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This article provides a general study of the Hamiltonian stability and the hyperbolicity of vector field

models involving both a general function of the Faraday tensor and its dual, fðF2; F ~FÞ, as well as a Proca
potential for the vector field, VðA2Þ. In particular it is demonstrated that theories involving only fðF2Þ do
not satisfy the hyperbolicity conditions. It is then shown that in this class of models, the cosmological

dynamics always dilutes the vector field. In the case of a nonminimal coupling to gravity, it is established

that theories involving RfðA2Þ or RfðF2Þ are generically pathologic. To finish, we exhibit a model where

the vector field is not diluted during the cosmological evolution, because of a nonminimal vector field-

curvature coupling which maintains second-order field equations. The relevance of such models for

cosmology is discussed.
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I. INTRODUCTION

Inflation [1] is usually invoked to explain the isotropy
and homogeneity of our Universe. In particular it has been
demonstrated that if the dynamics of the Universe during
inflation is dominated by a scalar field, any primordial
spatial anisotropy is washed out, both at the background
level [2] and perturbation level [3–5]. Several features of
the cosmic microwave background (CMB) temperature
anisotropies seem however not to be fully consistent with
this prediction. This includes [6] the low quadrupole
(although its statistical relevance is questionable), the
alignment of the lowest multipoles and an asymmetry in
power between the northern and southern hemispheres.

It has been suggested that this may be related to an early
anisotropic expansion during the inflationary phase [7]. In
such a case, it can only lead to an observable anisotropy in
the CMB at the largest angular scales at the price of a fine-
tuning on the number of e-folds during inflation [3–5]. A
natural extension of such an anisotropic expansion is to
introduce other matter fields, besides the inflaton, having
the property to source the shear. This is the case of vector
fields [8–10], 2-forms [11] or axions [12].

However, vector fields are usually diluted by the cos-
mological expansion, both during inflation and the matter

era. Indeed, in a Friedmann-Lemaı̂tre space-time, with
metric1

ds2 ¼ �dt2 þ a2ðtÞ�ijdx
idxj; (1)

t being the cosmic time, a the scale factor and �ij the

comoving spatial metric, the spatial homogeneity implies
that the only nonvanishing component of the Faraday
tensor is F0i. The Maxwell equation reduces to €Ai þ
H _Ai ¼ 0 [see Sec. II B 3 below for a detailed discussion].
Thus A2 / t2–4p if the scale factor scales as tp and A2 ! 0
during the matter era (p ¼ 2=3) and during inflation (p >
1).
This well-known fact led to the conclusion that in order

to construct inflationary models driven by a vector field,
and even to have a slow-rolling vector field during infla-
tion, one needs to include either a potential to the vector
field [14–16] or a nonminimal coupling [17,18]. The stabil-
ity of these models is actually an ongoing debate [19–25].
Most of these models have been extended to higher forms
[26–28] and also to models of dark energy [29–34], which
are essentially the same models applied to the late time
dynamics of the cosmological expansion.
Vector fields are thus central ingredients in various

cosmological models for both the inflationary era and the
recent acceleration. Needless to recall that they also play a
key role in various extensions of general relativity, with the
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1Throughout this paper, we use the sign conventions of
Ref. [13], notably the mostly-plus signature.
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vector-tensor theories [35–37] and more recently the
tensor-vector-scalar theory [38] that aims at reproducing
the MOND phenomenology, although they have several
theoretical and experimental difficulties [39,40].

The goal of this article is twofold. First, we want to
revisit the dynamics of vector fields during inflation and
take the opportunity to clarify the structure of theories with
nonminimally coupled vector fields. A fundamental theory
should satisfy two necessary conditions: the boundedness
by below of its Hamiltonian2 (otherwise the theory is
unstable [41]), and the hyperbolicity of the field equations
(so that the Cauchy problem is well posed [42]). We will
derive below the implications of these two conditions on
the vector field theories we will consider. Of course, as
soon as these theories are assumed to be effective ones,
then such conditions need to be satisfied only in their
domain of validity, but this is still quite constraining.

Section II starts by analyzing theories with a minimally
coupled vector field and a quadratic kinetic term, allowing
for a Proca potential, and focuses in a second part on
nonlinear functions fðF2; F ~FÞ of the Faraday tensor and
its dual. We then consider different classes of nonmini-
mally coupled theories in Sec. III. To finish, we emphasize
in Sec. IV that there still exist models which allow a vector
field to be slow-rolling, hence offering an interesting cos-
mological phenomenology.

Before we start, let us stress that our analysis restricts to
cases where the vector field A� is not of constant norm, and

we refer to Ref. [43] where such a case was investigated in
depth. Let us also stress that the Hamiltonian analysis is
more powerful than a perturbative analysis around a par-
ticular background since the latter can only demonstrate
the local stability or instability. Hence our analysis will
generalize in many ways some recent results [19–25] con-
cerning the stability of vector field models.

II. MINIMALLY COUPLED THEORIES

A. Quadradic kinetic term

As a starting point, let us consider a minimally coupled
vector field, whose kinetic term is quadratic in its first
derivatives, and including a potential VðA2Þ, where A2 �
A�A

�. The most general kinetic term a priori includes a

linear combination of ðr�A�Þðr�A�Þ, ðr�A�Þðr�A�Þ, and
ðr�A

�Þ2. However, the last term can be integrated by parts

asZ
d4x

ffiffiffiffiffiffiffi�g
p ðr�A

�Þ2 ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½ðr�A�Þðr�A�Þ
þ R��A�A��; (2)

so that only a linear combination of the first two terms
needs to be considered in flat space-time. However, in
curved space-time, the extra term R��A�A� is a particular

nonminimal coupling to gravity.
Let us first recall that, in flat space-time, the only ghost-

free vector theory in the above class is the standard
Maxwell Lagrangian (called Proca Lagrangian in the mas-
sive case [44])

LMaxwell ¼ � 1

4
F2; (3)

where F2 � F2
��, and F�� ¼ @�A� � @�A� is the Faraday

tensor. Indeed, if we consider a Lagrangian

L ¼ �ð@�A�Þ2 þ �ð@�A�Þð@�A�Þ � VðA2Þ; (4)

we deduce from F0i ¼ _Ai � @iA0 that the conjugate mo-
menta �� � @L=@ _A� read

�0 ¼ 2ð�þ �Þ _A0; �i ¼ �2� _Ai � 2�@iA0: (5)

If �þ � � 0, the field A0 is thus dynamical. This can also
be illustrated by writing the Euler-Lagrange equation de-
riving from (4)

�hA� þ �@�� ¼ �V 0A�; (6)

together with its divergence

ð�þ �Þh� ¼ �@	ðV 0A	Þ; (7)

where � � @�A
� and V 0 � dV=dðA2Þ. Although the re-

placement of the derivative @�A
� by a scalar field would

be illicit3 in the Lagrangian (4), one may do so in the field
equations, and Eqs. (6) and (7) show that the model de-
scribes a transverse vector field (A� with @�A

� ¼ 0) to-

gether with a scalar degree of freedom �. These equations
also underline that some degrees of freedom become non-
dynamical when either � ¼ 0 or �þ � ¼ 0, as will be
discussed below.
Let us first consider the generic case where � � 0 and

�þ � � 0. Then the Hamiltonian densityH � �� _A� �
L takes the form

H ¼ ð�0Þ2
4ð�þ �Þ �

ð�i þ 2�@iA0Þ2
4�

þ �ð@iA0Þ2

� ð�þ �Þð@iAjÞ2 þ �

2
F2
ij þ VðA2Þ:

(8)

Since �i and @iA0 are independent from each other, and
since the quadratic form �x2=�þ �y2 is not positive
definitive (whatever the sign of �), we conclude that H

2More precisely, the spatial integral of the Hamiltonian density
over any localized state should be bounded by below. Since such
localized states may be constructed from a superposition of
sinusoids, at least at linear order, one may also compute the
Hamiltonian density for such spatial sinusoids.

3Redefining a derivative as a fundamental field in a Lagrangian
obviously loses some dynamics, as illustrated by the trivial case
of a scalar-field kinetic term L ¼ �ð@�’Þ2, which would give
an adynamical vector L ¼ �V2

� if one redefined V� � @�’.
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can take arbitrary large and negative values, and thereby
that the theory is unstable. This is the well-known result
that the massive vector A� contains three modes of positive

energy, but also an extra helicity-0 ghost.
On the other hand, if �þ � ¼ 0, which corresponds to

the usual Maxwell Lagrangian (3), then Eq. (5) yields the
primary constraint�0 ¼ 0 and the scalar mode is no longer
dynamical. We will recall in Eq. (18) below the standard
result that �� ¼ �> 0 and V 0 � 0 are necessary condi-
tions for the Hamiltonian to be bounded by below.

The other particular case for which expression (8) for the
Hamiltonian cannot be used is when � ¼ 0. After integra-
tion by parts, this corresponds to a simple kinetic term of
the form �ð@�A�Þ2. The conjugate momenta read then

�0 ¼ 2�ð _A0 � @iA
iÞ and �i ¼ 0, so that only the

helicity-0 degree of freedom contained in the vector A�

is now dynamical. This case should thus be considered as a
scalar theory rather than a vector one (although it differs
from standard scalar theories because of the secondary
constraint 2AiV

0 ¼ @i�
0 imposed by the field equations).

We will thus not consider it any longer in this paper. Let us
just mention that the first term contributing to the
Hamiltonian density H ¼ ð�0 þ 2�@iA

iÞ2=4��
�ð@iAiÞ2 þ V can obviously be made positive by choosing
�> 0, but that this does not suffice to guarantee the
stability of the model because the second term is then
negative. The fact that it is not independent from �0

complicates the analysis, but when V0 ¼ const> 0, for
instance, it is easy to build consistent initial conditions
such that H ! �1, thereby proving that the model is
unstable in such a case.

This analysis underlines that vector field theories are
generically unstable when their kinetic term does not re-
spect the gauge invariance A� ! A� þ @�	, because the

A0 component is then a ghost degree of freedom.4 Before
studying nonlinear vector actions, let us underline that the
above Hamiltonian analysis is fully changed in the case of
a constant norm vector field; see Ref. [43] for a detailed
analysis of this interesting case.

B. Function of F2

Let us thus consider now nonlinear functions of F2, i.e.,
gauge-invariant kinetic terms by construction, in
Lagrangians of the form

L ¼ �fðF2Þ � VðA2Þ: (9)

The associated field equation for the vector field is then
simply given by

r�ðf0F��Þ ¼ 1

2
V 0A�; (10)

where a prime denotes a derivative with respect to the
argument of the function, namely f0 � df=dðF2Þ and as
before V 0 � dV=dðA2Þ. Note that f0 should never vanish
otherwise the Cauchy problem would be ill-posed. From
the definition of the Faraday tensor, we always have

@�F�� þ @�F�� þ @�F�� ¼ 0; (11)

and the divergence of Eq. (10) implies

r�ðV0A�Þ ¼ 0: (12)

When V0 � 0, this is an extra constraint that arises from the
fact that the action is no more invariant under A� ! A� þ
@�	, even if the kinetic term independently is.

1. Hamiltonian analysis

Since we have F2 ¼ F2
ij � 2F2

0i in Minkowski space-

time, the conjugate momenta read

�0 ¼ 0; (13)

which is a primary constraint, and

�i ¼ 4f0ðF2Þ � ð _Ai � @iA0Þ ¼ 4f0F0i: (14)

Since _A0 does not appear in Lagrangian (9), A0 is an
auxiliary field. This means that the field equation for A0

involves no time derivatives and can be used as a constraint
that eliminates a field variable, in the case at hand A0.
The Hamiltonian density is thus given by

H ¼ �2
i

4f0
þ �i@iA0 þ fðF2Þ þ VðA2Þ: (15)

The A0 dependency of H can be eliminated by first
performing an integration by parts (in which �i@iA0 be-
comes �A0@i�

i) and then using the secondary constraint
½�0;H � ¼ 0. This secondary constraint ensures that the
primary constraint (13) is consistent with the equations of

4Let us recall that a ghost is defined as a field with negative
kinetic energy, not to be confused with a tachyon, a field with
negative mass squared. Both cases correspond to unstable mod-
els, but tachyons involve a time scale whereas the presence of
ghosts implies an instantaneous disintegration of vacuum in
quantum mechanics [41]. Note that a field may be both a tachyon
and a ghost, but that the corresponding model is anyway un-
stable. In the present paper, we will actually go beyond the
quadratic order in the action, and consider any possible con-
ditions on a Cauchy surface (consistent with the action’s sym-
metries). If some are such that the Hamiltonian density can tend
towards �1 (because of an unbounded negative potential,
generalizing the notion of tachyon, or because of a possibly
nonquadratic kinetic term’s negative contribution, generalizing
the notion of ghost), then initial data in its neighborhood lead to
diverging solutions even classically, and obviously also in quan-
tum field theory where one cannot avoid any initial condition to
be explored.
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motion, and it takes the form5

@i�
i ¼ �2V 0A0: (16)

Actually, it turns out to be the Euler-Lagrange equation
(10) for � ¼ 0, rewritten in terms of conjugate momenta,
and it reduces to the Gauss law when V 0 ¼ 0. Note that, in
general, there may be further constraints arising from the
consistency of the secondary constraints with the equation
of motion, and so on. The distinction between primary and
secondary is not important and they are just constraints that
we consider on the same footing. It follows that

H ¼ �2
i

4f0
þ ð@i�iÞ2

2V0 þ fðF2Þ þ VðA2Þ; (17)

if we assume that V0 � 0. [In the case where V 0 ¼ 0, then
@i�

i ¼ 0 from Eq. (16), so that H does not involve any
term / ð@i�iÞ2.] This is a function of the field Ai, its spatial
derivatives @iAj, its conjugate momentum �i and its de-

rivatives @i�
j, since the argument of the function f can be

expressed as F2 ¼ F2
ij � 2�2

i =ð4f0Þ2 and A0 can be elim-

inated by resolving Eq. (16); hence H ½Ai; @iAj; �
i; @i�

j�.
Equation (17) shows that it is necessary that f0 be

positive for H to be bounded by below. Indeed, if there
existed a value, say �F2, where f0ð �F2Þ< 0, then one could
construct initial conditions where �2

i ! 1 and F2
ij ! 1

while keeping �F2 ¼ F2
ij � 2�2

i =ð4f0Þ2 constant. The first

term of the right-hand side of Eq. (17) would then tend
towards �1 whereas the other ones would remain finite.

Similarly, V 0 must also be positive forH to be bounded
by below. Indeed, using the secondary constraint (16), the
contribution of the potential to Eq. (17) reads
ð@i�iÞ2=2V 0 þ V ¼ 2A2

0V
0ðA2Þ þ VðA2Þ. If there existed a

value, say �A2, where V0ð �A2Þ< 0, then one could choose
initial conditions where A2

0 ! 1 and A2
i ! 1 while keep-

ing �A2 ¼ A2
i � A2

0 constant, and the Hamiltonian would

thus diverge towards �1.
On the other hand, note that the potential V itself does

not need to be bounded by below, contrary to what one may
naively believe from Eq. (17). Indeed, the positive contri-
bution 2A2

0V
0ðA2Þ can compensate negative ones coming

from VðA2Þ. For instance, for a monomial VðA2Þ ¼ kðA2Þn,
where k and n are constants, the contribution of the poten-
tial to the Hamiltonian reads k½ð2n� 1ÞA2

0 þ A2
i �ðA2Þn�1,

therefore it is bounded by below if k � 0 and n is a positive
odd integer. In such a case, V 0 ¼ knðA2Þn�1 is consistently
positive, but not V itself since it can have any sign. The
particular case n ¼ 1 corresponds to the standard massive
Proca field, with V ¼ 1

2m
2A2, i.e., 2V 0 ¼ m2 > 0. Then

V ¼ � 1
2 ð@i�iÞ2=m2 þ 1

2m
2A2

i contains a negative term

which can blow up for some specific initial conditions,
but it is counterbalanced by the second term of (17),
þð@i�iÞ2=m2. The above example of a monomial also
illustrates that V 0 � 0 is not a sufficient condition.
Indeed, if one chose k < 0 and n odd and negative, then
V0 would always be positive butH would diverge towards
�1 for initial conditions such that @i�

i ¼ 0 and A2
i ! 1.

Some negative contributions coming from fðF2Þ may
also be compensated by �2

i =4f
0. This is again what hap-

pens in the massive Proca (or pure electromagnetic) case,
where fðF2Þ ¼ F2=4 ¼ F2

ij � �2
i =2 but �2

i =4f
0 ¼ �2

i , so

that

H ¼ 1

2
�2

i þ
ð@i�iÞ2
2m2

þ 1

4
F2
ij þ

1

2
m2A2

i (18)

is clearly positive.
Since there is no obvious necessary and sufficient con-

ditions warranting that the Hamiltonian (17) is bounded by
below in the most general case, this should be checked
explicitly for any specific theory at hand, recalling that
compensations between terms often occur.

2. Hyperbolicity

The second necessary condition that a field theory (9)
should satisfy, is that its field equations (10) are hyperbolic,
i.e., that their second derivatives are of the form G��@�@�,

with G�� an effective metric of signature �þþþ (its
timelike direction, corresponding to the negative eigen-
value, should also be consistent with the standard time
direction of g��). These second derivatives can be written
as an operator acting on the vector field A�,

½f0 � ð
�
�h� @�@

�Þ þ 4f00F��F�
�@�@��A�: (19)

Our first difficulty, with respect to the better studied case of
scalar ‘‘k-essence’’ Lagrangians [39,45,46] is that A� has

four components and that the above operator is not diago-
nal. In order to diagonalize it, it is convenient to first
remove the �f0@�@� contribution to Eq. (19) by fixing
the Lorenz gauge, namely, by adding 	ð@�A�Þ2 to

Lagrangian (9), where 	 is a Lagrange multiplier. In this
gauge, the operator (19) becomes of the form f0h1þ
4f00jvihvj, where the Dirac ket jvi represents F��@�.
One finds thus immediately that its four eigenvalues (still
as an operator) are three times f0h, and once f0hþ
4f00hvjvi ¼ f0hþ 4f00F��F�

�@�@�, this fourth ‘‘eige-

noperator’’ acting in the direction of jvi. Obviously, the
operator f0h is hyperbolic of signature �þþþ if and
only if

f0 > 0: (20)

5Note that the constraint (16) will be general for any theory in
which �0 ¼ 0 and

@L
@@iA0

¼ � @L

@ _Ai

;

since then the Euler-Lagrange equation implies

@i�
i ¼ � @L

@A0

:

This is the case of all theories in which the kinetic term of the
vector field involves only functions of F2 and F ~F (see Sec. II C
below).
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The fourth eigenoperator may be written as G��@�@�,

where G�� � f0g�� þ 4f00F��F�
� is an effective metric

in which the fourth component of the vector A� (in our

specific diagonalizing basis) propagates. The simplest way
to analyze its hyperbolicity, and to ensure that its timelike
direction is consistent with the one of g��, is to diagonalize
the matrixG��g�� and impose that its four eigenvalues are

positive. [Note that our analysis uses two different diago-
nalizations: first a 4� 4 matrix, with operator values, act-
ing on the vector A�; now the quadratic differential

operator G��@�@�, acting on one particular component

of A�. It happens that G
��g�� is again a 4� 4 diagonal-

izable matrix.] These eigenvalues read

f0 þ f00F2
�� � f00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF2

��Þ2 þ ðF��
~F��Þ2

q
; (21)

where ~F�� is the dual of the Faraday tensor,

~F �� ¼ 1

2
"����F

��; (22)

"���� being the totally antisymmetric Levi-Civita tensor

such that "0123 ¼ þ1. An elegant way to derive these
eigenvalues is to separate F�� into standard electric (E�)

and magnetic (B�) field contributions according to an
observer with unit velocity u�. Then, in the generic case
whereE andB are not parallel, one may study the action of
the operator F�

�F
�
� on the four linearly independent

vectors E�, B�, u� and g��"���
u
�E�B
, and one finds

that the spaces spanned by the first two and the last two are
stable under the action of this operator. In other words, its
matrix is constituted of two 2� 2 blocks. Its eigenvalues
are then easy to compute, and they happen to be the same
for each block. [The particular cases where E and B are
parallel or one of them vanishes are easier to study along
the same lines, and one can check that the result (21)
remains valid.]

The simultaneous positivity of eigenvalues (21) imposes
thus the subtle second condition

F2
��f

00 þ f0 > jf00j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF2

��Þ2 þ ðF��
~F��Þ2

q
: (23)

When F��
~F�� ¼ 0, i.e., when the electric and magnetic

fields are orthogonal, this inequality imposes both f0 > 0
[already necessary in Eq. (20) above] and 2F2

��f
00 þ f0 >

0. This should be compared to the case of scalar k-essence
models, whose Lagrangians are functions fðsÞ of the stan-
dard kinetic term s � ð@�’Þ2. Then the hyperbolicity of

the field equations implies both f0 > 0 and 2sf00 þ f0 > 0
[39,45,46].

The fact that the inequality (23) depends on two inde-
pendent relativistic invariants constructed from the electric
and magnetic fields, namely F2

�� ¼ 2ðB2 �E2Þ and

F��
~F�� ¼ �4E �B, underlines that it should always be

possible to violate it by choosing appropriate initial con-
ditions on a Cauchy surface. For instance, if f00ð0Þ � 0,

then one may choose a configuration whereF01 ¼ �F10 ¼
F23 ¼ �F32 and all other components vanish. Then F2

vanishes whereas E � B can be chosen as large as one
wishes. This suffices to violate inequality (23), and thereby
to prove that the field equations cannot remain hyperbolic
in all physical situations. If the considered theory is such
that f00ð0Þ ¼ 0, i.e., that its Lagrangian does not contain
any term proportional to ðF2

��Þ2, then we need to refine

slightly the reasoning: We choose a value of F2 such that
f00ðF2Þ � 0 and we add to it a contribution E � B increas-
ing the value of the square root in (23), while keeping F2 ¼
2ðB2 �E2Þ constant. The only possibility to always satisfy
inequality (23) would be to assume that f00ðF2Þ ¼ 0 for any
F2, so that fðF2Þ ¼ kF2 þ 2� (where k and � are con-
stants) would merely describe standard Maxwell (or Proca)
theory plus a cosmological constant.
In conclusion, although theories (9) can have a

Hamiltonian (17) bounded by below for specific functions
fðF2Þ, there always exist situations in which the field
equations are not hyperbolic, because inequality (23) is
violated. The only safe case is the standard Maxwell
Lagrangian (with an optional Proca potential). Of course,
if such models are considered as effective theories, then all
the above conditions must be satisfied only in their domain
of validity. But if one uses such an effective theory in
situations where Eq. (23) may be violated, then it just loses
any meaning, since the Cauchy problem is no longer well-
posed.

3. Cosmological dynamics

Let us investigate the cosmology of the models de-
scribed by Lagrangian (9). The stress-energy tensor of
such a vector field is given by

T�� ¼ 4f0F	
�F	� þ 2V 0A�A� � ðfþ VÞg��: (24)

Different roads can then be followed. In particular, it is
clear that the vector field induces the existence of a par-
ticular spatial direction, in contradiction with the hypothe-
sis of isotropy underneath the form (1) of the metric. One
should then consider anisotropic cosmological space-
times, such as Bianchi universes, which characterize the
anisotropy, or try to recover isotropy by invoking the
existence of N vector fields with random directions and
similar initial magnitude [17].
For the sake of simplicity, we investigate the dynamics

of a test vector field, the dynamics of which is described by
Lagrangian (9) in a cosmological space-time with metric
(1). We can then always decompose the vector field as

A� ¼ ðA0; aBiÞ; A� ¼
�
�A0;

1

a
Bi

�
; (25)

with Bi ¼ �ijBj. In Cartesian coordinates, homogeneity

implies that @iA� ¼ 0 so that the only nonvanishing com-

ponent of the Faraday tensor is
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F0i ¼ _Ai ¼ að _Bi þHBiÞ � aCi; (26)

whereH � _a=a denotes the Hubble function. As expected,
A0 will not enter the equation of evolution and, as long as
V 0 � 0, the field equation (10) implies in Cartesian coor-
dinates that A0 ¼ 0 and

f0ð _F0i þHF0iÞ þ f00@0ðF2ÞF0i ¼ � 1

2
V 0Ai: (27)

Since F2 ¼ 2F0iF0i ¼ �2F0jF0k�
jk=a2 ¼ �2CiC

i ¼
�2C2, this equation rewrites as an equation for Bi as

€Bi þ
�
3H � 2

f00

f0
@tðC2Þ

�
_Bi

þ
�
ð2H2 þ _HÞ þ V 0

2f0
� 2H

f00

f0
@tðC2Þ

�
Bi ¼ 0; (28)

where we use that f0 should not vanish, or equivalently as
the system

_C i þ 2

�
H � f00

f0
@tðC2Þ

�
Ci ¼ � 1

2

V 0

f0
Bi (29)

_Bi þHBi ¼ Ci: (30)

In that particular case, we deduce that the energy density of
the field, �A ¼ �T0

0 , is

�A ¼ 4f0C2
i þ fþ V: (31)

Note that the isotropic pressure PA ¼ Ti
i=3 is given by

PA ¼ � 4

3
f0C2

i þ
2

3
V0B2

i � f� V: (32)

For such a vector field the pressure is however not isotropic
and there is a contribution of the vector field to the aniso-
tropic stress (i.e. the transverse and traceless part of the
stress-energy tensor)

�i
j¼�4f0

�
CiCj�1

3
C2
i

j

�
þ2V 0

�
BiBj�1

3
B2
i

j

�
: (33)

From the expression of the energy density and anisotropic
stress, we see that, in order for the vector field to play any
significant role, one needs either Ci or Bi not to be diluted
during the expansion.6

In the standard case of the Maxwell theory (f0 ¼ 1=4
and V ¼ 0), it is obvious that Eq. (29) implies that Ci /
a�2. We then conclude that �A / a�4 and the vector field
energy density is diluted with respect to the matter fields
driving the expansion of the Universe. Indeed, this could
have been deduced from Eqs. (31) and (32) which imply
that, as expected, the equation of state of the homogenous
fluid is 1=3.
Again, in the Proca case (f0 ¼ 1=4 and V 0 � 0), the

vector field can play a role if it is not diluted, i.e., if Bi �
const is a solution of Eq. (28). This happens if the coeffi-
cient of Bi is small compared toH2, and the energy density
�A of the vector field is then almost constant. However this
requires that V 0 < 0, as initially proposed in Ref. [14], in
contradiction with the Hamiltonian analysis above.
In the general case, assuming that inflation is described

by a de Sitter phase, i.e., H is constant, the solution Bi

constant can only been reached under the condition that
2H2 þ V0=2f0 � 2Hðf00=f0Þ@tðC2

i Þ 	 H2. This is actually
impossible since Ci ¼ HBi is also constant and V0=f0 is
positive. This can be generalized to the case of slow-roll
inflation for which _H ¼ �"H2. A configuration with Bi

constant can be reached if

2H2 þ V 0

2f0
þ 4"H4B2 f

00

f0
� 0: (34)

Since V 0=f0 � 0, this is possible only if f00=f0 is of order
1=" and " < 0. Such a fine-tuning is very unnatural since f
enters the vector field sector, while " is set by the matter
driving the inflationary era. On the other hand, a configu-
ration with Ci constant requires, from Eq. (30), that aBi ¼
Ci

R
adt. But Eq. (29) implies that 2Ha ¼ �ðV 0=2f0Þ �R

adt, which is impossible as long as the Universe is

expanding. In conclusion the vector field cannot play a
cosmologically relevant role.
This is confirmed by a more general argument. Let us

introduce

� ¼ C2
i ; c ¼ B2

i ; CiB
i ¼ ffiffiffiffiffiffiffiffiffi

�c
p

�; (35)

with �2 
 1 and � and c positive. From the system (29)
and (30), we can extract the following set of equations
describing the relative evolution of Bi and Ci:�

1� 4
f00

f0
�

�
_� ¼ �4H���

V0

f0
ffiffiffiffiffiffiffiffiffi
�c

p
; (36)

_c ¼ �2Hc þ 2�
ffiffiffiffiffiffiffiffiffi
�c

p
; (37)

_� ¼
�
V0

2f0

ffiffiffiffiffi
c

�

s
�

ffiffiffiffiffi
�

c

s �
ð�2 � 1Þ: (38)

In this system, V0 is a function of �c and f00 and f0 are
functions of �2� so that the system has been written as a

dynamical system. Its fixed point, characterized by _� ¼
_c ¼ 0, must be such that V 0c =f0 ¼ �4�, in contradic-

6In particular, if one relaxes the hypothesis of isotropy and
describes the Universe by a Bianchi I space-time with metric

ds2 ¼ �dt2 þ a2ðtÞ�ijðtÞdxidxj;
the shear �ij ¼ 1

2 _�ij is sourced by this anisotropic stress and
evolves as _�i

j þ 3H�i
j ¼ 8�G�i

j so that a nonvanishing aniso-
tropic stress can source the shear which decays as a�3 otherwise;
see Ref. [3]. Such a vector field, even if it does not influence the
dynamics of inflation, can be at the origin of an homogeneous
shear, along the line of Ref. [9]. Note that the evolution of the
vector field is modified so that Eq. (28) has now a right-hand side
2�j

iCj, and @tðC2Þ now contains a shear-dependent contribution
�2�ijCiCj.
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tion with V 0=f0 � 0 unless � ¼ 0 and V0c ¼ 0. Even if
V 0 ¼ 0, setting _c ¼ 0 and � ¼ 0 in Eq. (37) implies c ¼
0 as soon asH � 0. Therefore the unique fixed point of this
dynamical system corresponds to � ¼ c ¼ 0, i.e., to a
strictly vanishing vector field.

In conclusion, slow-rolling solutions can be constructed
at best via an unnatural fine-tuning, and moreover, these
solutions are not fixed points of the dynamics. We conclude
that such vector fields will be diluted and play no role in
cosmology.

C. Introducing F ~F

Since the contraction F ~F � F��
~F�� appeared in the

previous hyperbolicity analysis, we are naturally led to
consider an extension of theory (9) of the form

L ¼ �fðF2; F ~FÞ � VðA2Þ: (39)

In the following, we will set

X � F2 and Y � F ~F; (40)

and denote as fX and fY the partial derivatives of F with
respect to X and Y, respectively. The field equation deriv-
ing from (39) can thus be written as

r�ðfXF�� þ fY ~F
��Þ ¼ 1

2
V 0A�: (41)

Note that in the particular case in which f ¼ F ~F, this
equation is empty because of the identity @� ~F�� ¼ 0

(i.e., d2A ¼ 0 in Cartan’s exterior-derivative notation,
namely, Maxwell’s first set of equations, F½��;�� ¼ 0).

An example of such theories, though it is an effective
one, is the Euler-Heisenberg corrections [44,47] to the
Maxwell Lagrangian (3), which take into account the
vacuum polarization. It is given by the Lagrangian

L EH ¼ �2

90m4
e

�
ðF��F

��Þ2 þ 7

4
ðF��

~F��Þ2
�
; (42)

where � is the fine-structure constant and me the mass of
the electron. It is derived formally as the first term of an
expansion when �2 ! 0, and its domain of validity is
precisely when such nonlinear corrections remain small
with respect to the standard Maxwell theory (3). In this
domain of validity, the Hamiltonian density is positive and
the field equations are hyperbolic, therefore none of the
following discussions need to be done. On the other hand,
as soon as a Lagrangian of form (39) is considered as
defining a fundamental theory, or when one wishes to study
its predictions in a domain where nonlinear effects are
significant, then both the stability and the well-posedness
of the Cauchy problem need to be analyzed carefully.

1. Hamiltonian analysis

As in the previous sections, we need to compute the
Hamiltonian density and we restrict to a Minkowski back-

ground space-time. The two relativistic invariants (40)
reduce to

X ¼ F2
ij � 2F2

0i and Y ¼ 2"ijkF0iFjk; (43)

where we have set "ijk � "0ijk. It follows that the conju-

gate momenta take the form

�0 ¼ 0; (44)

�i ¼ 4fXF0i � 2fY"
ijkFjk; (45)

and the Hamiltonian density reads

H ¼ �2
i

4fX
� fY

2fX
"ijk�iFjk þ �i@iA0 þ fþ V: (46)

We are here assuming fX � 0, and will consider the par-
ticular case of functions of Y alone in Sec. II C 3 below.
The field equation (41) reduces, as expected from the
comment in footnote 5, to

@i�
i ¼ �2V 0A0: (47)

Integrating by part the term �i@iA0 and then using the
secondary constraint to eliminate A0, we end up with a
Hamiltonian density

H ¼ �2
i

4fX
þ ð@i�iÞ2

2V0 � fY
fX

"ijk�i@jAk þ fþ V: (48)

[This expression assumes that V0 � 0. When it vanishes,
the second term / ð@i�iÞ2 merely disappears because
Eq. (47) implies @i�

i ¼ 0.]
As for the simpler case of functions fðXÞ considered in

Sec. II B, one needs to check that the Hamiltonian density
(48) is bounded by below for each specific model one is
considering.
A necessary condition is that fX be positive. Indeed, in

terms of Ei ¼ F0i and B
i ¼ "ijk@jAk, the Hamiltonian may

be rewritten as

H ¼ 4fXE
2 þ ð@i�iÞ2

2V0 þ f� YfY þ V: (49)

Now, one can let E ! 1 while keeping constant the argu-
ments X ¼ 2ðB2 � E2Þ and Y ¼ �4E � B of the function
f and its derivatives. [This can be performed for instance

by setting E¼ ffiffiffiffiffiffiffiffiffi
X=2

p
sinhp, B ¼ ffiffiffiffiffiffiffiffiffi

X=2
p

coshp, cosðE;BÞ¼
�Y=ð2XsinhpcoshpÞ, and letting the parameter p ! 1.]
Therefore H could take arbitrary large and negative val-
ues if we had fX < 0.
Specific sufficient conditions may also be written to

ensure thatH is bounded by below. For instance, it would
obviously suffice that fX � 0, V 0 � 0 and both f� YfY
and V are bounded by below. However, this is far from
being necessary, since the positive contribution coming
from 4fXE

2 can compensate a negative one due to f�
YfY , and that ð@i�iÞ2=2V 0 þ V may be bounded by below
even if one of the terms can diverge towards �1. This is
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what happens in the standard Proca case discussed in
Eq. (18) above.

2. Hyperbolicity

Following the same lines as in Sec. II B 2, Eq. (41) for
the propagation of the vector field can be rewritten as an
operator acting on A�,

fXð
�
�h� @�@

�Þ þ 4ðfXXF��F�
� þ fYY ~F

�� ~F�
�Þ@�@�

þ 4fXYðF�� ~F�
� þ ~F��F�

�Þ@�@�: (50)

For specific particular cases, it is possible to diagonalize its
action as independent operators acting on the components
of A�, and their hyperbolicity can then be analyzed as
before by working in the generic basis E�, B�, u�,
g�������u

�B�E�. However, the first diagonalization is

quite involved, and we did not derive the most general
conditions which must be satisfied. Moreover, the analysis
of necessary or sufficient conditions on fðX; YÞ ensuring
hyperbolicity is also a difficult task. Therefore, we merely
conclude that for each specific model, one should check
both the boundedness by below of the Hamiltonian density
(48) and (49) and that the matrix of operators (50) defines
hyperbolic equations for all physical components of the
vector A�. However, we shall see in Sec. II C 4 below that
this class of models (39) does not answer the question we
are addressing in the present paper, i.e., that the vector field
is necessarily diluted by the cosmological expansion.

3. Particular case of fðF ~FÞ
The above Hamiltonian analysis assumed that fX � 0,

therefore it cannot be followed in the special case where
fðF ~FÞ does not depend on F2. In such a case, it is straight-
forward to show that the corresponding Hamiltonian den-
sity is bounded by below only if V0 � 0 and f� YfY is
itself bounded by below [the discussion concerning the
potential V is the same as below Eq. (17)]. However, as
in Sec. II B 2 above, the analysis of the hyperbolicity of the
field equations suffices to exclude these models. Indeed,
the field equations read

2@�ð ~F��f0Þ ¼ A�V 0;

that is to say

2 ~F��@�f
0 ¼ A�V 0: (51)

This equation already shows that no propagation of per-
turbations can be defined through a space-time hypersur-
face where the background value of F�� happens to vanish.
This suffices to underline that this class of models is
pathological. One may anyway mimic the analysis of
Sec. II B 2, and diagonalize the differential operator acting
on A� in Eq. (51). One finds that three out of the four

components do not propagate because they have a strictly
vanishing differential operator. The fourth component is
differentiated by the operator G��@�@�, where G�� �

4f00 ~F�� ~F�
� plays the role of an effective metric in which

perturbations propagate. The same reasoning as in
Sec. II B 2 above then shows that the eigenvalues of the
matrix G��g�� cannot all be simultaneously positive, and

therefore that this last differential operator is not hyper-
bolic either. Indeed, one would need to satisfy the strict
inequality

ðF��Þ2f00 > jf00j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF2

��Þ2 þ ð ~F��F��Þ2
q

; (52)

which is impossible.

4. Cosmological dynamics

In the particular case of an homogeneous space-time,
and as detailed in Sec. II B 3, the only nonvanishing com-
ponents of the Faraday tensor are F0i so that only ~Fij is

nonvanishing and thus, it implies that F ~F ¼ 0.
As a consequence, the field equation (41) leads to the

same equation as for the case of a function of X alone, that
is to say Eq. (28) with the function fðXÞ replaced by
fðX; 0Þ. The cosmological dynamics remains unchanged
and the conclusions of Sec. II B 3 are not affected.

5. Conclusions and remarks

Our analysis shows that fðF2Þ models do not satisfy the
hyperbolicity conditions (unless f0 ¼ const), and that one
must then extend them to fðF2; F ~FÞ. This is needed if the
model is considered as a fundamental theory, but also in the
domain of validity of an effective one. As we shall also see
below, an interesting cosmological phenomenology can
generically be obtained only when the nonlinear correc-
tions become comparable to the lowest-order F2 kinetic
term. The hyperbolicity conditions need thus to be satisfied
in such a case, even if the model is assumed to be effective.
Independently of these conditions, we also showed that

the only fixed point of the cosmological dynamics corre-
sponds to A� ¼ 0, so that the vector field is diluted during

the cosmological expansion, and therefore cannot play any
significant cosmological role.
We could have imagined more complex terms such as

F��F
��F�

� or F��F
��F��F

��. However, one can check

that the first combination strictly vanishes while the second
can be rewritten as a function of F2 and F ~F, so that our
analysis above already considered such possibilities. Let us
also point out that terms such as ð@�A�Þð@�A�Þð@�A�Þ
generically excite the helicity-0 ghost degree of freedom.

D. Constant norm vector field

Given the conclusion of the previous analysis it is inter-
esting to consider similar theories but with the constraint
that the vector field has a constant norm. General studies of
constant norm vector fields have been discussed notably in
Ref. [43], and they play an important role, for instance, in
the construction of MOND-inspired theories [38,39].
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We may thus consider Lagrangians of the form

L ¼ �fðF2; F ~FÞ � VðA2Þ þ 	ðA2 � vÞ; (53)

where 	 is a Lagrange multiplier and v a number. The
extremization of the action with respect to 	 gives the
constraint

A2 ¼ v; (54)

and A� is timelike (resp. spacelike) when v < 0 (resp. v >

0). The norm-fixing term does not change the expression of
the conjugate momenta which are still given by Eqs. (44)
and (45). The equation of motion gets an extra term

@i�
i ¼ �2V 0A0 þ 2	A0: (55)

It cannot be used to eliminate A0 from the Hamiltonian
density since it is now used to fix the value of 	. Instead,
we use Eq. (54) to get

A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
i � v

q
: (56)

We conclude that the Hamiltonian density simplifies to

H ¼ �2
i

4fX
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
i � v

q
ð@i�iÞ � fY

fX
"ijk�i@jAk þ fþ V;

(57)

where the only difference with the expression (48) lies in
the second term. This expression should be compared to
the result of Refs. [39,48].

Following the same approach as in Sec. II C 1, we get

H ¼ 4fXE
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � v

p
r � � þ f� YfY þ V: (58)

We conclude that whatever the functions f and V, this
Hamiltonian density is not bounded by below because
one can always let X, Y and A2 constant while letting
r � � go to infinity.

It should be underlined that the above conclusion only
applies to kinetic terms of the form (53). As shown in
Ref. [43], more general kinetic terms for a constant norm
vector field, of the form c1ð@�A�Þ2 þ c2ð@�A�Þ2 þ
c3ð@�A�Þð@�A�Þ þ c4ðA�@�A�Þ2, can be consistent for

specific ranges of values of the constant coefficients
c1;2;3;4, i.e., define stable and well-posed field theories

and even pass solar-system and binary-pulsar tests of rela-
tivistic gravity. The same analysis has not yet been gener-
alized to nonlinear functions of such kinetic terms, nor to
variable coefficients (depending on some field).

III. NONMINIMAL COUPLINGS

The results of the previous section drive us to consider
theories with a standard kinetic term. This section focuses
on models satisfying this constraints but involving a non-
minimal coupling to gravity. This class of models is of
particular interest in cosmology because it has been argued
that when such a coupling exists the vector can be slow-

rolling [17] and the stability of these models has been
debated with different conclusions [19–25].
We already saw, in Eq. (2) above, that nonminimal

vector-metric couplings of the form R��A�A� are gener-

ated by a mere integration by parts of a general vector
kinetic term in curved space-time. Such a term, together
with a RA2 coupling, has been considered in chapter 5.4 of
Ref. [37] and recently in Refs. [24,25]. In the following, we
will not study R��A�A�, whose mathematical and phe-

nomenological consequences are similar to those of RA2.
However, we will consider the more general case of non-
linear couplings to a function of A2 in Sec. III A, and show
that the corresponding models are unstable. We will also
consider couplings to a function of the Faraday tensor F in
Sec. III B, but underline that instabilities are also generic in
such a case.

A. A2 case

1. Jordan frame

Let us first consider models of the class

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2

�ðA2Þ � 1

4
F2 � VðA2Þ

�
þ Smatter½c m; g���; (59)

where 
 ¼ 8�G, g�� denotes the Jordan-frame metric,

and we define F2 ¼ F��F��g
��g�� and A2 � A�A�g

��.

� is an arbitrary positive function, and the particular case
� ¼ 1þ 8�G�A2 has been extensively studied in the
literature [9,17]. G is the bare gravitational constant. It is
not the constant that would be measured in a Cavendish
experiment since the vector field is responsible for an
interaction. As in the case of scalar-tensor theories [49],
the Jordan metric is the ‘‘physical metric’’ since the matter
fields are universally coupled to g��. This metric defines

the lengths and times actually measured by laboratory rods
and clocks, since they are made of matter. All experimental
data have their usual interpretation in this frame.
The equation of motions, obtained by variation with

respect to the vector field, is given by

r�F
�� �

�
2V 0 � R



�0

�
A� ¼ 0 (60)

which generalizes the Maxwell equation. As previously, a
prime denotes a derivative with respect to the argument,
V0 � dVðXÞ=dX. The divergence of this equation implies
that

r�

��
2V 0 � R



�0

�
A�

�
¼ 0; (61)

which is the standard constraint satisfied by a massive
Proca field, in which �R�ðA2Þ=2
 plays the role of an
extra contribution to the vector’s potential VðA2Þ.
The Einstein and conservation equations, obtained, re-

spectively, by varying with respect to the Jordan metric and
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the matter fields, yield

�ðA2ÞG�� � ðr�r� � g��hÞ�ðA2Þ þ R�0ðA2ÞA�A�

¼ 


�
F��F�

� � 1

4
g��F

2 þ 2V0A�A� � Vg�� þ Tmat
��

�
;

(62)

r�T
��
mat ¼ 0; (63)

the second equation being no surprise since the matter
fields are minimally coupled to the Jordan metric.

On the other hand, Eq. (62) already exhibits the deadly
problem that this class of models presents: Some gauge-
dependent second derivatives of the vector field A� are

generated in the left-hand side. They come from the
R�ðA2Þ term in action (59), which breaks the gauge in-
variance of the vector’s kinetic term. Indeed, the scalar
curvature R contains second derivatives of the metric,
therefore, after integration by parts, second derivatives of
A� which cannot be written in terms of the gauge-invariant

Faraday tensor F�� (nor its dual ~F��). We thus expect to

excite the generic helicity-0 ghost of vector theories with
gauge-dependent kinetic terms, as in Sec. II A above. We
will see below that this will become explicit thanks to a
change of variables, namely, by rewriting the same theory
in the so-called Einstein frame. Equation (62) also illus-
trates why this ghost is never noticed when studying linear
perturbations, around a background where A� ¼ 0.

Indeed, the gauge-dependent second derivatives are acting
on a function of A2, and therefore disappear at linear order
in A�. This is actually already manifest in action (59),

since the gauge-dependent terms involving derivatives of
A� are of the cubic form A2@@h (where h denotes sche-

matically a perturbation of the metric), and therefore of
quadratic order in the field equations.

2. Einstein frame

The kinetic terms of the spin-1 and spin-2 degrees of
freedom are not diagonalized in action (59), as clearly
illustrated by the field equations (60)–(62). As for scalar-
tensor theories, the theory is better analyzed in the so-
called Einstein frame, defined by diagonalizing the kinetic
terms. This can be achieved thanks to a conformal rescal-
ing of the metric

g��� ¼ �ðA2Þg��: (64)

For the sake of clarity, we set A2� ¼ g��
� A�A� so that

A2� ¼ A2

�ðA2Þ ; (65)

which is assumed to be invertible as a function �ðA2�Þ �
A2. When performing the conformal transformation and
also replacing A2 in terms of A2�, we obtain that action (59)
can be rewritten as

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g�

p �
1

2

R� � 3

4

Z2ðA2�Þð@�A2�Þ2 � 1

4
F2�

�WðA2�Þ
�
þ Smatter½c m;BðA2�Þg����; (66)

where only use of the Einstein metric g��� is made in all

contractions and in defining the Ricci scalar R�. We nota-
bly define as usual F�� ¼ @�A� � @�A� but F

��
� ¼

g��
� g��� F�� and A�

� ¼ g��
� A�. The three functions of A2�

that appear in this action are given by

BðA2�Þ � 1=�ðA2Þ; (67)

ZðA2�Þ � �d lnB

dA2�
¼ �ðA2Þ�0ðA2Þ

�ðA2Þ � A2�0ðA2Þ ; (68)

WðA2�Þ � VðA2Þ=�2ðA2Þ: (69)

The kinetic terms of the vector A� and the tensor g��� are

now diagonalized in action (66), in a covariant way. This
will allow us to consider the vector sector alone in
Sec. III A 3 below, say in a freely falling elevator, to
analyze its stability.
Let us however underline a subtlety related to vector

fields in curved space-time, as soon as their kinetic term is
not a mere function of the Faraday tensor F�� and its dual
~F��. Indeed, the contribution proportional to Z2 in action

(66) involves a cross-kinetic term of the form @A@g�,
because the inverse metric enters the square A2� ¼
g��� A�A�. This can be seen either by writing @�A

2� ¼
2A�� @�A� þ A�A�@�g

��
� in a noncovariant way, or by

recalling the presence of a Christoffel symbol in the co-
variant form @�A

2� ¼ 2A�� r�
�A�. This is also illustrated by

the Einstein equations deriving from action (66), which
read

G�
�� ¼ 
ðT�mat

�� þ T�EM
�� �Wg���Þ þ 3

2
Z2@�A

2�@�A2�

� 3½ZZ0ð@�A2�Þ2 þ Z2h�A2��A�A�

� 3

4
Z2ð@�A2�Þ2g���; (70)

where T���
mat � ð2= ffiffiffiffiffiffiffiffiffiffi�g�

p Þð
Smat=
g
�
��Þ is the matter

energy-momentum tensor as defined in the Einstein frame,
and T�EM

�� � F	��F	� � 1
4F

2�g��� the standard electromag-

netic one. The presence of second derivatives of the vector
field in Eq. (70), in the form ofh�A2�, underlines that cross-
kinetic terms were actually still involved in action (66). On
the other hand, no curvature tensor enters the Maxwell
equations deriving from action (66) in the Einstein frame:

r�
�F

��
� ¼ A��

�
2W 0 � 3



ZZ0ð@�A2�Þ2 � 3



Z2h�A2�

þ�2�0T�
mat

�
; (71)
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where T�
mat � g���T

���
mat . It should be noted that the actual

energy-momentum tensor measured by an observer is the
Jordan-frame one, defined as T

��
mat � ð2= ffiffiffiffiffiffiffi�g

p Þ�
ð
Smat=
g��Þ, and its trace as Tmat � g��T

��
mat. It is related

to its Einstein-frame counterpart in a nontrivial way, be-
cause BðA2�Þg��� depends on the Einstein metric g��� also

through A2� ¼ g��� A�A�. One finds T
���
mat ¼ B3ðT��

mat �
B0A�A�TmatÞ, so that the last term within the square brack-
ets of Eq. (71) may also be written as �2�0T�

mat ¼ ZTmat.
Although the kinetic terms are covariantly diagonalized

in the Einstein-frame action (66), one may be worried by
the noncovariant cross term @A@g� it still contains. Indeed,
it is well known that such cross terms may contribute
positively to the kinetic energy of a degree of freedom.
The best-known example is the Brans-Dicke scalar-tensor
theory, defined by the action S ¼ R

d4x
ffiffiffiffiffiffiffi�g

p ½�R�
ð!=�Þð@��Þ2�, where the spin-0 degree of freedom carries

positive energy provided !>� 3
2 . For � 3

2 <!< 0, one

may thus naively think the scalar field is a ghost, but the
cross-kinetic term involved in �R (after partial integra-
tion) is enough to guarantee the positivity of energy. To
check that the remaining cross-kinetic term of action (66)
actually does not change our conclusion of Sec. III A 3
below, let us eliminate it in a noncovariant way. The
clearest way to do so will be to start again from the
Jordan-frame action (59), and to consider perturbations
around a given background, keeping covariant expressions
with respect to the background metric. Let us define gfull�� ¼
g�� þ h�� and Afull

� ¼ A� þ a�, and expand (59) to sec-

ond order in the dynamic perturbations h�� and a�, using

the background metric g�� to contract indices or define

covariant derivatives. The kinetic terms of these perturba-
tions then read

� 1

16

�ðA2Þr�h��ð2g��g�
 � g��g�
Þr�h�


þ 1

16

�ðA2Þð2r�h

�
� �r�hÞ2

� 1

2

�0ðA2Þðr�h

�� �r�hÞð2A�r�a� � A�A�r�h��Þ

� 1

4
ðr�a� �r�a�Þ2; (72)

where h � g��h�� is the trace of the Jordan metric per-

turbation. The first two terms of (72) are the standard
kinetic term of a spin-2 graviton, multiplied by a global
factor�ðA2Þ depending on the background vector field A�,

the fourth term is the standard Maxwell kinetic term, and
the third term exhibits the cross-kinetic terms rhra gen-
erated by the nonminimal coupling R�ðA2Þ of action (59).
Before diagonalizing these kinetic terms, let us recall that
the general coordinate-invariance of action (59) implies
that (72) is invariant by gauge transformation of the Jordan
metric perturbation h�� (although the Jordan metric g��
does not describe a pure spin-2 degree of freedom). We

may thus fix the harmonic gauge in Eq. (72) by imposing

2r�h
�
� ¼ r�h: (73)

This choice not only removes the second term of (72), but
also simplifies the third term as

�0ðA2Þ
4


r�hð2A�r�a� � A�A�r�h��Þ: (74)

It is now straightforward to check that the redefinition

hnew�� � h�� þ 2�0A�a�

ð�� A2�0Þ2 þ 2ðA2�0Þ2
� ½ð�þ A2�0Þg�� � 4�0A�A�� (75)

then suffices to eliminate all cross terms rhnewra. This
change of variable differs in several ways from the confor-
mal transformation (64) used above in the covariant cal-
culation. Indeed, it now contains a ‘‘disformal’’ (i.e.,
nonconformal) contribution proportional to A�A�.

Moreover, it clearly breaks general covariance since the
modification of h�� is proportional to the mere contraction

A�a�, whereas the expansion of A2
full ¼ A2 þ 2A�a� �

A�A�h�� þOððh; aÞ2Þ also involves the projection of the

metric perturbation along the background vector field,
A�A�h��. This is one of the reasons why (75) allows us

to cancel the cross-kinetic term @A@g� we had in the
covariant action (66). Finally, Eq. (65) happened not to
be invertible for the simple case of �ðA2Þ ¼ A2, as also
illustrated by the vanishing denominator of definition (68),
whereas Eq. (75) is always invertible as soon as �ðA2Þ �
0.
It should be noted that the gauge fixing (73) is nontrivial

in terms of the new variable hnew�� , since it now also involves

the vector perturbation a�. However, as already underlined

above, the general covariance of the Jordan-frame action
(59) anyway guarantees this choice is allowed. It under-
lines that some cross-kinetic terms (between hnew and a)
are actually pure gauge, and cannot contribute to any
physical observable. Replacing now definition (75) in
(72), still in the gauge (73), we can read off the full kinetic
term of the vector perturbation:

�1

4
ðr�a��r�a�Þ2� 2




��02ðA�r�a�Þ2
ð��A2�0Þ2þ2ðA2�0Þ2 : (76)

This is similar to the expression (66) we found in the fully
covariant case, with the minor difference of a global factor
1=� for the second term [coming from the fact that we use
the Einstein metric (64) to contract all indices in (66),
whereas we kept the original Jordan metric g�� as our

present background], the important difference that the
denominator of this second term contains a contribution
þ2ðA2�0Þ2 in addition to the square ð�� A2�0Þ2 coming
from Z2 [this change also comes with a modification of the
global numerical factor from 3 to 2], and the crucial
difference that all cross-kinetic terms have been cancelled.
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When considering (66) in a flat background g��� ¼ ��� (or

in a Fermi coordinate system), we thus get an expression of
the same form as expansion (76), the only difference being
the precise definition of Z. In Sec. III A 3 below, the non-
vanishing of this function Z will be the only needed
information, therefore one may work with the covariant
action (66) although its kinetic terms are not fully
diagonalized.

Both (66) and (76) show that the mode of a� which is

polarized in the direction of the background A� behaves as

if it were a positive-energy scalar field (see also Sec. 5 of
the recent Ref. [23]). However, it is coupled to the other
vectorial modes via the standard Maxwell kinetic term, and
we will see now that this causes a deadly instability of the
model.

3. Hamiltonian analysis

The stability analysis of any model is much more easily
performed in the Einstein frame, where the spin 2 and the
other degrees of freedom decouple. As discussed in the
previous section, there still exists a cross-kinetic term
@A@g� in the covariant action (66), but eliminating it in a
noncovariant way, as in Eq. (76), keeps the same general
form for the vector’s kinetic term. Let us thus consider an
action of the form (66), with Z � 0 but maybe different
from (68), and focus on the vector’s dynamics in a flat
geometry g��� ¼ ���. The conjugate momenta are then

given by

�0 ¼ � 3



Z2A0@tðA2�Þ; (77)

�i ¼ _Ai � @iA0 þ 3



Z2Ai@tðA2�Þ: (78)

Note that at linear order in the field equations (i.e., qua-
dratic order in the action or the Hamiltonian), we recover
�0 ¼ 0 as in gauge-invariant vector theories. Therefore the
ghost instability present in the nonminimally coupled mod-
els (59) or (66) cannot be noticed when studying first-order
perturbations (around a vanishing-vector background).

We deduce that the Hamiltonian density takes the form

H ¼ 1

4
F2
ij þW þ 3

4

Z2 � ½@iðA2�Þ�2 þ 


12

�
�0

ZA0

�
2

þ 1

2

�
��

i þ
�0

A0

Ai þ @iA0

�
2 � 1

2
ð@iA0Þ2: (79)

Since �0 is not identically zero in Eq. (77), the A0 compo-
nent is dynamical and independent from the spatial com-
ponents Ai. We may thus consider a particular background
such that A0 � 0 while �0 ¼ 0, Ai ¼ 0 and �i ¼ �@iA0,
and the Hamiltonian density then reads

H ’ W þ
�
3



Z2A2

0 �
1

2

�
ð@iA0Þ2: (80)

Initial data of the form A0 ¼ " sinðx="2Þ, with " ! 0,
would thus make this Hamiltonian density tend towards

�1. This suffices to show that the nonminimally coupled
vector model (59) or (66) is unstable.

B. F2 case

We can also consider theories in which the Faraday
tensor is nonminimally coupled to the Ricci scalar. In the
Jordan frame, such theories will have an action of the form

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2

�ðF2Þ � fðF2Þ � VðA2Þ

�
þ Smatter½c m; g��� (81)

with the same definitions as in the previous sections.
One may be tempted to introduce the analogue of an

Einstein metric by defining

g��� ¼ �ðF2Þg��; (82)

but since this definition involves derivatives of the vector
field, it cannot be used consistently in a Lagrangian (see
footnote 3 above).
Actually, because the scalar curvature R involves second

derivatives of the metric tensor g��, action (81) generates

third derivatives of the vector field in the metric field
equation, and third derivatives of the metric (i.e., covariant
derivatives of the curvature tensor) in the vector field
equation. Initial data on a Cauchy surface should thus
contain more information than the values of the fields
and their time derivatives. Therefore, this class of models
must involve some extra degrees of freedom, in addition to
the vector and the metric we wished to introduce. Such
higher derivatives are known to produce generically ghost
degrees of freedom, i.e., to cause the theory to be unstable.
This is notably the consequence of a theorem by
Ostrogradski [50], well discussed in Ref. [41]. However,
this theorem can be applied only on so-called ‘‘nondegen-
erate’’ Lagrangians, which produce fourth-order field
equations. Therefore, we are here in a typical case where
we expect a serious instability to manifest, but where we
cannot use the generic theorem which proves so without
any ambiguity.
To understand intuitively the instability of a theory

defined by action (81), one may consider a toy model
involving two coupled scalar fields in flat space-time,L ¼
�ð@�’Þ2 � ð@�c Þ2 þ 	ð@�’Þ2ð@�c Þ2, where 	 is a cou-

pling constant (see Sec. VA of Ref. [39]). Here ’ and c
play the roles of the metric tensor and of the vector field of
Eq. (81). The corresponding Hamiltonian density reads
H ¼ _’2 þ _c 2 þ ð@i’Þ2 þ ð@ic Þ2 þ 4	 _’2 _c 2 � 	½ _’2 þ
ð@i’Þ2�½ _c 2 þ ð@jc Þ2�, and it can be made arbitrary large

and negative whatever the sign of 	. Indeed, if 	 < 0, it
suffices to choose a homogeneous configuration @i’ ¼
@ic ¼ 0 and large enough values of _’2 and _c 2. On the
other hand, if 	 > 0, instantaneously constant fields _’ ¼
_c ¼ 0 with large enough spatial derivatives ð@i’Þ2 and
ð@ic Þ2 suffice to make H tend towards �1. Even more
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intuitively, in a given background of ’, the second scalar
field c behaves as if its kinetic term were multiplied by
½1� 	ð@�’Þ2�. If the ’-background is chosen such that

	ð@�’Þ2 be negative enough, then c will behave as a

ghost, and its contribution to the Hamiltonian density
will be unbounded by below. Therefore, there do exist field
configurations such that H is as negative as one wishes,
and this proves the instability of the toy model. Such a
hand-waving argument can now also be used on more
involved models, for instance L ¼ �ð@�’Þ2 � ð@�c Þ2 þ
	h’ð@�c Þ2, which looks a little more like Eq. (81), where

h’ plays the role of the scalar curvature R, involving
second derivatives. The Hamiltonian analysis is now
much more involved, because the presence of third deriva-
tives of the fields in their equations implies the existence of
new excitations (and the standard Ostrogradski definition
of conjugate momenta cannot be followed because we are
in a degenerate case). But it is still clear that in a given
background where 	h’ is large enough, then c behaves
as a ghost and can make the Hamiltonian density tend
towards �1. Now, if we try to apply this argument to
action (81) itself, we understand that we need to consider
large enough (positive or negative) curvatures R such that
the nonminimal coupling RF2 could change the global sign
of the vector kinetic term. Particular cases might thus be
safe, for instance if one needs to be in the interior of a black
hole horizon to reach such a condition. Moreover, one may
devise models such that the function �ðxÞ ¼ �0 þ 0xþ
�2x

2 þ . . . does not contain any linear term. Therefore, the
above hand-waving argument does not prove that all mod-
els (81) are unstable, although we do expect so because of
the presence of higher derivatives in their field equations.
We will anyway disregard this class of models, because
such higher derivatives mean that they involve extra de-
grees of freedom, in addition to the single spin-1 and spin-2
fields we wished to consider.

IV. DIMENSIONAL REDUCTION OF LOVELOCK
INVARIANTS AND COSMOLOGICAL

PHENOMENOLOGY

A Lovelock invariant is defined in even dimension D as
a Lagrangian density proportional to LD �
"�1�2...�D"�1�2...�DR�1�2�1�2

R�3�4�3�4
. . .R�D�1�D�D�1�D

, in-

volving thus a product of D=2 Riemann curvature tensors.
The best-known examples are the cosmological constant�
corresponding to D ¼ 0, the Einstein-Hilbert Lagrangian
R corresponding to D ¼ 2, and the Gauss-Bonnet density
R2
���� � 4R2

�� þ R2 corresponding toD ¼ 4. The integral

of LD over a D-dimensional space-time gives a number
depending only on the topology, therefore its variational
derivative vanishes and it does not contribute to the field
equations. In dimensions lower than D, the density LD

vanishes identically. On the other hand, LD defines a non-
trivial dynamics when considered in dimensions higher

than D (like R or � in four dimensions). But in spite of
the presence of several Riemann tensors (for LD�4), each
of them involving second derivatives of the metric, the
corresponding field equations remain of second order.
Indeed, any third (or higher) derivative must appear in a
form similar to R�1�2�1�2;�3

, multiplied by the antisymmet-

ric Levi-Civita tensor "�1�2...�D , and therefore vanishes by
virtue of the Bianchi identity R�1�2½�1�2;�3� ¼ 0. The ab-

sence of higher-order derivatives in the field equations does
not guarantee the stability of the corresponding models, but
it proves at least that no extra degree of freedom is excited,
and that the generic ghost modes of higher-order theories
are avoided. If the Gauss-Bonnet density R2

���� � 4R2
�� þ

R2 is considered in five dimensions, for instance, it does
contribute to the field equations, but keeping them of
second order. When performing a Kaluza-Klein dimen-
sional reduction, where g�5 is interpreted as a vector field

A� in four dimensions, we thus get a nontrivial vector-

curvature coupling which does not generate higher-order
field equations, and avoids thus the deadly instabilities
caused by ghost modes.7 We will analyze below the cos-
mology generated by such a coupling. Similar models can
be constructed by considering the dimensional reduction of
higher-order Lovelock invariants L6; L8; . . . , and even
more general vector models coupled to both curvature
and scalar fields are obtained by dimensionally reducing
the so-called ‘‘Galileon’’ models recently introduced in
Ref. [51] and generalized in curved space-times in
Refs. [52]. As we will see below, even the simplest case
of a dimensionally-reduced Gauss-Bonnet density L4 suf-
fices to generate an interesting cosmological evolution for
the vector field.

A. Nonminimal couplings to the Riemann tensor

We consider the class of models

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2

� 1

4
F2 þ 1

4
�RF2 þ 1

2
�R��F

��F�
�

þ 1

4
�R����F

��F��

�
þ Smatter½c m; g���; (83)

with the same notation as in the previous sections, and
where �, � and � are constant parameters. Such theories
lead to generalization of the Maxwell theory that imply a
variable speed of light [53–56] (i.e. propagation velocity of
the vector field if identified to the one describing the
photon [57]). However, as shown in [58], the correspond-
ing field equations are of second order if and only if the
parameters �, � and � satisfy

�þ 2� ¼ 0; � ¼ �; (84)

7Moreover, the dimensional reduction of Lovelock invariants
always generates (gauge-invariant) combinations of the Faraday
tensor F��, therefore the ghostlike mode A0 is never excited
either; see Sec. II A.
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and this is precisely what is obtained by dimensionally
reducing the Gauss-Bonnet density L4 written in a five-
dimensional space-time [59,60]. This can also be checked
explicitly by deriving the vector field equations

ð1� �RÞF��
;� � �ðR�

	F
	�

;� � R�
	F

	�
;�Þ � �R����F��;�

� 1

2
ð2�þ �ÞR;�F

�� � ð�þ 2�ÞR�
	;�F

	� ¼ 0; (85)

in which third derivatives of the metric occur (in the form
of first derivatives of the curvature tensor) unless relations
(84) are satisfied. Similarly, the Einstein equations involve
third derivatives of the vector A� unless (84) are satisfied.

Since such higher derivatives would excite new, generi-
cally ghostlike, degrees of freedom, implying the instabil-
ity of the model, we will restrict our study to the particular
case (84). However, second-order field equations do not
suffice to warrant the consistency of the model. These
equations should also be hyperbolic, and the corresponding
Hamiltonian should be bounded by below. We will not
perform here this analysis, because it is even more complex
than in the case of couplings like R��A

�A�. However, we

wish to emphasize that this particular class of models
offers an interesting phenomenology for cosmology and
should thus deserve more attention.

B. Cosmological dynamics

Consider action (83) where the matter fields reduce e.g.
to a single scalar field� evolving in a potential vð�Þ that is
assumed to drive an inflationary phase in the early
Universe. We consider the vector field as a test field whose
evolution is then given by Eq. (85). Using the same nota-
tion (25) as in Sec. II B 3 above, homogeneity in a
Friedmann-Lemaı̂tre space-time with metric (1) implies
@iA� ¼ 0, so that the only nonvanishing component of

the Faraday tensor is

F0i ¼ að _Bi þHBiÞ: (86)

We recall that the Weyl tensor of a Friedmann-Lemaı̂tre
space-time strictly vanishes, C���� ¼ 0, and that (restrict-

ing to a spatially Euclidean space-time) the nonvanishing
components of the Ricci tensor are given by

R0
0 ¼ 3ð _H þH2Þ; Ri

j ¼ ð _H þ 3H2Þ
i
j; (87)

so that the only nonvanishing components of the Riemann
tensor are (see e.g. Ref. [61])

Ri
jml ¼ a2H2ð
i

m�jl � 
i
l�jmÞ;

R0
i0j ¼ a2ð _H þH2Þ�ij:

(88)

The evolution equation for Bi then reduces to

½1� 6�ð _H þ 2H2Þ � �ð4 _H þ 6H2Þ � 2�ð _H þH2Þ�
� ð _Fi0 þ 3HFi0Þ þ ½�ð6�þ 4�þ 2�Þ
� ð €H þ 4 _HHÞ þ 4ð�þ �Þ _HH�Fi0 ¼ 0: (89)

Restricting to the conditions (84), it leads to the equation

ð1þ �H2Þ €Bi þ 3

�
1þ �

�
2

3
_H þH2

��
H _Bi

þ ½ð1þ 3�H2Þ _H þ 2ð1þ �H2ÞH2�Bi ¼ 0: (90)

Let us first assume that the Universe is undergoing a
slow-roll inflationary phase close to a de Sitter phase, so
that we can assumeH � const and� _H=H2 ¼ " 	 1 (" >
0 in most slow-roll inflationary models). If the parameter �
is chosen to be negative, then a fine-tuned value H2 �
�ð1þ "Þ=� is such that Eq. (90) reads €Bi þ ð1�
2"ÞH _Bi � 3"H2Bi ¼ 0, and therefore does not involve
any undifferentiated Bi at lowest order in " [this can easily
be made exact thanks to an even finer tuning of HðtÞ]. The
two solutions of this equation are thus a decaying mode
Bi � exp½�Ht� � 1=a and an almost constant one
Bi � exp½3"Ht� � a3"—even slightly increasing if " >
0. It follows that a slow-rolling vector field can survive
the expansion, contrary to the standard lore on vector
fields, but at the price of a fine-tuning of the expansion
rate H, related to the nonminimal vector-gravity coupling
constant �.
Let us also consider the dynamics of the vector field

assuming the background dynamics is given by aðtÞ / tp

(p ¼ 1=2 for a radiation-dominated universe, p ¼ 2=3 for
a matter-dominated universe, and the limit p 
 1 corre-
sponds to a power-law inflationary model with " ¼ 1=p).
Equation (90) then reduces to

ð1þ �H2Þ €Bi þ
�
3þ

�
3� 2

p

�
�H2

�
H _Bi

þ
��

2� 1

p

�
þ

�
2� 3

p

�
�H2

�
H2Bi ¼ 0: (91)

In the case of inflation, we find again that the field is diluted
unless one imposes the previous fine-tuning 1þ �H2 ¼
�1=p, which requires �< 0.
To discuss the dynamics during the matter and radiation-

dominated era, let us introduce the time scale �� ¼ p
ffiffiffiffiffiffiffij�jp

.
In the radiation era, the coefficient of Bi is always propor-
tional to � (instead of being zero in the standard case). At
early times (t 	 ��), Eq. (91) reduces to €Bi � _Bi=ð2tÞ �
Bi=t

2 ¼ 0 which has two solutions, a decaying mode /
1=

ffiffi
t

p / a�1 and a growing mode / t2 / a4 while, Ci �
_Bi þHBi behaves as Ci / t / a2. At later times (t 
 ��),
Eq. (91) reduces to €Bi þ 3 _Bi=ð2tÞ � �Bi=ð4t4Þ ¼ 0, which
differs from the standard equation by the term proportional
to Bi. The solutions of such an equation are given in terms
of Bessel functions and will be oscillating if �< 0 while

they have a mode / ðt=��Þ�1=4K1=4ð��=tÞ if �> 0 that

grows and then freezes to a constant. These behaviors at
early and late times differ from the standard dynamics of a
vector field and exist whatever the value of �. In the matter
era, the dynamics is only modified at early times (t 	 ��)
since Eq. (91) reduces to €Biþ9t _Bi=ð2�Þ�10Bi=ð9t2Þ¼0,
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the main modification arising from the fact that the coef-
ficient of _Bi is now proportional to 1=H and not to H
anymore. This equation has a growing mode.

C. Discussion

In this class of theories, a slow-rolling vector field can
survive during inflation, contrary to the standard lore on
vector fields, but at the price of a fine-tuning of the expan-
sion rate H, related to the nonminimal vector-gravity cou-
pling constant �. It requires that � be negative and is
related to the energy scale of inflation by j�j � 1=H2

inf .

The general action should thus contain terms of the form

L � 1

2
M2

pR� 1

4
F2 � 1

2
�H2F2

0i;

where Mp is the Planck mass. Then, since during inflation

R� 12H2
inf while we need �H2

inf ��1, the correction

term to the standard Einstein-Maxwell Lagrangian is of
the order of F2

0i=2 ¼ �F2=4. As long as Hinf=Mp < 1, as

is usually the case in inflation, this correction is negligible
compared to the Einstein-Hilbert while being of the same
order as the Maxwell term. In spirit, this solution leading to
a slow-rolling vector field is similar to the one invoked in
Refs. [9,17], which used a coupling of the form �RA2, that
we saw to be unstable. We cannot prove at this stage that
this will not be the fate of this model that needs to be
analyzed in detail.

We have also seen that the dynamics during the radiation
and matter-dominated eras allows for growing solutions
whatever the value of the parameter �. This opens an
interesting phenomenology that we postpone to further
study.

V. CONCLUSIONS

We have shown that the class of fðF2Þ-theories suffers
from hyperbolicity problems, while both fðF2Þ and
fðF2; F ~FÞ models predict a dilution of the vector field
during the cosmological expansion.

When allowing for a nonminimal coupling to the metric,
we have proven that the class of fðA2ÞR-theories has a
Hamiltonian which is unbounded from below, while the
fðF2ÞR-models involve higher derivatives of the fields and
thus contain extra degrees of freedom (which are generi-
cally expected to carry negative energy).

These results set strong constraints on vector field mod-
els, as long as they are considered as fundamental theo-

ries—i.e., notably, that no field entering the action is
considered as a fixed background that cannot be varied.
[From a theoretical point of view, let us remind that an
action is not just a list of symbols but involves also the
definitions of these symbols, e.g. what are the fundamental
fields; see the discussion of the difference between A� and

@��, or the difference between a coupling constant and a

Lagrange multiplier.] But even as effective models, the
constraints we derived for their stability and causality
should always be satisfied in their domain of validity, and
at least in the domain where their cosmological evolution is
studied. It happens that to avoid the dilution of the vector
field during the expansion of the Universe, one would need
the nonlinear terms to be of the same order of magnitude as
the main kinetic term, i.e., precisely in conditions where
the positivity of the Hamiltonian and the well-posedness of
the Cauchy problem should be checked carefully.
To finish, we pointed out that in the class of theories

obtained by dimensional reduction of Lovelock invariants,
there exist cases that allow for the existence of a slow-
rolling vector field. Although we did not study the bound-
edness by below of the Hamiltonian nor the hyperbolicity
of the field equations, because of their complexity, we
underlined that the field equations remain of second order
in spite of the nonminimal coupling of the vector field to
curvature. Such models contain thus only the spin-1 and
spin-2 degrees of freedom we wished to consider (in addi-
tion to other matter fields), and they are phenomenologi-
cally quite appealing for cosmology.
Similar models as the one we studied in Sec. IV are

obtained by dimensionally reducing higher-order Lovelock
invariants, and more general tensor-vector-scalar models
yielding second-order field equations can also be defined
by dimensional reduction of Galileon actions [51,52] writ-
ten in more than four dimensions. It is also possible that the
construction of scalar Galileons can be generalized to
vector fields, yielding nonminimal vector-curvature cou-
plings of a different nature than those obtained from
Lovelock invariants. All such second-order models deserve
being studied both mathematically and for their phenome-
nological predictions in a cosmological context.
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