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We put robust upper limits on the average cosmological density �s of cosmic strings based on the

variability properties of a large homogeneous sample of Sloan Digital Sky Survey quasars. We search for

an excess of characteristic variations of quasar brightness that are associated with string lensing and use

the observed distribution of these variations to constrain the density of strings. The limits obtained do not

invoke any clustering of strings. They apply to both open segments and closed loops of strings, usefully

extend over a wide range of tensions 10�13 <G�=c2 < 10�9, and reach down to the level of �s ¼ 0:01

and below. Further progress in this direction will depend on better understanding of quasar intrinsic

variability rather than a mere increase in the volume of data.
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I. INTRODUCTION

Linear topological defects arise naturally during phase
transitions in diverse areas of physics. Various processes in
the early Universe could also produce such defects, which
are called cosmic strings [1–3]. It is often assumed that
phase transitions lead to formation of strings with a char-
acteristic tension of order the squared energy scale of the
string-producing theory (in Planck units). After formation,
the strings build up an intricate network, combined from
open segments of the horizon scale and a multitude of
loops that detach during the evolution of the network in
interconnections of open strings and smoothing of their
small-scale structure. The network evolves perpetually as
both long segments and open loops move and oscillate at
relativistic velocities.

Strings are believed to be a subdominant species in the
matter-energy balance of the Universe. Analytical calcu-
lations and numerical simulations indicate that string net-
works, early in the course of their evolution, can reach a
scaling behavior where a typical distance between the
strings increases in proportion to the horizon scale dh [4–
10]. This corresponds to the density of strings � decreasing
with redshift z as �ðzÞ / d�2

h ðzÞ, although one should keep
in mind that these results were obtained for radiation- and
matter-dominated eras with no contribution from the vac-
uum energy. In the matter-dominated era this dependence
coincides with that for cold matter �ðzÞ / ð1þ zÞ3, which
appears to be a natural behavior for networks dominated by
noninteracting loops, whose density would decrease solely
due to the universal expansion. For subsequent calcula-
tions, we will use both relations, �ðzÞ / d�2

h ðzÞ and �ðzÞ /

ð1þ zÞ3; the law followed by the strings in the actual
Universe is likely to be an interpolation between these
two cases.
Despite being a natural prediction of many cosmological

theories, cosmic strings have not been observed yet [11–
13], which raises an obvious question about the origin of
this discrepancy. Attempts to answer this question would
benefit from an estimate of the actual density of stings in
the real Universe or, in the absence of their detection, an
upper limit on this parameter. However, observational
estimates of this kind are surprisingly scarce [14–18]. In
a recent paper [19], we constrained the local (at �1 kpc
scale) density of light (10�16 <G�=c2 < 10�10) cosmic
string loops using their observational signatures in pulsar
timing and precision photometric surveys. These con-
straints were made possible by significant enhancement
in the local density of strings due to clustering of string
loops expected in the Galaxy [20]. However, this enhance-
ment is subject to theoretical uncertainties that are hard to
quantify at our current level of understanding of cosmic
strings.
In the present work, we derive robust observational

upper limits on the average cosmological density of cosmic
strings that are independent of any clustering effects and
apply to both open segments and closed loops of strings.
Instead of the local enhancement, we rely on giant dis-
tances to and a large number of extragalactic objects,
namely, quasars, used in deriving these constraints. Our
method is based on the statistical analysis of quasar vari-
ability obtained for a large sample of quasars from the
Sloan Digital Sky Survey (SDSS) catalogue [21]. Lensing
by cosmic strings that are heavy enough (G�=c2 >
10�14–10�12, though this is somewhat quasar-model-
dependent) would lead to an excess of twofold jumps in
the distribution of brightness variation between two obser-

*tyomich@sai.msu.ru
†pshirkov@prao.ru

PHYSICAL REVIEW D 81, 063523 (2010)

1550-7998=2010=81(6)=063523(8) 063523-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.063523


vational epochs. Hence, the absence of any such features in
the observed distribution allows us to infer robust upper
limits on the density of strings.

The paper is organized as follows. In Sec. II, we elabo-
rate on the idea above to see how the observed distribution
of the variability in an ensemble of quasars can be used to
put an upper limit on the probability of string lensing.
Section III relates this limit to the density of strings by
calculating the probability of lensing as a function of string
and source parameters. Then, in Sec. IV we use observa-
tional data to obtain actual limits on the density of strings
from the SDSS data. Finally, in Sec. V we present our
results in Fig. 2 and conclude with a short discussion.

All numerical calculations are made for a standard flat
cosmological model with a cosmological constant � ¼
1��, cold matter density � ¼ 0:27 [22], and the
present-day Hubble constant H0 ¼ 71 km � s�1 �Mpc�1

[23]; we assume that strings do not contribute appreciably
to the energy budget.

II. METHOD: OBSERVATIONAL LIMITS ON
PROBABILITY OF FLUX DOUBLING

Cosmic strings produce a distinctive pattern of lensing;
for a point source inside a narrow strip along the string, a
second positive-parity image appears in a duplicate strip on
the other side of the string [24–26]. In the following, we
assume that at any given moment the source is crossed by
at most one string. This is a sensible approximation given
that, otherwise, lensing by cosmic strings would be ubiq-
uitous and would likely have been detected by now. A
formal demonstration of the plausibility of this assumption
relies on the fact that the strips’ intersections cover a frac-
tional area / �2 in projection, where � is the optical depth
to string lensing. For cosmologically faraway sources
(zs � 1), the string lensing optical depth, like that for point
lenses, is of order the fraction of critical density �s in the
strings [19], which is unlikely to be greater than unity.

When an extended source being crossed by the string
cannot be resolved, the observer sees a flux increase given
by the flux in the part of the source that is momentarily
inside the strip. As the source moves into the strip and the
duplicate image appears, the total flux rises gradually from
a flat unlensed ‘‘bottom’’ of the light curve to some maxi-
mum value. Then, as the original source disappears behind
the string while the duplicate image leaves the duplicate
strip, the total flux goes down towards the same bottom.
The exact shape of the light curve depends on the bright-
ness distribution in the source, and the maximum is deter-
mined by the size of the source in relation to the strip,
which can only be guessed in the case of quasars. However,
for small enough sources that fit into the strip completely,
the maximum increase is exactly twofold, which is �m0 ¼
2:5 lg2 � 0:75m in terms of stellar magnitudes. Moreover,
string lensing light curves of such sources possess a char-

acteristic extended ‘‘plateau’’ at this level; its width is
given by the time it takes the source to traverse the strip.
The distinctive shape of the light curve readily imprints

itself in the distribution density of the magnification� of a
small source lensed by a cosmic string. This function
consists of a certain smooth component at 1<�< 2 and
a pair of � functions that correspond to the unlensed case
� ¼ 1 and the maximally lensed case � ¼ 2; the latter
events have a nonzero measure due to the extended nature
of the corresponding ‘‘bottom’’ and ‘‘plateau’’ of the light
curve. The distribution density of the magnification allows
one to calculate the density pð�mÞ of the magnitude jump
�m in two observations due to a change in the magnifica-
tion factor between the corresponding epochs. This func-
tion is even because of the symmetry between the two
epochs and consists of three � functions at �m ¼ 0 and
�m ¼ ��m0 on top of a smooth component �pð�mÞ for
��m0 < �m< �m0:

pð�mÞ ¼ �pð�mÞ þ P�ð�m� �m0Þ þQ�ð�mÞ: (1)

For sources of an unknown brightness profile, it is not
possible to calculate the smooth component of this distri-
bution; however, the amplitudes of � functions can be
calculated rather straightforwardly, as shown in the next
section. If lensing by cosmic strings is a rare phenomenon,
which we will assume, 2P is essentially the optical depth
[see Eq. (14)] to lensing by a cosmic string, which is
� � 1.
The ensemble variability studies approach the question

of the variability of celestial objects by comparing the
magnitudes of a large number of individual sources ob-
served at a few (two or more) epochs and by presenting
various statistical measures of the individual magnitude
change in the ensemble—its mean, variance, distribution
density, autocorrelation function, and the like [21,27–33].
It is often ‘‘ergodically’’ assumed that these measures
reflect those of individual sources to an extent given by
the size and homogeneity of the observational sample and
the time span of the variability survey. However, certain
statistical measures of the ensemble variability have a
value of their own. Of these, the distribution density
fð�mÞ of the observed magnitude change will be particu-
larly important for our study.
If the sources crossed by cosmic strings were not vari-

able, fð�mÞwould be a direct observational estimate of the
underlying density of lensing magnification pð�mÞ. The
quasars, on the contrary, are observed to vary at different
magnitudes and time scales (e.g., [31,34–36]). Never-
theless, lensing by cosmic strings might still be apparent
in fð�mÞ of these objects, as ��m0 inter-epoch changes
will be overrepresented in the observed variability sample.
This is the essence of our method to constrain the cosmo-
logical density of cosmic strings.
Mathematically, this can be expressed as follows. The

string-induced variability is extrinsic to quasars, and there-
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fore the observed magnitude change distribution fð�mÞ is
a convolution of those due to strings pð�mÞ and those due
to intrinsic processes in quasars sð�mÞ1; for pð�mÞ given
by (1) the convolution equates to

fð�mÞ ¼ Qsð�mÞ þ Psð�m� �m0ÞÞ þ �sð�mÞ; (2)

with �sð�mÞ being the convolution of the intrinsic density
sð�mÞ and the (unknown) smooth component of lensing
density �pð�mÞ. Figure 1 shows an example of the observed
distribution density fð�mÞ derived from the data presented
in [21] (see Sec. IV for details); it shows little evidence for
any excess at ��m0, which will be used below to infer an
upper limit on the density of cosmic strings.

Equation (2) immediately gives a handle on the parame-
ter P related to the density of cosmic strings:

P ¼ fð�mÞ �Qsð�mÞ � �sð�mÞ
sð�mþ �m0Þ þ sð�m��m0Þ : (3)

We do not know what the intrinsic variability sð�mÞ is and
therefore cannot extract the string signal from the observed
fð�mÞ directly. However, if we assume that all of the
variability at a certain level �m comes from strings, this
clearly gives us an upper limit on their contribution to the
variability, which can be used to infer robust constraints on
the population of strings:

P � fð�mÞ
sð�mþ �m0Þ þ sð�m� �m0Þ ; (4)

this inequality is valid irrespective of the assumptions on P
because both neglected subtrahends in the numerator of the
fraction in (3) are non-negative.
To deal with the denominator we assume that lensing by

strings is rare; this is a sensible assumption, as discussed
above. In this case the amplitude P � 1, �sð�mÞ � sð�mÞ,
Q � 1, and the observed variability distribution density
fð�mÞ is very close to the intrinsic one sð�mÞ—except,
possibly, at points �m ¼ ��m0, where a contribution
Psð0Þ due to an excess of �m0 jumps related to the lensing
light curve plateau might be expected. It therefore makes
sense to use (4) at one of those points to derive an upper

limit P̂ on the parameter P. The denominator at these
points can be approximated by the observed function
fð�mÞ, and one has

P̂ � fð��m0Þ
fð0Þ þ fð�2�m0Þ �

fð��m0Þ
fð0Þ ; (5)

the last step reflects the observational fact that f measured
at�m ¼ �2�m0 is orders of magnitude lower than at zero
where it peaks (cf. Fig. 1).
The constraints obtained in this way can be further

refined and potentially even turned into assertive estimates
for the string population properties by including additional
information such as dependence of the observed distribu-
tion of magnitude change on source parameters or inter-
epoch time lag. This can be accomplished by calculating
the probabilities of the observed data given model parame-
ters and using the Bayes theorem to infer the reverse.
However, such an endeavor would inevitably require a
model for the distribution of the intrinsic variability
sð�mÞ and its dependence on source parameters, time
lag, or whatever else is included in the analysis of the
overall observed variability. In this study, we will use the
simple approach outlined above, which is independent of
the authors’ ignorance of the intrinsic variability of qua-
sars, though it can only provide upper limits on the density
of strings.

III. MODEL: PROBABILITYAS A FUNCTION
OF STRINGS POPULATION

The amplitude P is the probability that the magnification
�m jumps by �m0 between the two observational epochs t
and tþ �t. Since�m0 is the maximum brightness increase
due to string lensing, the only configuration that corre-
sponds to this jump is that where the source is completely
inside the strip in one of the observations and completely
outside the strip in the other. Because of the symmetry
between the two epochs, we can assume that the first
observation occurs when the source is inside the strip and
the second occurs when it is outside, thereby replacing �t
with is absolute value:
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FIG. 1 (color online). The observed distribution densities
fð�mÞ of the brightness variation �m between photometric
and spectroscopic measurements by the SDSS for >25 000
quasars. The distributions in three SDSS passbands, i, r, and
g, are derived from the results of [21] using a procedure
described in Sec. IV. The error bars shown in the figure corre-
spond to the ‘‘Poissonian’’ square roots from the number of
quasars in each �m bin.

1There is also a distribution of observational uncertainties, but
it can be absorbed into the intrinsic variability distribution; we
assume that, for most quasars in the sample, this distribution is
only weakly dependent on their actual brightness.
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2P ¼ P ½�mðtÞ ¼ �m0 and �mðtþ j�tjÞ ¼ 0	: (6)

To estimate this value we first introduce the angular width
� of the string lensing strip. According to [24,25], it
depends on the tension � of the string and its local incli-
nation � to the line of sight:

� ¼ 8�j sin�jG�
c2

Dls

Dos

; (7)

where Dos and Dls are the (angular diameter) distances,
respectively, from the observer and from the string to the
source (along the line of sight); we use the average value of
hj sin�ji ¼ �=4. It seems sufficient for our study to assume
that the string segment responsible for lensing is long and
straight compared to the angular size of the source; for a
comprehensive study of lensing by general configurations
of strings, see [37,38].

Now let x be the initial epoch position of the projection
of the source center onto the lens plane with respect to the
strip median line (measured towards the outer edge of the
strip such that the string itself is at xs ¼ ��=2). The
position of the source in the second epoch is then xþ
�?cj�tj=ð1þ zlÞDol, where �?c is the orthogonal (to the
string) component of transverse (to the line of sight) ve-
locity of the string with respect to the source; the factor
ð1þ zlÞ�1 corresponds to the dilation of the observed time
lag �t from the lens plane at redshift zl. Cosmic strings are
expected to move relativistically, ��Oð1Þ [1]; following
[19,39], we use �? ¼ 0:3 in subsequent calculations.2

Since we assume that the source is lensed by at most one
string, conditions in the argument of (6) require that the
center of the source is inside the strip by a margin of at least
the source size r? ¼ R?=Dos (R? is its linear size) in the
first observation and outside it by the same margin in the
second epoch:

jxj � �=2� r?;

xþ �?cj�tj=ð1þ zlÞDol 
 �=2þ r?:
(8)

Taken together, they restrict x to a narrow strip of
width �, which is the lowest of �� 2r? and
�?cj�tj=ð1þ zlÞDol � 2r?, as long as this lowest is posi-
tive, and zero otherwise:

� ¼ max

�
0;min

�
�;

�?cj�tj
ð1þ zlÞDol

�
� 2r?

�
: (9)

The probability that a randomly placed source will lie
within the strip of this width parallel to a string in an
infinitesimally thin slice of string network with local num-
ber density �=� is

d� ¼ �

�
�Dold �Dol ¼ �s

3H2
0

8�G�
!ðzlÞ�Dold �Dol; (10)

where �D is the proper distance along the line of sight
parametrized by the slice redshift zl.
In the formula above we also introduced the current

cosmological density of strings, �s, and its dependence
on redshift, !ðzlÞ, such that the proper density �ðzlÞ ¼
!ðzlÞ�s3H

2
0=8�G. We use two models for !ðzlÞ—that

corresponding to scaling solutions,

!ðzÞ ¼
�
dhð0Þ
dhðzÞ

�
2
; (11)

and that corresponding to pressureless dust,

!ðzÞ ¼ ð1þ zÞ3: (12)

As discussed in the Introduction, there is currently no
consensus on the relative contribution of closed and open
strings to the energy budget of the Universe, but whatever
the contributions are, the final result for the density con-
straints can be obtained by interpolating those derived from
the application of (11) and (12).
With Eqs. (9) and (10) we can now write down the

probability 2P of a twofold magnification jump in any of
the infinitesimal slices. It is then given by the integrated
optical depth � along the line of sight to the source,

�

�s
¼ 3H2

0

8�G�

Z zs

0
d �DðzlÞ!ðzlÞDðzlÞ�ðzl; zs; �; R?; j�tjÞ;

(13)

according to

P ¼ 1

2
ð1� e��Þ ¼ �

2
þOð�2Þ; (14)

this probability is placed symmetrically in �m ¼ ��m0,
hence the factor 1=2 in front of the brackets.

IV. APPLICATION: OBSERVATIONAL LIMITS
ON STRING DENSITY

In order to put an upper limit �̂s on the density of
cosmic strings, one now can simply equate the observa-

tional upper limit P̂ on the probability of lensing to its
model estimate P given by (14) in the limit � � 1:

�̂ s ¼ 2P̂

�=�s

: (15)

The numerator of the fraction above can be estimated using
(5) from the distribution density fð�mÞ of quasar bright-
ness variations, which can be calculated directly from the
observational data. In this regard, the SDSS quasar survey
[40] provides an invaluable observational sample, where
the brightness of tens of thousands of quasars is homoge-
neously measured in a number of optical passbands and
could be compared against an equally homogeneous sam-

2We assume that �? > 0, i.e. the source is moving away from
the string; this is not restrictive due to the time symmetry
mentioned.
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ple of brightness estimates derived from the quasar spectra,
which are obtained month and years after the photometric
observations.

Such an analysis has indeed been done for N ¼ 25 710
SDSS quasars by Vanden Berk et al. [21], and we use their
data on quasar variability in SDSS passbands g, r, and i to
derive constraints on the string population. The authors of
the cited study do not explicitly quote estimates on the
probability distribution density fð�mÞ, and we do not
possess sufficient resources to re-reduce the publicly avail-
able SDSS data to derive fð�mÞ independently. However,
it can be readily obtained from Fig. 3 in the PDF version of
[21]. To do so, we manually counted the data points
corresponding to individual quasar measurements in the
scatter plots of the figure in 0:1m-wide bins for j�mj 

0:4m, or summed the heights of the respective histograms
for j�mj< 0:4m,3 and then divided them by the bin width
and the total number of quasars in the ensemble.

The distribution densities of quasar variability in three
passbands obtained in this way are plotted in Fig. 1, while
Table I presents corresponding values fð�mÞ at points of
our interest and an estimate for P̂ in each passband. Since
lensing is achromatic (as long as the string is heavy
enough, such that � 
 2r? for all passbands) and intrinsic

variability is not, we are free to choose the lowest P̂ to use

in (15); this is P̂ ¼ 3:2� 10�3, which corresponds to
passband r.

The denominator of the fraction in (15) is given by the
right-hand side of (13), which depends on the source
redshift, and we therefore need to take an average with
respect to the distribution of the observed quasars. The
quasar sample of [21] includes most of the quasars in the
SDSS Data Release 1 (DR1) Quasar Catalogue [41] and a
substantial fraction of quasars observed by SDSS that were
not included in SDSS DR1. The properties of individual
quasars in the entire sample used in that study do not
appear to have ever been detailed in a publication, and
therefore we use the SDSS DR3 QSO Catalogue [42] as a
proxy to the statistical properties of the true sample. We
have verified numerically that our results do not change
significantly if we use either DR1 or DR5 [43] catalogues
in averaging �=�s (numbers do get higher when using
more recent, deeper versions of the catalogue, but only
by 2%–3%).

Another source of uncertainty is the physical size 2R?
that produces most of the observed flux. The size of the

quasar affects our results significantly by limiting the
sensitivity of our estimate as a function of string tension
�. Estimates on these quantities vary appreciably in the
literature, depending on the method used; reverberation
mapping seems to favor sizes in the range R�
ð1016–1017Þ cm [44–48], while microlensing techniques
give somewhat smaller values of R� ð1015–1016Þ cm
[49–53]. Neither of the methods is model independent
and the estimates they give are expected to correlate with
individual properties of QSOs, such as the luminosity or
the mass of the central black hole. In the apparent absence
of a better option, we perform our calculations using three
representative values of 2R? 2 f1015; 1016; 1017g cm,
treating 1016 cm as a fiducial estimate.
Finally, the value of the time lag �t between two ob-

servational epochs in the observer frame cannot be read
from the results of [21] directly, which also introduces
some uncertainty. The value of �t affects our results
directly via (9) and therefore needs to be fixed to perform
calculations. From the visual inspection of Fig. 4 of [21] it
is clear that typical time lag in the source frame �t=ð1þ
zsÞ � ð100–200Þ days. The average redshift of SDSS qua-
sars is zs � 1:5. We therefore take �t ¼ 150 days�
2:5 � 3:2� 107 s.

V. RESULTS AND DISCUSSION

Figure 2 presents the upper limits on the average cos-
mological density of strings set by the statistics of the
observed variability of more than 25 000 SDSS quasars
as a function of string tension G�=c2. Depending on the
assumed size of the source, which turns out to be the major
parameter of the method developed in this paper, the region
where the string density is usefully constrained extends for
up to 5 orders of magnitude. At the same time, our con-
straints are only weakly dependent on the assumed behav-
ior of string density with redshift, mostly because
prescriptions (11) and (12) started to diverge from each
other relatively recently, when the vacuum density began to
dominate in the Universe.
The most stringent constraints are obtained at G�=c2 �

ð10�13–10�11Þ, where the upper limits reach below the
level of �s ¼ 0:01. We note that these are rather weak

TABLE I. Observational estimates for the distribution density
of quasar brightness variation at �m ¼ 0, ��m0 in three SDSS
passbands, and corresponding estimates for P̂. For consistency,
we calculate the central value of the distribution density fð0mÞ ¼
½fð�0:05mÞ þ fð0:05mÞ	=2; the value of P̂ quoted in the table is
the average between values corresponding to �m ¼ ��m0 and
�m ¼ �m0 according to (5).

Passband fð0mÞ fð�0:75mÞ fð0:75mÞ P̂

g 2.2 1:1� 10�2 1:8� 10�2 6:6� 10�3

r 2.5 7:6� 10�3 8:8� 10�3 3:2� 10�3

i 2.5 1:2� 10�2 6:4� 10�3 3:7� 10�3

3The quality of the figure does not allow us to use a consistent
counting approach in the entire domain of �m—inner regions
(j�mj< 0:4m) of scatter plots suffer from considerable confu-
sion of data points, while the linear scale of the histograms
makes them hardly readable for j�mj> 0:6m. However, where
this comparison is possible, at bins centered at �0:45m and
�0:55m, the numbers agree to within a few percent, which is
acceptable given the somewhat low-tech approach employed in
the absence of published digital data.

QUASAR VARIABILITY LIMITS ON COSMOLOGICAL . . . PHYSICAL REVIEW D 81, 063523 (2010)

063523-5



limits for open topological cosmic strings because their
cosmological density is believed to be of order �s �
ð10–100ÞG�=c2 based on the reconnection argument lead-
ing to scaling solutions (e.g., [2]). However, this argument
might not be applicable to fundamental strings, for which
the reconnection probability is highly model dependent
and can be significantly lower than unity [54,55]; it is
also unclear how it applies to cosmic string loops, which
are essentially a product of the mechanism that ensures that
the density of open strings has a scaling behavior. Our
observational upper limits apply to all kinds of strings,
whether topological or fundamental, open or otherwise,
and therefore provide strong constraints in the case of
string loops and fundamental strings, independent of theo-
retical uncertainty. Moreover, our results might potentially
be useful for constraining the unknown reconnection
probability of fundamental strings.

The upper limits obtained here rely on an extensive data
set of SDSS quasars and are robust in the sense that they do
not depend on any local enhancement of the density ex-
pected for string loops in the Galaxy [20] or a particular
model of quasar emission, as long as the source remains
sufficiently small compared to the lensing strip width. This
method is also rather insensitive to the photometric accu-
racy of observations because 0:75m-wide jumps in bright-
ness are fairly obvious by any standard. And if follow-up
observations could be performed when a survey telescope
sees a sudden twofold increase in the brightness of a

quasar, it might even be possible to confirm or rule out
the string nature of this increase with confidence.
However, all this robustness also means that upper limits

obtained in this paper could not be improved much by
simply increasing the number of data points in the sample,
which is expected to grow by orders of magnitude with the
launch of next generation photometric surveys, such as the
Large Synoptic Survey Telescope [56]. Rather, it is the
study of quasar intrinsic variability that can bring the most
benefit to this cause. The variation distribution density
presented in Fig. 1 does not appear to show any notable
features around �m ¼ �0:75m which would make these
points stand out from the smooth decrease of fð�mÞ with
j�mj. Therefore, the upper limits derived in this paper are
most likely a significant overestimation of the true density
of strings, because what is conservatively interpreted as a
string ‘‘signal’’ here is most likely the quasar variability
‘‘noise.’’ Therefore, simply adding more quasars to the
data will not reduce this noise. To make further progress
here, one needs to learn how to separate two contribu-
tions—e.g., using the varying dependence of the two ef-
fects on various parameters, such as the source redshift,
color, luminosity, and so on. We can easily calculate how
the statistics of string lensing effects should depend on
these parameters, but at present we are less certain when it
comes to quasar intrinsic variability.
Nevertheless, the science of quasar variability is advanc-

ing fast and our understanding of it might soon be sufficient
for extracting the string effect from the observational data.
This approach can also be followed in the analysis of future
data sets from the GAIA mission [57] on the variability of
stars, which are less distant but photometrically more
stable and much more numerous than SDSS quasars.
Moreover, at present we do not know the density of cosmic
strings in the Universe and cannot predict just when the
twin peaks of strings signal at �m ¼ ��m0 will begin to
show up in the growing data sets of ensemble variability
studies.
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