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We consider a spacetime with empty Schwarzschild-de Sitter exterior and Schwarzschild-de Sitter

interior metric for a spherical fluid with constant density. The fluid interior may be taken to represent a

galaxy supercluster, for which the proper distance from the center of the supercluster to the cosmological

horizon has the same order of magnitude as the Hubble radius derived from Friedmann-Robertson-Walker

cosmologies. The fluid interior and surrounding vacuum may also be considered as a model of the Local

Group of galaxies in the far future. Particle motion is subject both to the attractive gravity exerted by the

fluid and the repelling cosmological constant. Using global Fermi coordinates for the central observer

within the fluid, the Fermi velocity, the astrometric velocity, the kinematic velocity, and the spectroscopic

velocity, relative to the central (Fermi) observer, of a radially receding test particle are calculated and

compared. We find that the Fermi relative velocity can exceed the speed of light in this model, but the

presence of a positive cosmological constant causes recessional speeds of distant high energy particles to

decrease rather than increase. We derive a version of Hubble’s law for this spacetime which might be

applicable for the analysis of a receding mass within a great void adjacent to a supercluster, relatively

isolated from gravitational sources other than the supercluster. We also compare some of our results to

related behavior in Friedmann-Robertson-Walker cosmologies and consider implications to arguments

regarding the expansion of space.
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I. INTRODUCTION

The line element for Schwarzschild-de Sitter spacetime with constant density interior is given by

ds2 ¼
��AðrÞd~t2 þ BðrÞdr2 þ r2d�2 if r � R
�ð1� 2M

r � �r2

3 Þd~t2 þ ð1� 2M
r � �r2

3 Þ�1dr2 þ r2d�2 if r � R;
(1)

where M is the mass of the spherical fluid, � is the cosmological constant, R is the radial coordinate for the radius of the
fluid, d�2 ¼ d�2 þ sin2�d�2, and

AðrÞ ¼
�ð3� R2

0�Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

R2
0

s
� ð1� R2

0�Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2
0

s �
2
; BðrÞ ¼

�
1� r2

R2
0

��1
: (2)

Here,

R2
0 ¼

3R3

6Mþ�R3
: (3)

The metric given by Eq. (1) satisfies the Israel-Darmois
junction conditions and the Einstein field equations (see,
e.g., [1]) for positive, negative, and zero values of �, but
we assume here that� � 0. We also assume that Að0Þ> 0,
and thatM, R,� satisfy the generalized Buchdahl inequal-
ities given in [1–4], and the references therein, and later,

for given values of M and R, we will assume an upper
bound on � (see Eq. (19) below1).
The exterior Schwarzschild-de Sitter metric was used in

[5,6] to study effects of a positive cosmological constant on
the dynamics of the solar system, and some earlier related
approaches are summarized in [7]. In the present paper, we
analyze velocities and accelerations of radially receding
distant test particles, relative to the observer at the center of
the fluid.

*david.klein@csun.edu
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1A short calculation shows that if Að0Þ> 0 and Eq. (19) holds,
then AðrÞ> 0 for all r 2 ½0; R� so that the metric is well defined
in the interior region.
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Care is required for the study of relative velocities of
nonlocal objects in curved spacetime. General relativity
restricts speeds of test particles to be less than the speed of
light, c ¼ 1, relative to an observer at the exact spacetime
point of the test particle. However, general relativity pro-
vides no a priori definition of relative velocity, and hence
no upper bounds of speeds, for test particles and observers
at different spacetime points. Distant particles may have
superluminal2 or only sublight speeds, depending on the
coordinate system used for the calculations, and on the
definition of relative velocity used. To avoid such ambi-
guities, we employ the coordinate independent, purely
geometric definitions of Fermi, astrometric, kinematic,
and spectroscopic relative velocities given in [8], and
defined here briefly for the special case of radially receding
particles in Schwarzschild-de Sitter space.

The four inequivalent definitions of relative velocity
each have physical justifications so as to be regarded as
velocities (c.f. [8,9]). They depend on two different notions
of simultaneity: ‘‘light cone simultaneity’’ and simultane-
ity as defined by Fermi coordinates of the central observer.
The Fermi and kinematic relative velocities can be de-
scribed in terms of the latter, according to which events
are simultaneous if they lie on the same space slice deter-
mined by Fermi coordinates. For a radially receding test
particle in this model, the kinematic relative velocity is
found by first parallel transporting the four velocity U of
the test particle along a radial spacelike geodesic (lying on
a Fermi space slice) to a four velocity U0 in the tangent
space of the central observer, whose four velocity is u. The
kinematic relative velocity vkin is then the unique vector
orthogonal to u, in the tangent space of the observer,
satisfying U0 ¼ �ðuþ vkinÞ for some scalar � (which is
also uniquely determined). The Fermi relative velocity
vFermi, under the circumstances considered here, is the
rate of change of proper distance of the test particle away
from the Fermi observer, with respect to proper time of the
observer.

The spectroscopic (or barycentric) and astrometric rela-
tive velocities can be derived from spectroscopic and as-
tronomical observations. Mathematically, both rely on the
notion of light cone simultaneity, according to which two
events are simultaneous if they both lie on the same past
light cone of the central observer. The spectroscopic rela-
tive velocity vspec is calculated analogously to vkin, de-

scribed in the preceding paragraph, except that the four
velocity U of the test particle is parallel transported to the
tangent space of the observer along a null geodesic lying
on the past light cone of the observer, instead of along the
Fermi space slice. The astrometric relative velocity vast is
calculated analogously to vFermi, as the rate of change of

the observed proper distance (through light signals at the
time of observation) with respect to the proper time of the
observer, as may be done via parallax measurements. The
observer uses current time measurements together with
proper distances of the test particle at the time of emission
of light signals, or affine distance. Details and elaboration
may be found in [8,9].
Analysis of the Fermi relative velocity in

Schwarzschild-de Sitter space allows comparisons with
the behavior of receding test particles in Friedmann-
Robertson-Walker (FRW) cosmologies, where Fermi ve-
locity is (implicitly) used (see, e.g., [10,11]). We show that
the Fermi relative velocity of receding test particles can
exceed the speed of light, but together with the astrometric
velocity, decreases to zero at the cosmological horizon. By
contrast, the spectroscopic and kinematic relative veloc-
ities, which by their definitions cannot exceed the speed of
light, reach the speed of light asymptotically at the cosmo-
logical horizon. This property (together with others) of the
kinematic velocity makes it a natural choice for the for-
mulation of a version of Hubble’s law in this spacetime, a
topic developed below. All relative velocities are calcu-
lated with respect to the static observer at r ¼ 0, who
follows a timelike geodesic.
In Sec. II we express the metric of Eq. (1) using a polar

version of Fermi coordinates for the r ¼ 0 observer. These
Fermi coordinates are global and are convenient for sub-
sequent calculations. We show that superluminal Fermi
relative speeds occur along portions of timelike geodesics
at sufficiently high energies and at large proper distances
away from the Fermi observer at r ¼ 0, even in the
Schwarzschild case where � ¼ 0. Bounds on the maxi-
mum relative Fermi velocities for positive and for zero
cosmological constant are also given. We identify a spheri-
cal region with radial coordinate r0 (at any fixed time)
within which test particles initially at rest (at r < r0) fall
toward the central observer at r ¼ 0, and outside of which
(at r > r0) they are accelerated (in Fermi coordinates) in
the opposite direction on account of the cosmological
constant. We define the energy, E0, of a unit mass test
particle at rest at in the spherical region with r ¼ r0 to be
the critical energy of the spacetime; it plays a role in
formulating a Hubble’s law for Schwarzschild-de Sitter
space in Sec. VII.
In contrast to the behavior of low energy particles, we

also show in Sec. II that test particles with high enough
energies, following radial geodesics receding from the
fluid center at r ¼ 0, exhibit somewhat counterintuitive
behavior. For such a particle, the outgoing Fermi velocity
increases in the region r < r0 and decreases in the region
r > r0. That is, at sufficiently a high energy, the particle, in
a certain sense, is ‘‘pushed away’’ from the central fluid in
the region of space where gravity dominates, and is
‘‘pushed back’’ toward the central fluid in the region of
space where lower energy particles accelerate away from

2Here and throughout, we define the velocity v of a test
particle relative to an observer at a different spacetime point to
be superluminal if the norm jjvjj> 1.
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the central fluid due to the influence of the cosmological
constant. A comparison with analogous behavior in FRW
cosmologies, identified, for example, in [11], is considered
in the concluding section.

Sections III, IV, and V give formulas for corresponding
kinematic, spectroscopic, and astrometric relative veloc-
ities of radially receding test particles according to the
geometric definitions of [8]. Section VI exhibits functional
relationships of the relative velocities, employed in the
following section.

Section VII is devoted to the development of a version of
Hubble’s law for Schwarzschild-de Sitter space (with
strictly positive cosmological constant). For this purpose,
test particles with critical energy E0 provide the natural
context, since in that case the motion of distant particles is
due solely to the influence of the cosmological constant.
Particles with higher energies may be regarded as having
‘‘peculiar velocities,’’ in analogy with FRW models. We
derive a linear approximation of the vkin as a function of
proper distance to identify a Hubble’s constant in this
context. We then express the redshift of a light signal
from a receding particle, relative to the redshift of a static
particle at radial coordinate r0, in terms of the observed, or
affine distance, of the emitting test particle.

In Sec. VIII, we consider the spherical fluid as a model
for a larger structure, such as a galaxy supercluster. To that
end, we include numerical results for which the mass of
the fluid is M ¼ 103 ly ( � 6� 1015M�), R ¼ 107 ly
( � 3 Mpc), and � ¼ 3� 10�20 ly�2. These choices of

parameters are of the same order of magnitude calculated
to hold for some galaxy superclusters [12,13]. Moreover,
with these parameters, the proper distance, in our model,
from the Fermi observer at the center of the fluid to the
cosmological horizon is of order 1010 light years, the same
order of magnitude as estimates for the present Hubble
length. Included is a discussion of the use of measurements
to determine relative velocities and the basic parameters of
this model. We also discuss Schwarzschild-de Sitter space
as a model of the Local Group of galaxies in the far future.
Concluding remarks and a comparison with recessional

velocities in FRW cosmologies, together the implication of
our results on the question of the expansion of space, are
given in Sec. IX.

II. GLOBAL FERMI COORDINATES AND FERMI
RELATIVE VELOCITY

Let � ¼ �ðrÞ be the proper distance, according to
Eq. (1), from the center of the fluid at r ¼ 0 to a point
with radial coordinate r, i.e.,

�ðrÞ ¼
8<
:R0sin

�1ðr=R0Þ if r � RR
r
R

d~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2M

~r ��~r2

3

p þ R0sin
�1ðR=R0Þ if r � R:

(4)

In Eq. (1), we make the change of variable, t ¼ ffiffiffiffiffiffiffiffiffiffi
Að0Þp

~t
and � ¼ �ðrÞ, with the angular coordinates left unchanged.
Denoting the inverse function of �ðrÞ by rð�Þ, the result is

ds2 ¼
8<
:� Aðrð�ÞÞ

Að0Þ dt2 þ d�2 þ R2
0sin

2ð�=R0Þd�2 if � � R0sin
�1ðR=R0Þ

�ð1� 2M
rð�Þ � �rð�Þ2

3 Þ dt2

Að0Þ þ d�2 þ rð�Þ2d�2 if � � R0sin
�1ðR=R0Þ:

(5)

Note that �ðrÞ and all of the metric coefficients in Eq. (5), in contrast to Eq. (1), are continuously differentiable,
including at the junction, rð�Þ ¼ R. Following standard notation and for later reference, we identify gtt ¼ gttð�Þ as the
metric coefficient of dt2 in Eq. (5), a function of � alone, i.e.,

gttð�Þ ¼
(�Aðrð�ÞÞ=Að0Þ if � � R0sin

�1ðR=R0Þ
�ð1� 2M

rð�Þ � �rð�Þ2
3 Þ=Að0Þ if � � R0sin

�1ðR=R0Þ: (6)

It is straightforward to show that the radial spacelike
geodesics, orthogonal to the static observer’s worldline at
� ¼ 0, are of the form

Yð�Þ ¼ ðt0; �; �0; �0Þ (7)

for any fixed values of t0, �0, �0. With the further change
of spatial coordinates, x1 ¼ � sin� cos�, x2 ¼
� sin� sin�, x3 ¼ � cos�, the metric of Eq. (5) is expressed
in Fermi coordinates for the static observer at the center of
the fluid. This was proven in [14] for the interior part of the
metric, and it holds for the metric on the larger spacetime
(with the vacuum exterior) considered here. One may
verify that with the above change of variables, the space-

like path below is geodesic and orthogonal to the timelike
path of the � ¼ 0 static observer:

Yð�Þ ¼ ðt0; � sin�0 cos�0; � sin�0 sin�0; � cos�0Þ
� ðt0; a1�; a2�; a3�Þ; (8)

for any t0, �0, �0. The requirement that orthogonal space-
like geodesics have the form of Eq. (8) characterizes Fermi
coordinates (for background, see [14,15]). Equation (5)
may thus be regarded as the polar form of the metric in
Fermi coordinates.
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Remark 1. Replacing sina� in Eq. (5) by sinha� results
in the metric for anti-de Sitter space with imbedded con-
stant density fluid expressed in (polar) Fermi coordinates.

The following fact, expressed in the form of a lemma,
will aid in the physical interpretation of results that follow.

Lemma 1. If � � 0, then Að0Þ< 1.
Proof. Observe that

0<
ð3� R2

0�Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

R2
0

s
<

ð3� R2
0�Þ

2
; (9)

where the first inequality follows fromM> 0. Subtracting
ð1� R2

0�Þ=2 yields

� 1

2
� �ð1� R2

0�Þ
2

<
ð3� R2

0�Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

R2
0

s
� ð1� R2

0�Þ
2

< 1; (10)

from which the result follows.
From Eq. (5), the Lagrangian for a radial, timelike

geodesic is

L ¼ gtt _t
2

2
þ _�2

2
¼ � 1

2
; (11)

where the overdot signifies differentiation with respect to
the proper time � along the geodesic. Since @=@t is a
Killing vector, the energy E ¼ �pt of a unit test particle
is invariant along the geodesic, and is given by

pt ¼ gtt _t ¼ �E: (12)

It follows directly from Eqs. (11) and (12) that

k vFermi k2¼
�
d�

dt

�
2 ¼ _�2

_t2
¼ �gttð�Þ

�
1þ gttð�Þ

E2

�
; (13)

where we have used Proposition 3 of [8] to identify
jd�=dtj ¼k vFermi k , the norm of the (geometrically de-
fined) Fermi velocity. From Eq. (13), we see that the energy
E of a radial geodesic, passing through a point at proper
distance � from the central observer, must satisfy

� gttð�Þ � E2: (14)

Restricting Eq. (13) to the exterior region gives

k vFermi k2 ¼
�
d�

dt

�
2

¼ ð1� 2M
rð�Þ � �rð�Þ2

3 Þ
Að0Þ

�
1� ð1� 2M

rð�Þ � �rð�Þ2
3 Þ

Að0ÞE2

�
:

(15)

Differentiating Eq. (15) with respect to t gives

d2�

dt2
¼

ð M
rð�Þ2 � �rð�Þ

3 Þ
Að0Þ

�
1� 2ð1� 2M

rð�Þ � �rð�Þ2
3 Þ

Að0ÞE2

�
r0ð�Þ;

(16)

where r0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

rð�Þ � �rð�Þ2
3

q
follows from Eq. (4). The

acceleration according to the Fermi coordinates of the
central observer therefore vanishes at up to three values
of �: (a) at the cosmological horizon [where r0ð�Þ ¼ 0];
(b) if

1� 2M

rð�Þ �
�rð�Þ2

3
¼ Að0ÞE2

2
; (17)

and, assuming �> 0; (c) at

rð�0Þ ¼ r0 �
�
3M

�

�
1=3

: (18)

Henceforth, we assume

0 � �<min

�
1

9M2
;
3M

R3

�
: (19)

Inequality (19) guarantees that r0 >R and 1� 2M
r0

� �r2
0

3 >

0 so that r0 lies in the exterior vacuum somewhere between
the boundary of the fluid and the cosmological horizon of
the Fermi observer. This natural condition is fulfilled by
our examples.
The number r0 is the radial coordinate where gravita-

tional attraction is exactly balanced by repulsion from the
cosmological constant. To elaborate on this point, we
define the critical energy E0 by

E2
0Að0Þ ¼ 1� 2M

r0
��r20

3
: (20)

It is easily checked that a particle with energy E0 at
radial coordinate r0 has zero Fermi velocity and zero
acceleration, and remains at rest. The gravitational accel-
eration inward is exactly balanced by the acceleration
outward due to the cosmological constant. A particle ini-
tially at rest at a point closer to the central observer [with
initial coordinates satisfying rð�Þ< r0] will accelerate
toward the central observer, while a particle initially at
rest with radial coordinate larger than r0 will accelerate
away from the central observer, in Fermi coordinates. We
note that in the standard weak field approximation for the
Newtonian potential energy function via 1þ 2V=c2 ¼
�gtt (where c is the speed of light),

VðrÞ ¼ �GM

r
��c2r2

6
; (21)

so that the force F is given by

FðrÞ ¼ �rVðrÞ ¼ �GM

r2
þ�c2r

3
: (22)

Setting FðrÞ ¼ 0 yields the same expression for r0 as in
Eq. (18), though in the relativistic case the proper distance
from the central observer is �ðr0Þ as given by Eq. (4).
A particle with energy E> E0 satisfies Eq. (14) in the

entire vacuum region of the spacetime. From Eq. (16), it

follows that if E0 <E<
ffiffiffi
2

p
E0, the test particle decelerates

DAVID KLEIN AND PETER COLLAS PHYSICAL REVIEW D 81, 063518 (2010)

063518-4



before it reaches a distance with radial coordinate r0, and
as soon as it passes that point, it begins to accelerate away
from the fluid toward the cosmological horizon. This ac-
celeration toward the horizon continues until the factor in
the square brackets on the right side of Eq. (16) reaches
zero, at which point the particle decelerates. However, if

E>
ffiffiffi
2

p
E0 the opposite occurs: the particle accelerates

before it reaches a distance with radial coordinate r0, and
thereafter decelerates. In both scenarios, the particle’s
relative Fermi velocity decreases to zero at the cosmologi-
cal horizon. The effect of the cosmological constant is
strikingly different in these two cases. Figure 1 illustrates
these general features for particular (though artificial)
choices for the parameters. Note that the initial velocity
of the high energy particle (E ¼ 10) is slightly below the
speed of light. In the case that � ¼ 0, it is not difficult to
verify that for high energy unit mass particles, with
Að0ÞE2 � 2, the outward acceleration given by Eq. (16)
is positive throughout the exterior vacuum. Thus, the nega-
tive acceleration of the high energy particle for r > r0 in
Fig. 1 is due to a positive cosmological constant (and is not
merely a property of Fermi coordinates).

We conclude this section with some observations in the
form of two propositions.

Proposition 1. Assume that �> 0. As above, let r0 �
ð3M=�Þ1=3 and let vFermi denote the Fermi velocity, rela-
tive to the central observer, of a test particle receding
radially along a timelike geodesic in the exterior vacuum
of Schwarzschild-de Sitter spacetime. Then,

(a) For any energy E of the test particle, k vFermi k <E0

along its geodesic in the exterior vacuum.
(b) The maximum value of k vFermi k as a function of �

exceeds the speed of light for sufficiently high en-

ergy E if and only if E0 > 1, i.e., Að0Þ< 1� 2M
r0

�
�r2

0

3 .

Proof. Part (a) follows from Eq. (15) and the easily

verified fact that the function, 1� 2M
rð�Þ � �rð�Þ2

3 , achieves

its maximum value at rð�Þ ¼ r0. It then follows from part

(a) that Að0Þ< 1� 2M
r0

� �r2
0

3 is a necessary condition for

k vFermi k to exceed the speed of light at some point on the
radial geodesic. Sufficiency follows by taking a limit of
k vFermi k evaluated at rð�Þ ¼ r0 using Eq. (15)

lim
E!1 k vFermi k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r0
� �r20

3

Að0Þ

vuut ¼ E0: (23)

Proposition 2. Let � ¼ 0 and assume that M, R satisfy
the Buchdahl inequality,M=R< 4=9. A test particle in the
exterior vacuum of Schwarzschild spacetime, receding
radially along a timelike geodesic will achieve a Fermi
velocity in excess of the speed of light, relative to the Fermi
observer at the fluid center, for all sufficiently high ener-
gies and sufficiently large proper distances from the fluid
center. The Fermi relative speed k vFermi k is bounded

above by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Að0Þp

.

Proof. k vFermi k <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Að0Þp

follows directly from
Eq. (15) in the case that � ¼ 0. It also follows from
Eq. (15) that

lim
�!1 k vFermi k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Að0Þ
�
1� 1

Að0ÞE2

�s
> 1 (24)

for E sufficiently large, since by Lemma 1, Að0Þ is neces-
sarily less than 1.
Thus, even in Schwarzschild spacetime the Fermi rela-

tive velocity of a radially receding particle, far from the
central observer, can exceed the speed of light. We discuss
the significance of this in the concluding section.
Remark 2. The speed of a radially receding distant

photon, with respect to proper time and proper distance
of the central observer in the fluid, i.e., in Fermi coordi-
nates, may be computed by setting the right side of Eq. (11)
equal to zero. The speed of the photon in Fermi coordinates
is thus

ffiffiffiffiffiffiffiffiffiffi�gtt
p

, which is an upper bound and limiting value

for the Fermi speed of a massive particle, given by Eq. (13),
at the same spacetime position, as must be the case. The
maximum possible relative Fermi speed of a distant photon
is therefore the critical energy (per unit momentum) E0.

III. KINEMATIC RELATIVE VELOCITY

The four velocity of the central observer at � ¼ 0 is u ¼
ð1; 0; 0; 0Þ. Let U ¼ Uð�Þ denote the four velocity along a
timelike radial geodesic of a radially receding test particle
at a proper distance � from the central observer. Without
loss of generality, we assume � ¼ � ¼ 0. It follows from
Eqs. (11) and (12) that

Uð�Þ ¼
�
� E

gttð�Þ ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� E2

gttð�Þ � 1

s
; 0; 0

�
: (25)

ro hor
r

0.6

1

vFermi

E 10

E 1.25

FIG. 1. Low and high energy vFermi for M ¼ 20, R ¼ 100,
� ¼ 10�5. Here, r0 � 181:7, E0 � 1:24.
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We assume that E> E0 so that Eq. (14) holds and
Eq. (25) is well defined throughout the exterior (vacuum)
region.

The kinematic relative velocity vkin of U with respect to
the central observer’s four velocity u is given by (see [8])

vkin ¼ 1

�gð��0U; uÞ ��0U� u; (26)

where g is the bilinear form defined by Eq. (5) and ��0U is

the parallel transport of U from a proper distance � to the
fluid center, � ¼ 0, along the spacelike radial geodesic
with tangent vector X ¼ ð0; 1; 0; 0Þ, connecting these two
points. It follows from its definition that the kinematic
speed, i.e., the norm of the kinematic velocity, cannot
exceed the speed of light.

Since the affine coefficients ��
t� ¼ ��

�� � 0 for the met-

ric of Eq. (5), it is easily verified that the parallel transport
of the � component, U�, of U is constant along spacelike
radial geodesics. Thus ð��0UÞ� ¼ U�ð�Þ. Also, it follows
from symmetry and Eq. (25) that the angular components
of the parallel transport of U are zero along the radial
spacelike geodesic. At the origin, � ¼ 0, Eq. (5) becomes
the Minkowski metric, so3

� ðð��0UÞtÞ2 þ ðð��0UÞ�Þ2 ¼ �1: (27)

Thus,

ð��0UÞt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðU�ð�ÞÞ2

q
¼ Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttð�Þ

p : (28)

We then find

��0U ¼
�

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttð�Þ
p ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� E2

gttð�Þ � 1

s
; 0; 0

�
; (29)

and using Eq. (26), we find that the kinematic speed as a
function of � is given by

k vkin k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gttð�Þ

E2

s
: (30)

IV. GRAVITATIONAL DOPPLER SHIFT AND
SPECTROSCOPIC RELATIVE VELOCITY

The gravitational Doppler shift of a test particle receding
from the observer at � ¼ 0 is given by

�R

�E
¼ p�ðRÞu�ðRÞ

p�ðEÞu�ðEÞ ; (31)

where ‘‘E’’ refers to emitter and ‘‘R’’ to receiver, so that
�E, p�, ðEÞ, u�ðEÞ represent, respectively, the frequency of
an emitted photon from the receding test particle, the four-
momentum of the emitted photon, and the four velocity of
the receding test particle, with analogous definitions for the
remaining terms. The four-momentum (as a four-vector) of
a photon traveling toward the observer at � ¼ 0 is given by

p ¼
�
pt

gtt
;

ptffiffiffiffiffiffiffiffiffiffi�gtt
p ; 0; 0

�
; (32)

where the energy �pt of the photon is constant along the
null geodesic. The four velocity of the test particle is

u ¼ ð _t; _�; 0; 0Þ ¼
��E

gtt
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� E2

gtt

s
; 0; 0

�
: (33)

Combining Eqs. (31)–(33) gives

�R

�E
¼ �gtt

E½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gtt

E2

q
�
; (34)

where gtt is evaluated at the point of emission of the photon
at the location of the receding test particle. The spectro-
scopic relative velocity, as defined in [8], may be computed
for the case of a particle receding from the origin, directly
from Eq. (12) of [8] and Eq. (34) above:

k vspec k¼ ð�E=�RÞ2 � 1

ð�E=�RÞ2 þ 1
: (35)

V. ASTROMETRIC RELATIVE VELOCITY

A photon with unit energy receding radially in the past-
pointing horismos (i.e. backward light cone) of the ob-
server at the center of the fluid, with spacetime path�ðtÞ ¼
ðt; 0; 0; 0Þ, has four-momentum (as a four-vector) given by

p ¼ ð _t; _�; 0; 0Þ ¼
�
1

gtt
;

1ffiffiffiffiffiffiffiffiffiffi�gtt
p ; 0; 0

�
; (36)

where the overdot represents differentiation with respect to
an affine parameter 	. Let Nð	Þ be the null, past-pointing,
geodesic with Nð0Þ ¼ �ðtÞ and tangent vector given by
Eq. (36) so that dN=d	ð0Þ ¼ pð0Þ ¼ ð�1; 1; 0; 0Þ and
Nð	Þ ¼ exp�ðtÞð	pð0ÞÞ.
The (past-pointing) photon departing from the observer

�ðtÞ at time t will intersect the worldline of the receding
test particle determined by Eqs. (12) and (15) at a space-
time point (t	; �	; 0; 0), where t	 is a unique time in the past
of the observer �ðtÞ, and �	 � �ðt	Þ.
The affine distance daff from the observer �ðtÞ to the

spacetime point (t	; �	; 0; 0) is defined as the norm of the
projection of exp�1

�ðtÞ½ðt	; �	; 0; 0Þ� onto the orthogonal

complement �0ðtÞ? of �0ðtÞ. The astrometric speed for

3Spherical polar coordinates are singular at � ¼ 0, but
ð��0UÞ� is meaningful as a limit as � ! 0. Alternatively, if
standard (Cartesian) Fermi coordinates, via the coordinate trans-
formation identified above Eq. (8), are used, the radial direction
may be identified as the x, y, or z axis in the usual Minkowski
coordinates at the center of the fluid, in which case ð��0UÞ� is
well defined.
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the radially recessing test particle is dðdaffÞ=dt. To compute
this, we use the easily verified fact that NðdaffÞ ¼
ðt	; �	; 0; 0Þ [see Eq. (16) and Propositions 6 and 7 of [8]].

To see that daff ¼ �	, let tð�Þ be the inverse function of
�ðtÞ and observe that

tð�	Þ ¼ t	 ¼ tþ
Z daff

0

dt

d	
d	 ¼ tðdaffÞ: (37)

Thus, since tð�Þ is one-to-one, daff ¼ �	. From Eq. (36), it
follows that

dt

d�
¼ �1ffiffiffiffiffiffiffiffiffiffi�gtt

p < 0: (38)

Now, using Eq. (38) we find

t ¼ t	 þ
Z 0

�	

dt

d�
d� ¼ t	 þ

Z �ðt	Þ

0

1ffiffiffiffiffiffiffiffiffiffi�gtt
p d�; (39)

which determines t as a function of t	 and therefore deter-
mines the inverse function, t	ðtÞ as well. Using the chain
rule and Eq. (39), it follows that the astrometric relative
velocity vast is given by

k vast k¼ d�ðt	ðtÞÞ
dt

¼ �0ðt	Þdt
	

dt
¼ �0ðt	Þ

1þ �0ðt	Þffiffiffiffiffiffiffiffiffiffiffiffiffi
�gttð�	Þ

p ; (40)

with motion in the radial direction. The astrometric relative
velocity may be computed for a given value of t by first
using Eq. (39) to determine t	 numerically and then
Eq. (40). Since gtt ! 0 at the cosmological horizon, the
astrometric relative velocity is asymptotically zero for high
energy test particles.

Remark 3. For a test particle approaching, rather than
receding from, the central fluid radially, the right side of
Eq. (40) is changed by a factor of �1. In that case, the
astrometric speed can exceed 1, as in the case for
Minkowski space, illustrated in [8].

VI. FUNCTIONAL RELATIONSHIPS BETWEEN
THE RELATIVE VELOCITIES

In this section, we identify some functional relationships
between the four relative velocities. The Fermi and kine-
matic relative velocities are closely related. Observe that
by Eqs. (13) and (30),

k vFermi k¼ ffiffiffiffiffiffiffiffiffiffi�gtt
p k vkin k : (41)

The relationship between astrometric and Fermi veloc-
ities follows directly from Eq. (40),

k vastðtÞ k¼ k vFermiðt	Þ k
1þ kvFermiðt	Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�gttð�ðt	ÞÞ
p ; (42)

where the left side of Eq. (42) is evaluated on the worldline
of the central Fermi observer at �ðtÞ ¼ ðt; 0; 0; 0Þ, and on
the right side, the Fermi velocity is evaluated at the space-

time point (t	; �ðt	Þ; 0; 0) in the past light cone of the Fermi
observer. The functional relationship between t and t	 is
given by Eq. (39). Combining Eqs. (41) and (42) yields

k vastðtÞ k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttð�ðt	ÞÞ

p k vkinðt	Þ k
1þ k vkinðt	Þ k ; (43)

so that a present measurement of the astrometric velocity is
determined by the kinematic velocity at a spacetime point
in the past lightcone.
From (33) and (34), we also have

k vkin k¼ �ð1þ gtt
E

�E

�R

Þ; (44)

where gtt is evaluated at the location of the test particle and
emission of a photon. As in the preceding case, some care
is required in the interpretation of the terms in Eq. (44) as
functions of time (as opposed to radial distance �). This is
because vkin is the relative velocity at the time of emission
of the photon, which is received and whose frequency, �R,
is measured by the central observer only at a later time.
From Eq. (35), it follows that�

�E

�R

�
2 ¼ 1þ k vspec k

1� k vspec k : (45)

Combining this with Eq. (44) yields an expression for
k vkin k in terms of k vspec k ,

k vkinðt	Þ k¼ �gtt
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k vspecðtÞ k
1� k vspecðtÞ k

vuut � 1; (46)

where as above, the time of evaluation of the right side is in
the future of the time of evaluation of the left side.
Observe now that by combining Eqs. (46) and (43), the

astrometric velocity may be expressed directly in terms of
the spectroscopic velocity as

k vastðtÞ k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gttð�	Þ

q
� Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttð�	Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k vspecðtÞ k
1þ k vspecðtÞ k

vuut ;

(47)

where �	 ¼ �ðt	Þ is the affine distance as in Sec. V, i.e.,
the proper distance observed at the time of sighting.
Equation (47) together with Eq. (35) provides a way to
compare, in principle, spectroscopic and parallax measure-
ments for radially receding particles.

VII. HUBBLE’S LAW

In this section, we derive two versions of Hubble’s law
for Schwarzschild-de Sitter space, with�> 0, using linear
approximation of the dependence of k vkin k on proper
distance. For the energy of the receding test particle, we
take E ¼ E0, given by Eq. (20). This is physically natural,
because E0 is the minimum energy of a test particle that
does not fall back into the central fluid. Recall from Sec. I
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that a particle with critical energy E0 remains at rest at a
point with radial coordinate r0, but starting at any position
with radial coordinate r > r0, it will recede from the
central observer. The radial velocity of such a test particle
is due solely to the cosmological constant, and not what
might be described as an initial ‘‘peculiar’’ velocity.

From Eqs. (20) and (30) with E ¼ E0,

k vkinð�Þ k2¼ 1� 1� 2M
rð�Þ � �rð�Þ2

3

1� 2M
r0

� �r2
0

3

: (48)

Expanding Eq. (48) in a Taylor series centered at �0 ¼
�ðr0Þ [so that rð�0Þ ¼ r0] gives

k vkinð�Þ k2�k vkinð�0Þ k2 þ
�
2M

r30
þ�

3

�
ð�� �0Þ2:

(49)

By Eq. (18) and the fact that k vkinð�0Þ k¼ 0 when E ¼
E0, we have

k vkinð�Þ k�
ffiffiffiffi
�

p
ð�� �0Þ; (50)

valid for a distance � close to �0, the balance point
between gravitational attraction and repulsion due to the
cosmological constant (for the qualitative behavior of
k vkin k as a function of distance, see Fig. 2(a) below).
We may thus define a ‘‘Hubble constant’’ H for
Schwarzschild-de Sitter spacetime by

H ¼
ffiffiffiffi
�

p
: (51)

For example, if � ¼ 10�20 ly�2, according to Eq. (51),
H ¼ 10�10 ly�1 which is the same order of magnitude as
current measurements of the Hubble constant (H0 � 7:2�
10�11 ly�1 � 70 km=s=Mpc).

For large distances, on the order of magnitude of the
distance to the cosmological horizon, which roughly co-
incides with the Hubble radius when parameters for a
galaxy supercluster are taken (see the following section),

a linear approximation more accurate than Eq. (50) is

k vkinð�Þ k� 1

�horizon

ð�� �0Þ � 1

�horizon

�; (52)

where �horizon is the proper distance from the central ob-
server to the cosmological horizon. This choice of linear
approximation forces k vkinð�Þ k! 1 as � ! �horizon. For
the model of a galaxy supercluster considered in the next
section, �horizon ¼ 1:57� 1010 ly.
To obtain a formula for the redshift of a photon in terms

of the affine distance of the emitter �	, we first combine
Eqs. (50) and (44) to get

� 1� gttð�	Þ
E0

�E

�R

�
ffiffiffiffi
�

p
ð�	 � �0Þ; (53)

with the same notation as in the previous section. Using the
fact that the Taylor expansion of �gttð�	Þ=E0 about �0 is
given by [see Eqs. (18) and (20)]

�gttð�	Þ
E0

¼ E0 þ 0ð�	 � �0Þ þOð2Þ ¼ E0 þOð2Þ;
(54)

and rearranging terms results in

�E

�R
�

ffiffiffiffi
�

p
E0

ð�	 � �0Þ þ 1

E0

: (55)

A physical interpretation of the last term on the right
side of Eq. (55) may be given. A short calculation using
Eqs. (31) and (32) shows that

1

E0

¼ � E0

gttð�0Þ ¼
�
�E

�R

�
0
; (56)

where z0 � ð�E

�R
Þ0 � 1 is the redshift of a photon measured

by the central Fermi observer at � ¼ 0 and emitted by a
stationary observer with energy E0 at a fixed point in space
at proper distance �0 from the central observer (i.e., at a
point with radial coordinate r0). Thus, denoting the redshift

A

10 9 hor
r

0.5

1

v

E 1.0002

B

10 9 hor
r

0.5

1

v

E 10 6

FIG. 2. Low and high energy behavior of the velocities. vast (dotted), vFermi (solid), vkin (dashed), vspec (dash-dotted). At high E,
vkin � vspec (dashed). E0 � 1:00012.
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factor, as is customary, by z ¼ �E=�R � 1 gives

z� z0 �
ffiffiffiffi
�

p
E0

ð�	 � �0Þ: (57)

For the parameters used in the following section to
model a galaxy supercluster, E0 ¼ 1:00012 (which by
Remark 2 is the maximum Fermi relative speed of a
photon) so that the Hubble constant of Eq. (57) or
Eq. (55) has the same order of magnitude as in Eq. (50).

VIII. PARTICLES RECEDING FROM A GALAXY
SUPERCLUSTER

In this section we compare the Fermi, astrometric, kine-
matic, and the spectroscopic velocities of a radially reced-
ing test particle, relative to the observer at the center of the
fluid, for specific values of the parameters of Eq. (5). We let
M ¼ 103 ly, R ¼ 107 ly, and � ¼ 3� 10�20 ly�2. As
noted in the introduction, these choices for the parameters
are of the same order of magnitude as those for some
galaxy superclusters [12,13]. It is then readily deduced
that r0 � 4:6� 107 ly, and E0 ¼ 1:00012 [c.f. Eq. (20)].
The radial coordinate of the horizon is obtained by solving
gttðrÞ ¼ 0 for r and yields r � hor � 1010 ly. It then fol-
lows from Eq. (4) that the proper distance, in this model,
from the observer at the center of the fluid to the cosmo-
logical horizon, is roughly 1:57� 1010 ly, the same order
of magnitude as estimates for the present Hubble length.

Figures 2(a) and 2(b) give graphical comparisons of the
Fermi, astrometric, kinematic velocity, and spectroscopic
velocities for a receding test particle relative to the central
observer at � ¼ 0, at low and high energies. Figure 2(a)
shows how the kinematic and spectroscopic relative veloc-
ities reach the speed of light at the horizon, while the Fermi
and astrometric relative velocities decrease to zero at the
horizon. Notice, in particular, the nearly linear behavior of
k vkin k with respect to r (which is the case also with
respect to �), consistent with the ‘‘Hubble law’’ given in
the previous section through linear approximation.

In Fig. 2(b), the kinematic and spectroscopic relative
velocities nearly coincide and are nearly equal to the speed
of light. The Fermi velocity of a particle of unit rest mass
with sufficiently high energy can slightly exceed the speed
of light, but by no more than E0 ¼ 1:00012, as follows
from Proposition 1. The qualitative behavior is the same as
in Fig. 1.

The use of Eq. (1) to model a galaxy supercluster and its
surrounding vacuum has evident shortcomings. The ab-
sence of other gravitational sources, including clusters
and superclusters, in the region surrounding the central
fluid, as in the actual universe, is a serious limitation of
this model that is avoided by FRW cosmologies. However,
FRW cosmologies suffer from a flaw at the opposite ex-
treme. There are no local vacuums for FRW metrics that
model a universe filled with matter. Instead, in those mod-
els, space is filled with a continuum matter fluid that leaves

no region of space empty. This limits the utility of FRW
cosmological models to analyze particle motion in the
nearly empty space surrounding massive objects, just
where the large scale homogeneity of the Universe breaks
down.
The model considered here may thus be useful for the

analysis of receding masses within a great void adjacent to
a supercluster, relatively isolated from gravitational
sources other than the supercluster. For example, for re-
ceding masses the line of best fit for data pairs of the
form (�	; �E=�R)—i.e., observed, or affine, distance versus
ratios of emission frequency to reception frequency—de-

termines the slope,
ffiffiffiffi
�

p
=E0, and vertical intercept, ð1�

�0

ffiffiffiffi
�

p Þ=E0 in Eq. (55).
An estimate of the mass and radius of the supercluster

determine E0 and �0, which, together with the slope and
intercept of the preceding paragraph, lead to an estimate of
the cosmological constant, �. Conversely, an estimate of
�, together with observationally determined numerical
values for the slope and intercept, determines the critical
energy, E0 and the critical radius �0 where gravitational
attraction and repulsion due to the cosmological constant
exactly balance. The kinematic velocity, as a function of
proper distance � * �0, is then determined by such mea-
surements and Eq. (50). Note that the spectroscopic veloc-
ity is determined directly from observational data via
Eq. (35).
More generally, a numerical estimate for �, together

with observationally determined numerical values for E0

and �0, may be used to calculateM and R through Eqs. (4),
(18), and (20), and numerical methods such as Newton’s
method for the determination of roots of a two-component
function of the two variablesM and R. In this way, the four
different relative velocities are determined through direct
calculation or through the relationships of Sec. VI. We note
also that the four velocity of a radially receding mass is
uniquely determined by its kinematic relative velocity via
Eq. (26).
Schwarzschild-de Sitter space, with metric given by

Eq. (1), also serves as a model for the Local Group of
galaxies in the far future. As argued in [16,17], calculations
show that the Local Group will remain gravitationally
bound in the face of accelerated Hubble expansion, while
more distant structures are driven outside of the cosmo-
logical horizon. The Local Group, decoupled from the
Hubble expansion, will be gravitationally bound and sur-
rounded by a vacuum.
We note, in contrast to assertions in [16], that future

cosmologists should in principle be able to detect the
presence of a cosmological constant, provided they have
the means to measure relative velocities of receding test
particles, since the formulas calculated in the preceding
sections for Fermi, kinematic, spectroscopic, and astromet-
ric relative velocities all depend on �. The qualitative
behavior of the relative velocities does not depend on
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special choices of the parameters. However, the cases of
� ¼ 0 and �> 0 yield significantly different qualitative
behaviors of the trajectories of outbound test particles.

IX. CONCLUDING REMARKS

Using global Fermi coordinates, we have calculated four
geometrically defined velocities of radially receding test
particles, relative to the central observer in Schwarzschild-
de Sitter space: Fermi, kinematic, spectroscopic, and as-
trometric relative velocities. The critical energy E0, de-
fined by Eq. (20), is a key parameter and plays multiple
roles in this spacetime. It determines the redshift of a light
signal received by the central observer and emitted from a
static test particle at a point in space with radial coordinate
r0, where inward gravitational acceleration exactly balan-
ces the outward acceleration due to the cosmological con-
stant (Sec. VII). In geometric units, E0 is the maximum
Fermi speed of a photon relative to the central observer
(see Remark 2). Receding test particles with energies in
excess of E0 may be regarded as having peculiar velocities,
while particles with energy E0 obey a version of Hubble’s
law in the form of Eqs. (50), (55), and (57). The critical
energy together with the cosmological constant, �, deter-
mines the redshift of light signals from receding masses, in
general, as given by Eq. (55).

The Fermi relative velocity of a radially receding unit
mass test particle, whose energy lies between energy E0

and
ffiffiffi
2

p
E0, decreases under the influence of gravity near the

central fluid, but far from the fluid (for r > r0) the particle
accelerates toward the cosmological horizon because of the
influence of the cosmological constant. Within this energy
range, the qualitative behavior of the trajectory is consis-
tent with Newtonian mechanics.

However, the trajectory of a receding test particle whose

energy exceeds
ffiffiffi
2

p
E0 is more surprising. The behavior of

the Fermi relative velocity is essentially opposite to its
Newtonian counterpart. As shown in Fig. 1, the high
energy particle accelerates away from the central mass in
the region dominated by gravity, surpassing the speed of
light (by Proposition 1), and then decelerates in the region
dominated by the cosmological constant (where relative
Fermi velocity of the low energy particle increases). The

effects of the gravitational field and the cosmological
constant are reversed in this situation.
A similar, though not entirely analogous, phenomenon

occurs in FRWmatter (i.e. dust) dominated cosmologies. It
was shown in [11] that, in an expanding universe, a test
particle initially at rest relative to a distant observer accel-
erates toward the observer, according to that observer’s
proper time and distance measurements, i.e., in Fermi
coordinates.
Other comparisons with FRW cosmologies can be made.

Outside of the Hubble sphere in FRW cosmologies, the
Fermi velocities of receding test particles, relative to the
observer at the center of the sphere, exceed the speed of
light [cf. Eq. (22) of [11] ]. In the model of a galaxy
supercluster with surrounding vacuum considered in
Sec. VIII, the proper distance from the central observer
to the cosmological horizon is of the same order of magni-
tude as the Hubble radius. In contrast to that model, the
Fermi velocity decreases to zero, because @=@t becomes
null at the cosmological horizon, but the spectroscopic and
kinematic velocities increase asymptotically to the speed
of light at that distance (as shown in Fig. 2). The same
phenomena occur for the Local Group of galaxies sur-
rounded by the vacuum that results from the Hubble flow,
far into the future.
Hubble’s law and the existence of superluminal relative

velocities in FRW spacetimes have been used to support
the interpretation that, in an expanding universe, galaxy
clusters and superclusters are not merely flying apart from
each other, space itself is expanding, e.g., [10,11]. But if a
Hubble’s law or the existence of superluminal Fermi rela-
tive velocities characterizes the expansion of space, then
we have shown that space expands in the models consid-
ered here. That seems implausible. Proposition 2 shows
that even in the static Schwarzschild spacetime, for which
� ¼ 0, superluminal relative Fermi velocities necessarily
exist. In that case, the local mass distribution, represented
by Að0Þ, in the vicinity of the observer determines the
maximum possible Fermi relative velocity of a receding
test particle. In the case that �> 0, the maximum relative
Fermi velocity of a receding particle is determined by the
critical energy, E0.
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