order to approximately fix the relation be-
tween our initial width parameter rin and the comoving
momentum scale k for the associated linear fluctuation. For
this purpose we choose a redshift zm within the discussed
range. At the given redshift zm we choose rin such that the
nonlinear and linear quantities relate via

rin ¼ �

k
: (36)

Note that the exact choice of zm is not important. Within
the linear regime R=a ¼ const, since the radius scales with
the background scale factor. Hence, different matching
redshifts yield equivalent results for the relation between
rin and k.

B. Matching of the amplitude

Taking the radius of the overdensity as a free parameter,
the amplitude hin still needs to be fixed. From a primordial
gaussian fluctuation spectrum we expect a characteristic
distribution of initial amplitudes around zero, with a mean
square dispersion given by �linðrinÞ. Actually, we find that
the redshift of virialization zvir depends monotonically on
hin, while the final gravitational potential of the lump
remains rather insensitive with respect to the precise choice
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FIG. 14 (color online). Dependence of the gravitational poten-
tial at virialization and virialization redshift zvir on the initial
amplitude hin for rin ¼ 45 Mpc. The oscillations in �� reflect
the oscillation of the neutrino mass as a function of zvir.
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of hin. We demonstrate this in Fig. 14. This approximate
‘‘universality’’ of the lump properties after collapse may be
of substantial help for observational investigations of our
scenario.

A good estimate for a characteristic amplitude hin can be
obtained as follows. We consider the overall perturbation
�ðrin; hinÞ defined as the convolution of our initial
Gaussian density configuration �ðxÞ and a window func-
tion of size rin:

�2ðrin; hinÞ ¼ 1

ð2�Þ3
Z
V
j�ðkÞj2jWðkÞj2d3k; (37)

where �ðkÞ and WðkÞ are the Fourier transforms of the
density configuration �ðxÞ and of the window function
WðrinÞ respectively. The best estimate for hin corresponds
to the value for which �ðrin; hinÞ ¼ �linðrinÞ. Here �linðrinÞ
is computed by using in Eq. (37) the samewindow function
WðrinÞ, but now the linear fluctuation spectrum �linðkÞ
instead of the Fourier transform of Eq. (24). The linear
�linðkÞ are evaluated from a Boltzmann code for growing
neutrinos and taken at redshift zin. Note that the matching
is done in k space and therefore requires no explicit cal-
culation of the relation between length scales r and mo-
mentum k. Since �2ðrin; hinÞ � h2in we obtain a simple

estimate for a characteristic initial amplitude. The depen-
dence of the initial amplitude hin on the initial radius rin is
displayed in Fig. 15.

Our choice of hin neglects two effects: the dragging of
neutrinos by dark matter fluctuations and the nonzero
pressure at early stages of the evolution. We have checked
that these effects largely cancel. This is demonstrated by
the good agreement with full linear perturbation theory
(including both effects) in the matching range, as discussed
in the next section.

In concluding this section, we mention a series of checks
that have been done in order to verify the stability of our
results.

(i) We have checked how the formation of the lump
depends on different initial velocities. In particular,

increasing initial nonradial velocities leads to a faster
collapse. All features, such as size and total mass of
the final lump remain unaltered. In particular, the
final gravitational potential is unaffected by a change
of initial velocities.

(ii) We have investigated the formation of two lumps
within our box, both in the case in which they are far
enough apart to evolve independently and in the case
in which they are close enough to merge. For a given
final size Rf of the lump, neutrinos distribute equiv-

alently in the two cases, with no relevant effect on
the gravitational potential. This scenario does not
cover, however, the interesting and probably realistic
case of many lumps moving for a while under their
mutually attractive cosmon forces.

(iii) We have considered the case of an initially non-
spherical profile, with a pronounced ellipticity as in
the following expression:

��ðxÞ ¼ h�;ine
�ððx2þy2Þ=ðw2

xyÞÞ�ðz2=w2
z Þ;

with wz 
 wxy. Again, for a given Rf the results do

not seem to be affected in an important way.
(iv) Finally, we have estimated the effect of Fermi pres-

sure within a Thomas-Fermi approximation as a
function of the lump size. The ratio of Fermi force
and fifth force, increasing with the scale, never hap-
pens to be bigger than a few percent and therefore
has a negligible effect on the estimated gravitational
potential.

VII. RELATIVISTIC EQUATIONS

In this section we further discuss the range of validity of
the numerical integration and clarify the choice of initial
conditions. We are interested in the range of scales and
redshifts where neutrino perturbations are expected to
grow nonlinear as found in [20], when neutrinos are non-
relativistic and pressure terms are negligible. The integra-
tion of the nonlinear equations starts inside the linear
regime, when neutrinos start becoming nonrelativistic, at
zin � 9. At this time the system is still correctly described
by the set of fully relativistic linear perturbation equations,
in which neutrino pressure terms are included. We want to
make sure to have a proper matching of the regime where
we can trust the nonlinear equations used in the numerical
solution to the regime where the relativistic linear equa-
tions are valid.
For fast comparison to the nonlinear equations we recall

here the set of linear perturbation equations specified in the
case in which the Newtonian limit applies. (For the full,
closed, system of linear perturbation equations see [20],
where linear perturbations for growing neutrinos have been
extensively investigated.) They read

1e-05

1e-04

 1  10  100  1000
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FIG. 15 (color online). Relation between initial radial parame-
ter rin in comoving units and dominant initial amplitude hin.
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�0
� ¼ 3H ðw� � c2�Þ�� � ð1þ w�Þkv�

� ��0 ��

��

½ð1� 3w�Þ�� � ð1� 3c2�Þ���; (38)

�0
� ¼ 3ðH � ��0Þðw� � c2�Þ�� � ð1þ w�Þkv�: (39)

In deriving these equations, we have defined the line
element as given by ds2 ¼ �a2½ð1þ 2�Þd�2 � ð1þ
2�Þ
ijdx

idxj�, where � corresponds to the usual gravita-

tional potential and we are working in Newtonian gauge.
The equations for the density contrasts �iðkÞ ¼ 1

V �R
�iðxÞ expð�ik � xÞd3x [defined as the Fourier transform

of the local density perturbation �iðxÞ ¼ ��iðxÞ=�iðxÞ
over a volume V] involve the velocity perturbations, which
evolve according to

v0
� ¼ �H ð1� 3w�Þv� � ��0ð1� 3w�Þ ��

��

v�

� w0
�

1þ w�

v� þ kc2�
��

1þ w�

þ k�� 2

3

� w�

1þ w�

k�T�
þ �k��

��

��

1� 3w�

1þ w�

; (40)

v0
� ¼ ð1� 3w�Þð��0 �H Þv� � w0

�

1þ w�

v�

þ kc2�
��

1þ w�

þ k� � 2

3
k

w�

1þ w�

�T�

� �k��
1� 3w�

1þ w�

: (41)

These equations reduce to the linearized Navier-Stokes
equations if we set neutrino pressure terms to zero and
consider the case of no anisotropic stress for which � ¼
��, thus obtaining for the neutrino component:

�0
� ¼ �kv�; (42)

v0
� ¼ �ðH � ��0Þv� � kð�þ ���Þ: (43)

The latter equations, here written in Fourier space, are
equal to the ones obtained by linearizing the Navier-
Stokes equations (13) and (14).

For a certain first time period after we start the integra-
tion of the nonlinear equations, neutrino pressure terms
will not yet be negligible and therefore the output of the
linear equations (39) and (41) will differ from the output of
the nonlinear equations (13)–(16), in which we do not
include pressure terms. We will therefore consider the
nonlinear equations without pressure terms as reliable
only after a certain redshift znl, while prior to zl we trust
the relativistic linear equations. There is a redshift range
where both equations are valid. Wematch the evolution at a
certain redshift zm in the range zl < zm < znl, which de-
pends on the size of the lump under investigation. This

matching is done by choosing appropriate initial conditions
for the numerical solution. More precisely, we require for
the ‘‘matching’’ redshift zmðkÞ that pressure terms effec-
tively become negligible. For z < zm we will then consider
the output of the nonlinear integration as valid.
In Fig. 16 we show the critical redshift zcr for which

neutrino fluctuations become well approximated by pres-
sureless nonrelativistic particles. The critical redshift is
plotted as a function of the length scale defined as R=a �
�=k, where k is the momentum scale. We define the critical
redshift as the value of z at which the relative size of
pressure terms drops below a certain value in the linear
equation for v� (41). The shaded region corresponds to
relative pressure contributions between 1% and 10%.
Above the upper (green) line pressure contributions are
>10%; below the bottom (blue) line pressure contributes
for less than 1%.
Our nonlinear equations are meaningful for those scales

and redshifts at which radiation, baryons, and CDM den-
sity perturbations are subdominant with respect to neutrino
density perturbations, as it happens for large scales at late
times due to the rapid effect of the fifth-force acting on
neutrinos only. Only in this regime it is justified to restrict
the contributions to the gravitational potential in (16) to
neutrinos. Finally, note that although lumps are expected to
form at very large scales (� 200 Mpc), these are still well
within the horizon, which justifies a Newtonian approach.
In closing this section, wewould like to mention that it is

also possible to show that the nonlinear equations de-
scribed by (13)–(16) follow from the set of full relativistic
equations taken in the Newtonian limit. We do not intend to
show this explicitly here, but just outline the basic proce-
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FIG. 16 (color online). Critical redshift versus the momentum
scale. The critical redshift is defined as the z at which pressure
terms become negligible in the equation for v�, for each scale.
The blue (dark shaded) region corresponds to relative pressure
contributions less than 1%; the grey (intermediate shaded) region
corresponds to relative pressure contributions between 1% and
10%. The above light grey region corresponds to pressure
contributions >10%.
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dure. For the derivation of the nonlinear relativistic equa-
tions we consider the case in which there is no anisotropic
stress, � ¼ �� so that the line element takes the form
ds2 ¼ �a2½ð1� 2�Þd�2 � ð1þ 2�Þ
ijdx

idxj�. We con-

sider the equations in the Newtonian limit, restricting our
analysis to spatial scales much smaller than the horizon
size, that is to say when H =k � 1. Furthermore, we
consider the weak field approximation, in which the scalar
fluctuation �� and the gravitational potential �� are con-
sidered to be small quantities and only enter the equations
up to linear order. We consider perturbation terms up to
second order in v�ð�;xÞ, as in the Newtonian limit veloc-
ities are small with respect to light speed (i.e.� 1 accord-
ing to our convention). The stress energy tensor of the
coupled neutrino fluid, Tð�Þ�

�, then takes on the following

form:

Tð�Þ0
0 ¼ � ���ð1þ ��Þ �Bð ���; �p�; ��Þv�2;

Tð�Þ0
i ¼ �Bð ���; �p�; ��Þðv�Þi;

Tð�Þi
0 ¼ ð1� 4�ÞBð ���; �p�; ��Þðv�Þi;

Tð�Þi
j ¼ ð �p� þ �p�Þ�j

i þBð ���; �p�; ��Þðv�Þiðv�Þj;

(44)

where we have defined

B ð ���; �p�; ��Þ � ð ��� þ �p� þ �����ð1þ c2sÞÞ; (45)

and in the linear regime c2s ¼ ���=�p� corresponds to the
squared sound velocity of neutrino perturbations.

In the Appendix, perturbation equations are derived

from the conservation equation (17), r
T


� ¼

� �
M T



@��. When pressure terms are neglected and for

��c � ���, these equations reduce to the Navier-Stokes
set of equations (13)–(16), in which the dragging term
��0v� explicitly appears. The latter was found to be a
small effect for the chosen values of the coupling, since
within the considered redshift range the fast oscillations of
the scalar field average out and, as discussed before, � can
roughly be considered to be constant.

VIII. CONCLUSIONS

In growing neutrino cosmologies, the neutrino mass
grows in time as a function of a light dark energy scalar
field, the cosmon. The resulting coupling between cosmon
and neutrinos modifies the evolution of the cosmon as soon
as neutrinos become nonrelativistic. From this time on the
cosmon evolves only very slowly, and its potential energy
acts similar to a cosmological constant. This can provide a
natural explanation of the coincidence problem without
effectively introducing new parameters. The current dark
energy density can be related to the neutrino mass. In
addition, the interaction gives rise to a new long-range
attractive force for neutrinos. This fifth force is responsible
for a rapid growth of neutrino perturbations. These pertur-
bations become nonlinear on large length scales and may

eventually form very large stable structures, neutrino
lumps.
We have extended previous studies on the topic to the

nonlinear regime, providing a method to investigate the
formation of neutrino lumps by evaluating Navier-Stokes
equations, in which the dragging term due to the coupling
has been suitably included. As we have verified, these are
the most general equations to compute the spacetime evo-
lution of perturbations subject to external forces within the
Newtonian limit. Unlike spherical collapse methods, the
full nonlinear equations describe coherently the growth of
structures due to an external force stronger than gravity.
We note that although our calculations were performed
within a growing neutrino scenario, the results are not
limited to this case. Instead, the method can be applied
for general coupled quintessence models, or whenever a
force different from gravity is present, driving the growth
of nonrelativistic matter perturbations.
We have numerically solved the set of hydrodynamical

equations on a three-dimensional spatial grid. This has
allowed us to follow the evolution of a single neutrino
lump in physical space and to determine its properties as
it approaches stability. Nonrelativistic neutrinos decouple
from the background expansion and collapse into virialized
stable structures. We have identified the characteristic
gravitational potential of these structures as a function of
redshift and lump size and we have illustrated the detailed
behavior of the lumps from the linear regime to virializa-
tion. Indeed, after a period of fifth-force driven collapse,
the buildup of large nonradial velocities leads to stabiliza-
tion of the lumps. By solving on a three-dimensional grid
with a general initial profile, we are able to provide a
detailed illustration of the evolution at different distances
from the center of the lump, following the change in kinetic
and potential energy as well as the increasing contribution
of nonradial velocities. We have also estimated the density
profile of the virialized neutrino lumps and the associated
profile of the gravitational potential. Limitations of our
results for characteristic properties of simple neutrino
lumps arise from two issues. First, at the present stage
the numerical precision of our algorithm does not allow
us to compute the behavior after virialization sets in and to
follow the evolution until the neutrino lump becomes
approximately stable. Second, our work concentrates on
the evolution of single lumps while we have not addressed
interesting topics on cosmological scales such as the dy-
namics of the lumps and their possible merging.
The cosmological gravitational potential provides an

important mean to test the model versus observations and
can be used to estimate the impact of neutrino lumps on the
CMB angular power spectrum. An extrapolation from the
gravitational potential for single lumps to the neutrino
lump induced cosmological potential ��ðkÞ at a given
wave number k involves an averaging over the distribution
of neutrino lumps. The present work can only give a very
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rough estimate of the result of this averaging. Nevertheless,
it is apparent that the values of ��ðkÞ resulting from the
nonlinear hydrodynamical equations remain many orders
of magnitude below the extrapolation of the linearized
equations if k 
 10�3 Mpc�1. We find a typical value
��ðkÞ ¼ 10�6ðk=k0Þ�2, where the large uncertainty is re-
flected by the uncertainty in k0 that we estimate in the
range 8:6� 10�3 Mpc�1 < k0 < 5:6� 10�2 Mpc�1. This
estimate has to be modified for k & 4:5� 10�3 Mpc�1,
where neglected effects beyond the Newtonian approxima-
tion become relevant, and for k * 1:1 Mpc�1, where neu-
trino free streaming prevents the formation of lumps. Also,
a formation history involving merging may reduce ��ðkÞ,
especially for small k corresponding to very large lumps.

The characteristic size of��ðkÞ found in this paper is of
an order of magnitude where it may leave imprints on the
CMB spectrum at small angular momenta. In particular,
the late ISW effect could be enhanced, leading to stronger
correlations between temperature fluctuations in the CMB
and observed large scale structures in the gravitational
potential. (The present observational situation hints to an
enhancement of this correlation by a factor of about 2 as
compared to the �CDM model [37].) Small oscillations of
the CMB spectrum for angular momenta l & 50 are also
conceivable. Without a more reliable estimate of��ðk; zÞ it
seems premature to judge if a given growing neutrino
model remains compatible with observation. We recall in
this context that the present work concentrates on a par-
ticular class of growing neutrino models (constant �) and
assumes a large average present neutrino mass �m�ðt0Þ �
2 eV. We expect that a smaller m� reduces the cosmologi-
cal effects of neutrino lumps since the total neutrino frac-
tion of the energy density �� gets reduced and the
neutrino-induced effects set in at even more recent cosmo-
logical times.

It may be possible to directly observe large neutrino
lumps through their gravitational potential. A possible
indication would be an observation of structures at large
length scales where fluctuations in the �CDM model are
expected to remain linear such that substantial over- or
underdensities are very rare. The gravitational potential of
large neutrino lumps may influence a substantial fraction

of space. If we are sitting not too far from a neutrino lump
(or even within a neutrino lump) this may induce a certain
anisotropy of the observed sky on the largest scales (i.e.
small differences between northern and southern hemi-
sphere or similar effects). Finally, the rapid recent growth
of the neutrino-induced gravitational potential could lead
to an enhancement of the peculiar velocities as a character-
istic effect of the nongravitational interactions [38].
Present observations of the large scale bulk flow seem to
suggest values substantially larger than expected in the
�CDM model [39–42]. Finally, the cosmon may also
have a coupling to dark matter, substantially smaller than
the cosmon-neutrino coupling. In this case the fifth-force
effects could also influence the behavior of dark matter.
Detection of such effects would challenge standard�CDM
models, providing a hint for interacting cosmologies such
as growing neutrino models.
Let us end with the remark that there is a chance that the

time variation of the neutrino mass could even be detected.
Indeed, our understanding of structure formation and other
cosmological features places strong upper bounds on the
neutrino masses in early cosmology, say for z * 5. One
may argue about the precise location of this bound, but an
average neutrino massm�ðz > 5Þ of 0.5 eV would certainly
have left a strong imprint on cosmology which has not been
observed. In consequence, if the direct searches for a
neutrino mass or the neutrinoless double beta decay indi-
cate a present neutrino mass larger than 0.5 eV, this could
be interpreted as a strong signal in favor of a growing
neutrino mass.
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APPENDIX

1. Nonlinear relativistic perturbation equations

The evolution equations for a neutrino overdensity can
be derived from conservation of the energy-momentum
tensor (45):

�0
� ¼ 3ðH � ��0Þðw� � c2sÞ�� � ð1þ w�Þð1þ R���Þðrv� � 3�0Þ � ���0ð1� 3w� þ ��ð1� 3c2sÞÞ

þ v�

�
�r�� þ ð1þ 8�Þ r�p�

��

þ 4ð1þ w�Þð1þ R���Þr�� 2�r��ð1� 3w� þ ��ð1� 3c2sÞÞ
�

þ v2�½��c
20
s þ w0

� þ ð1� 3w�Þð1þ w�Þð1þ R���ÞðH � ��0Þ þ 3��ð1þ c2sÞðw� � c2sÞðH � ��0Þ�; (A1)

v�
0 ¼ �r�þ 1� 3w� þ ��ð1� 3c2sÞ

ð1þ w�Þð1þ R���Þ �r��� 1þ 4�

��ð1þ w�Þð1þ R���Þ r�p�

�
�
v� � r þ ð2þ c2sÞv�r�p� � ��c

2
sv�r��

��ð1þ w�Þð1þ R���Þ � 3ð1� c2sÞ�0 þ ðH � ��0Þ 1� 3w� þ R���ð1� 3c2sÞ
1þ R���

�
v�

þ
�
c2sr � v� � ��c

20
s þ w0

�

ð1þ w�Þð1þ R���Þ þ
R�ð1� 3w� þ ��ð1� 3c2sÞÞ

1þ R���

���0
�
v�; (A2)
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where we introduced R� � ð1þ c2sÞ=ð1þ w�Þ. The quan-
tity c2s ¼ �p�=��� equals the squared sound speed of
neutrino perturbations on a linear level.

One may verify that (A1) and (A2), if decomposed into
Fourier modes, reduce to (39) and (41) in the linear regime.

The 0-0 component of Einstein’s field equations fulfills

�� ¼ a2

2
��þ a2

2
�ðv2 þ 2ð1þ �Þ�Þ þ 3H�0; (A3)

while the perturbed Klein Gordon equation yields

��00 ¼ a2���ð��ð1� 3c2sÞ þ 2ð1� 3w�Þ�Þ � 2a2�U;�

� a2��U;�� þ ���� 2H��0 þ 4�0�0:
(A4)

If pressure and sound speed are negligible with respect to
the respective densities, we may omit all terms propor-
tional to p� ¼ w���, �p� ¼ c2s��� and their derivatives.
Subsequently considering the Newtonian limit yields
Eqs. (13)–(16).
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