
Stochastic gravitational waves from a new type of modified Chaplygin gas
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We propose a new scenario for the early Universe where there is a smooth transition between an early

de Sitter-like phase and a radiation-dominated era. In this model, the matter content is modeled by a new

type of generalized Chaplygin gas [6] for the early Universe, with an underlying scalar field description.

We study the gravitational waves generated by the quantum fluctuations. In particular, we calculate the

gravitational-wave power spectrum, as it would be measured today, following the method of the

Bogoliubov coefficients. We show that the high frequencies region of the spectrum depends strongly

on one of the parameters of the model. On the other hand, we use the number of e folds, along with the

power spectra and spectral index of the scalar perturbations, to constrain the model observationally.
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I. INTRODUCTION

The inflationary paradigm is the most consistent sce-
nario to explain the origin of the large scale structure (LSS)
of the Universe, as well as the anisotropies in the cosmic
microwave background radiation (CMBR) [1,2].
Originally, an early inflationary era in the Universe was
invoked as a mechanism to solve several shortcomings of
the big bang theory [3]. Afterwards, it was realized that an
early inflationary era of the Universe generates density
perturbations as seeds for the structure we see nowadays.
In addition, a background of stochastic primordial gravi-
tational waves (GW) is also predicted and it is originated
from the vacuum fluctuations. The latter (GW) if ever
detected in the future would provide an amusing source
of information about the early Universe. On the other hand,
and most importantly, the predictions of the inflationary
theory have been corroborated by several cosmological
observations like the recent WMAP5 data [4].

In this paper we propose a phenomenological model for
the inflationary era and the subsequent radiation-
dominated epoch of the Universe. In particular, we suggest
a way to extend the framework of the generalized
Chaplygin gas (GCG) to the first stages of the Universe.1

The GCG has attracted a lot of attention over the last years
[6–10]. It was initially introduced in cosmology as a mean
to unify the dark sectors of the Universe, i.e. dark energy
and dark matter, and has been contrasted with several
cosmological observations [9]. On the other hand, it has
been as well shown that some GCG models can be an

excellent framework to analyze dark energy related singu-
larities [7,10].
In this work, we investigate the possible imprints in the

power spectrum of the stochastic background of GW, for
the model we propose for the transition from the infla-
tionary era to the radiation-dominated epoch.2 This tran-
sition is far from being well known, and it can be of some
interest to explore the signatures associated with it, shed-
ding light on the inflationary model behind the accelerated
expansion in the early Universe.
We calculate the GW production using the Bogoliubov

coefficients which obey a set of differential equations [12–
15]. This method has advantages over the frequently used
sudden transition approximation, because, associated with
it, there is always an overproduction of gravitons of large
frequencies, which is avoided in a natural way by the use of
the continuous Bogoliubov coefficients [15]. This is also a
very practical method to calculate the full spectrum, from
the very low frequencies corresponding to the present
cosmological horizon 10�17 Hz, until those large, kHz up
to GHz, frequencies associated with the transition between
the inflationary and the radiation-dominated Universe.
The present letter is organized as follows: In Sec. II, we

present our model based on a new type of generalized
Chaplygin gas for the early Universe. This fluid can be
as well represented by a minimally coupled scalar field as
shown in Sec. III. In Sec. IV, we constrain our model
observationally. In Sec. V, we summarize the methodology
used to obtain the spectrum of the stochastic GW, which is
based on the Bogoliubov coefficients. We present in
Sec. VI the spectrum of the GW for the model introduced

*mariam.bouhmadi@ist.utl.pt
†pedro.frazao@ist.utl.pt
‡alfredo@fisica.ist.utl.pt
1An alternative inflationary model inspired on the Chaplygin

gas was proposed in Ref. [5] where only the inflationary era is
accounted for.

2In Ref. [11], the spectrum of GW for a Universe whose dark
energy component corresponds to a Chaplygin gas was analyzed.
This scenario is different from ours.
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in Secs. II and III. Finally, in Sec. VII we present our
conclusions.

II. A MODIFIED CHAPLYGIN GAS FOR THE
EARLY UNIVERSE

We consider a perfect fluid whose energy density, �,
scales with the scale factor, a, as

� ¼
�
Aþ B

a4ð1þ�Þ

�
1=ð1þ�Þ

; (2.1)

where A, B, and � are constants. This energy density
interpolates between a positive cosmological constant at
small scale factors and a radiation fluid at large scale
factors as long 1þ � is negative and A, B are positive.

By assuming the conservation of the energy density of
such a fluid [cf. Equation (2.1)], which is a direct conse-
quence of the Bianchi identity, the equation of state sat-
isfied by its pressure, P, and energy density, �, reads

P ¼ 1

3
�� 4

3

A

�� : (2.2)

Before moving on a few words on the physics behind such
a fluid are in order: like a generalized Chaplygin gas,
whose equation of state reads P ¼ �A=��, a fluid with
the equation of state (2.2) could be formally related to an
effective description of a complex scalar field whose action
can be written as a generalized Born-Infeld action [6],
corresponding to a perturbed d-brane in a (dþ 1, 1)
space-time. For the propose of this work it is sufficient to
describe such a matter content through the equation of state
(2.2) or through a scalar field as it is shown on the next
section.

The equation of state (2.2) corresponds to a mixture of a
radiation fluid and a generalized Chaplygin gas [6,7]
although, it is only the total energy density � which is
conserved. This type of equation of state has been previ-
ously introduced in the context of dark energy models [16–
19] (see also [20]). Nevertheless, we would like to stress
that it has never been analyzed in the context of the early
evolution of the Universe. More precisely, the equation of
state (2.2) has been analyzed in Ref. [16] for 0<�< 1;
i.e. a fluid interpolating between a radiation at early time
and a cosmological constant at late time. Here, we will be
analyzing a completely different range of the space pa-
rameter where �<�1.

For �<�1 the energy density (2.1) can be approxi-
mated as

� ’ A1=ð1þ�Þ a � a?; (2.3)

� ’ B1=ð1þ�Þ

a4
a � a?; (2.4)

where

a? ¼
�
B

A

�
1=ð4ð1þ�ÞÞ

: (2.5)

Therefore, a homogeneous and isotropic Universe with this
matter content [cf. Eqs. (2.1) and (2.2)] undergoes a pri-
mordial inflationary era; initially described by a de Sitter
(dS) expansion [see Eq. (2.3)]. Then, the Universe keeps
inflating until the scale factor reaches a? where inflation
ceases; i.e. �þ 3P ¼ 0. Finally, it enters a radiation-
dominated epoch [see Eq. (2.4)]. The transition from the
inflationary era to the radiation-dominated phase takes
place smoothly.
The Friedmann equation

H2 ¼ �2

3
�; (2.6)

where �2 ¼ 8�G and � is defined in Eq. (2.1), can be
integrated analytically3 [21,22]

�a?ffiffiffi
3

p A1=ð2ð1þ�ÞÞð�� �?Þ

¼ 2rF

�
�r; 1; 1� r

2
;
1

2

�
� y�ðr=2Þð1þ yÞr

� F

�
�r; 1; 1� r

2
;

y

1þ y

�
: (2.7)

In the previous expression � is the conformal time, �? is a
constant, Fða; b; c; yÞ is a hypergeometric function4 and

y ¼
�
a

a?

��4ð1þ�Þ
; r ¼ � 1

2ð1þ �Þ : (2.8)

At the conformal time �? the Universe exits the infla-
tionary era as a ¼ a?.
The primordial Universe starts its dS expansion at � !

�1 where a � a?. On the other hand, the Universe gets
radiation dominated at � ! 1 where a? � a. At this
respect, we note that [22]

F

�
�r; 1; 1� r

2
; 1

�
¼ �1: (2.9)

By choosing

�a?ffiffiffi
3

p A1=ð2ð1þ�ÞÞ�? ¼ �2rF

�
�r; 1; 1� r

2
;
1

2

�
; (2.10)

the relation between the conformal time, �, and the scale
factor given in Eq. (2.7) can be simplified to

3This Friedmann equation can be integrated in two steps by
(i) performing it for 0< 1þ � [21] and (ii) performing an
analytical continuation of the hypergeometric function to values
of � such that 1þ �< 0 [22].

4A hypergeometric series Fðb; c; d; xÞ, also called a hyper-
geometric function, converges at any value x such that jxj � 1,
whenever bþ c� d < 0. However, if 0 � bþ c� d < 1 the
series does not converge at x ¼ 1. In addition, if 1 � bþ c� d,
the hypergeometric function blows up at jxj ¼ 1 [21].
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�a?A
1=ð2ð1þ�ÞÞ� ¼ � ffiffiffi

3
p

y�ðr=2Þð1þ yÞr

� F

�
�r; 1; 1� r

2
;

y

1þ y

�
: (2.11)

We notice that this redefinition of � does not modify the
fact that in this model the Universe has an infinite past (in
terms of the conformal time), where it is asymptotically dS,
and an infinite future (in terms again of the conformal
time), where it is radiation dominated.

The whole evolution of the Universe can be described by
the modified Chaplygin gas (2.2) at early time and by the
�CDM model at late time; i.e.

� ¼
8<
: ðAþ B

a4ð1þ�ÞÞ1=ð1þ�Þ early time

�r0ða0a Þ4 þ �m0ða0a Þ3 þ �� late time
; (2.12)

where a0 is the current scale factor, �r0, �m0 are �� are the
current energy densities corresponding to radiation, matter,
and the cosmological constant, respectively. On the other
hand, at the radiation-dominated epoch the energy den-
sities (2.12) are equal implying

B ¼ ð�r0a
4
0Þ1þ�: (2.13)

Finally, we notice that A is related to the scale of inflation
[see Eq. (2.3)].

III. THE INFLATIONARY DYNAMICS

The inflationary dynamics of the model presented in
Sec. II is better described through a minimally coupled
scalar field, �, with a potential, Vð�Þ, whose energy
density and pressure read

�� ¼ �02

2a2
þ Vð�Þ; P� ¼ �02

2a2
� Vð�Þ: (3.1)

In the previous equations the prime stands for derivative
respect to the conformal time.

In a Friedmann-Lemaı̂tre-Robertson-Walker universe,
the scalar field, �, is equivalent to the modified
Chaplygin gas introduced in Eqs. (2.1) and (2.2), as long
as �� ¼ � and P� ¼ P. The last two equalities imply5

Vð�Þ ¼ V0

3
½cosh2=ð1þ�Þð�j1þ �j�Þ

þ 2cosh�ðð2�Þ=ð1þ�ÞÞð�j1þ �j�Þ�; (3.2)

where

V0 ¼ A1=ð1þ�Þ: (3.3)

In addition, � can also be determined analytically in terms
of the scale factor

�ðaÞ ¼ � 1

�j1þ �j arcsinh
� ffiffiffiffi

B

A

s
a�2ð1þ�Þ

�
: (3.4)

For simplicity, we will restrict to the solution (3.4) with þ
as our results does not depend on which of the two signs we
choose. The Universe is asymptotically dS on the past
where the scalar field is almost at the top of the potential;
i.e. at p � 0 (see Fig. 1). Then it starts rolling down the
potential, inducing an inflationary era, until it exits the
inflationary era when �ða?Þ ¼ �?; i.e.

�? ¼ lnð1þ ffiffiffi
2

p Þ
�j1þ �j : (3.5)

Finally, the radiation-dominated phase starts for large val-
ues of the scalar field, i.e. �? � �. For later convenience,
we derive as well �� in terms of the scalar field

�� ¼ V0cosh
2=ð1þ�Þð�j1þ �j�Þ: (3.6)

The number of e folds of expansion since a given mode k
exits the horizon (k ¼ aH) during the inflationary era, at
� ¼ �c, until the end of inflation can be approximated by6

Nc � �2
Z �c

�?

V

�
dV

d�

��1
d�: (3.7)

Substituting the scalar field potential (3.2) on the previous
expression, we obtain

Ncð�;�cÞ ¼ 1

2ð1þ �Þð2�� 1Þ ln
�
sinhð�j1þ �j�cÞ�3

�
�
1� 4�þ coshð2�j1þ �j�cÞ

4ð1� �Þ
�
1þ�

�
:

(3.8)

1

FIG. 1 (color online). Plot of the potential (3.2) as a function of
the scalar � given in Eq. (3.4).

5A similar potential for a different equation of state was
suggested in Ref. [23].

6Here, we are making use of a slow-roll approximation [24];
i.e. values of the scalar field such that �, j�j � 1 where � and �
are the standard slow-roll parameters [24] [see also Eq. (4.4)].
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IV. OBSERVATIONAL CONSTRAINTS

We constrain our model through CMBR/LSS measure-
ments, using the values PsðkcÞ ¼ ð2:45� 0:23Þ � 10�9

and ns ¼ 1:0� 0:1 for the power spectrum and spectral
index of the scalar perturbations, respectively, evaluated at
the pivot wave number kc ¼ 0:05 Mpc�1, that corresponds
to CMBR/LSS scales that exited the horizon during infla-
tion [24]. To first order in the slow-roll approximation, the
amplitude of the power spectrum for density perturbations
is given by [24]

PsðkÞ � �6

12�2

V3

V2
�

��������k¼aH
; (4.1)

where V� 	 dV
d� . Notice that Ps is proportional to V0 and

therefore the power spectrum is extremely useful to con-
strain the energy scale of inflation [cf. Eqs. (2.3), (3.2), and
(3.3)]. We will follow two different methods to constrain
V0:

(i) Method 1: As a first step to constrain our model, we
use the bounds onNc, i.e. the number of e folds since
a given mode exits the horizon at �c until the end of
inflation. We consider as a conservative range 47 �
Nc � 62 [24]. Then for a given Nc, on the allowed
range, and for a fixed �, we obtain the corresponding
value �c [cf. Eq. (3.8)]. Finally, using the pair
ð�;�cÞ in Eq. (4.1) with PsðkcÞ ¼ ð2:45� 0:23Þ �
10�9, we deduce the scale of inflation; i.e. V0. This is
precisely, what is shown on the dashed-dotted and
dotted lines of Fig. 2.

(ii) Method 2: A tighter constraint on V0 is obtained by
evaluating Ps at the pivot scale kc when the mode
exits the horizon; i.e. kc ¼ aH, during the infla-
tionary era. Using Eqs. (2.6), (3.4), and (3.6), this
scale reads

kc ¼ 2�ffiffiffi
3

p ��1=4
r0 V1=4

0 a0 � ðcoshð�j1þ �j�cÞ

� cothð�j1þ �j�cÞÞ1=ð2ð1þ�ÞÞ: (4.2)

Finally, by combining the previous equation and
Eq. (4.1), we deduce the corresponding scale V0

for a given parameter �. The results are shown on
the solid line in Fig. 2.

We next consider the tensor to scalar ratio

r 	 PtðkÞ
PsðkÞ ¼ 16�; (4.3)

where PtðkÞ is the tensorial power spectrum [24]. We
analyze the variation of this ratio against the spectral index
of the scalar perturbations ns ¼ 1� 6�þ 2�. In the pre-
vious expressions the slow-roll parameters read

�ð�;�cÞ ¼ 1

2�2

�
V�

V

�
2
; �ð�;�cÞ ¼ 1

�2

V��

V
: (4.4)

We follow the two approaches enumerated before to evalu-
ate r and ns. Our results are shown on the ns � r parameter
space in Fig. 3. We see that the spectrum is slightly more
red than preferred by the observation. However, Fig. 3
shows that r < 1 is in agreement with the observation
[24]. Our best fit value corresponds to � ¼ �1:024; i.e.
an energy scale for inflation about 1016 GeV. It is worthy
to notice that for a standard Chaplygin gas accommodated
to the late-time expansion of the Universe, negative values
of � are allowed by Type Ia Supernova [25].

V. GRAVITATIONAL-WAVE SPECTRUM

The stochastic GW spectrum, generated during the ex-
pansion of the Universe, can be calculated using the
method of continuous Bogoliubov coefficients, using the
methods first developped by Parker [12] and Starobinsky
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FIG. 2. Variation of the inflationary scale versus �. Using the
first method, i.e. the number of e folds and Ps, we obtain the
dashed-dotted and dashed lines corresponding to Nc ¼ 47 and
Nc ¼ 62, respectively. Using the second method; i.e. Ps at the
pivot scale kc ¼ 0:05 Mpc�1, we obtain the solid line.
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FIG. 3 (color online). Constraints on the ns � r parameter
space. Using the first method; i.e. i.e. the number of e folds
and Ps, we obtain the dashed-dotted and dashed lines corre-
sponding to Nc ¼ 47 and Nc ¼ 62, respectively. Using the
second method; i.e. Ps at the pivot scale kc ¼ 0:05 Mpc�1, we
obtain the solid line. The black lines are for a constant � value,
parameterized by an increase in the number of e folds.
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[13], and later applied in [15,26]. Indeed, as the Universe
evolves, the annihilation and creation operators change
with time.

We can write these operators in terms of time-fixed
annihilation and creation operators through a Bogoliubov
transformation, involving the Bogoliubov coefficients �
and �, which must satisfy the constraint j�j2 � j�j2 ¼ 1
[12,15].

It can be shown that the dimensionless relative logarith-
mic energy spectrum of the GWs,�GW, at the present time
�0, is related with � [26]:

�GW 	 1

�c

d�GW

d ln!
¼ @�2

3�2c5H2ð�0Þ
!4�2; (5.1)

where �GW is the energy density of GWs and ! the
respective angular frequency; �c and H are the critical
density of the Universe and Hubble parameter, respec-
tively, evaluated at the present time.

Therefore, the evolution of the Bogoliubov coefficient
�, since early times, gives us the power spectrum at the
present time. The same coefficient can be written in terms
of two continuous functions of time, X and Y, in the form
j�j2 ¼ ðX � YÞ2=4. These new functions are determined
by the set of equations [26]

X0 ¼ �ikY; (5.2)

Y0 ¼ � i

k

�
k2 � a00

a

�
X: (5.3)

The Friedmann equation (2.6) and the conservation of
the energy momentum tensor imply a00=a / �� 3p.
Therefore, the power spectrum depends on the matter
content of the Universe [see, for example, Eq. (5.3)].
Consequently, the GWs power spectrum can provide us
with important information about the Universe evolution
and its matter content, as long as the latter leaves a signifi-
cant imprint on the spectrum.

As our model describes a transition between the infla-
tionary period and the radiation-dominated era, the inte-
gration must begin at the inflationary period, where we
have a constant energy density. Hence, it is necessary to
specify, at this inflationary period, the initial conditions for
Xð�Þ and Yð�Þ.

To solve the set of differential Eqs. (5.2) and (5.3), for
our model, we must use numerical methods, but, since it
admits an exact analytical solution for the case of a dS
universe [26], i.e. similar to our model at early time [see
Eq. (2.3)], we can specify appropriate initial conditions for
Xð�Þ and Yð�Þ, at an appropriate scale of inflation. In this
case, Eqs. (5.2) and (5.3) yield a solution for a dS expan-
sion that takes the form [26]

Xð�iÞ ¼
�
1þ i

aiH

k

�
eiðk=ðaiHÞÞ; (5.4)

Yð�iÞ ¼
�
1þ i

aiH

k
� a2i H

2

k2

�
eiðk=ðaiHÞÞ; (5.5)

where ai is a scale factor during the dS phase. We use these
expressions as initial conditions for the numerical integra-
tion of Eqs. (5.2) and (5.3).
The other piece of information we need to solve

Eqs. (5.2) and (5.3) is the whole evolution of the Universe:

a00

a
¼

8<
:

2
3�

2a2AðAþ B
a4ð1þ�ÞÞ�ð�=ð1þ�ÞÞ early time

�2

6 a
2½�m0ða0a Þ3 þ 4��� late time

;

(5.6)

where the transition between the two epochs is determined
by the moment when a00=a (for both periods) is approxi-
mately equal at a ¼ aint. We use the values for the energy
densities parameters given by WMAP5 [27]: �m ¼
0:291� 0:014 and �� ¼ 0:709� 0:014, through the
usual definition � ¼ 8�

3H2
0

�, where H0 ¼ 71:3 km=s=Mpc.

For a given mode k, the integration is done in terms of
the scale factor a. We start at a & ai, just before the mode
exits the horizon; i.e. k < kH where kH ¼ aH, until a *

af, when the mode reenters the horizon; i.e. k < kH
(c.f. Fig. 4). The maximum value of k2 corresponds to
the maximum height of the potential a00=a as the gravitons
are produced only below the barrier a00=a (see Fig. 4)
To ensure the accuracy of the numerical results are not a

numerical artifact we use the condition on the Bogoliubov
coefficients j�j2 � j�j2 ¼ 1, which in terms of the new
variables X, Y reads 2XY ¼ 1, as a constraint equation of
the numerical solution.

VI. NUMERICAL SIMULATIONS

The GW spectra resulting from the numerical integra-
tions for the two different methods presented in Sec. IV to
constrain the model observationally are shown in Figs. 5

aint af
ai

k2

Modified Chaplygin Gas CDM

1 1010 1020 1030 1040 1050 1060
10 8

100

1012

1022

1032

1042

a

FIG. 4. A scheme of the integration method used in the nu-
merical simulations for a given mode k. The solid line refers to a00

a

and the dashed-dotted one to k2H ¼ ðaHÞ2.
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and 6. In the former method, we use as a constraint equa-
tion the number of e folds, Nc, and in the latter the mode
function, kc. Therefore, as one would expect, the variation
with the values of � is the same, independently of the
method used to calculate the inflationary scale which gives
us the constant A of our model [see Eq. (3.3) and Fig. 2]. As
we can see in Figs. 5 and 6, the spectrum changes with �,
in particular, it suffers simultaneously a vertical displace-
ment and a variation in the high frequency region.

Furthermore, to understand the vertical displacement of
the plateau in the intermediate region of the spectrum, it is
necessary to consider the inflationary scale as a function of
�, plotted in Fig. 2. The same figure shows that, for �
constant, an increase in the number of e folds from Nc ¼
47 (dashed-dotted line) toNc ¼ 62 (dotted line) results in a
decrease in the inflationary scale V0. Therefore, the de-
crease of the plateau height,7 which can be observed in
Fig. 5 by the difference between the solid lines (Nc ¼ 47)
and the dashed lines (Nc ¼ 62) for a constant � (a given
type of line), is easily interpreted as a decrease in the
inflationary scale.

On the other hand, having showed that the vertical
displacement of the spectra depends only on the value of
the inflationary scale, we immediately conclude that the
increase in the high frequency region, when �moves away
from �1, is a function of the parameter � only, as we can
see, for example, in Fig. 6.

The results presented above show that, in the
gravitational-wave energy spectra for the unified inflation-
ary and radiation eras consistent with CMBR/LSS con-
straints, and, in particular, the one by means of the mode

function in Fig. 6, present a variation in the spectrum that is
a combination of the last effects: a vertical shift as a result
from the decrease in the inflationary scale; and an increase
in the high frequency region that results from a increase in
the j�j value.
The last variation is the more important one because it

can give us a new insight about the relation between the
frequency limits of the GW spectrum and the model behind
the inflationary and the radiation eras.
Although the spectra presented on this section are

smooth, reflecting the smoothness of the transition between
the inflationary and the radiation-dominated periods, char-
acteristic of the present model, this is not always the case.
For instances, when the system goes through a complex
transition period, with changes in the equation of state, the
structure of the spectrum is equally complex, particularly
in the hundreds of MHz and GHz regime, allowing us to
read a lot of information about the properties of the tran-
sition (see Ref. [26]).
What about the reheating of the Universe in our model?

such a process can be modeled by coupling the scalar field
to a radiation fluid, where the decay rate of the scalar field
into the radiation fluid is governed by a phenomenological
parameter. In addition, the tail of the potential (3.2) is
substituted by a potential with a vanishing minimum. For
the modified model the trend and the level of the spectra of
the GW would not be much different to the one presented
on this section. Indeed, it is still the parameter � that
characterizes the spectra. In addition, the inclusion of a
reheating process is computationally very much time
consuming.

VII. CONCLUSIONS

In this work, we investigate the production of GWs in a
new modified generalized Chaplygin gas for the early
Universe (cf. Secs. II and III). Through recent measure-
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FIG. 6. Gravitational-wave spectra for the values � ¼ �1:05
(black), �1:04 (gray), and �1:03 (light gray). The spectrum
suffers a downward shift with an increase in j�j, and, simulta-
neously, an increase in the high frequency region.
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FIG. 5. Gravitational-wave spectra for the values � ¼ �1:05
(black), �1:04 (gray), and �1:03 (light gray), along with Nc ¼
47 (solid) and Nc ¼ 62 (dashed). The spectrum suffers a down-
ward shift with an increase in j�j, and, simultaneously, an
increase in the high frequency region.

7An early dS phase results in a flat plateau in the spectra. The
height of the plateau is an increasing function of the Hubble rate
of the dS expansion; i.e. the energy scale of the dS inflationary
era.
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ments of CMBR/LSS, the parameters of the model have
been constrained.

We have used the method of the continuous Bogoliubov
coefficients to calculate the GW energy spectrum for dif-
ferent scales of energy and values of the � parameter of the
model.

Besides the fact that the model suffers a small deviation
from the preferred values of the spectral index ns, the
obtained spectra reveal a consistent picture corresponding
to a smooth transition between the inflationary and the
radiation-dominated epochs of the Universe, and constitute
a significant imprint of this modified generalized
Chaplygin gas.

Finally, the strong variation of the high frequency range,
is directly related with the decrease in the maximum of the
potential a00=a [see Eq. (5.3)] for j�j approaching 1. This
feature implies strong limits to the maximum frequency
allowed in our model and which will be within the reach of
future gravitational-waves detectors like BBO and
DECIGO [24], for the KHz range of frequencies. In fact,

for the most consistent values of the � parameter, the
spectrum shows a frequency as low as in the Hz region.
Concluding, these results show that, for this model, the

Hz-KHz frequency range comes directly from the transi-
tion between the inflationary regime and the radiation era,
and addresses important issues about the limits of the GW
energy spectrum.
Last but not least, we would like to highlight that one of

the merits of the model we have presented for the transition
from the inflationary era to the radiation-dominated epoch
is its relative simplicity.
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