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In this paper, we consider realistic model of inflation embedded in the framework of loop quantum

cosmology. Phase of inflation is preceded here by the phase of a quantum bounce. We show how

parameters of inflation depend on the initial conditions established in the contracting, prebounce phase.

Our investigations indicate that phase of the bounce easily sets proper initial conditions for the inflation.

Subsequently, we study observational effects that might arise due to the quantum gravitational mod-

ifications. We perform preliminary observational constraints for the Barbero-Immirzi parameter �, critical

density �c, and parameter �. In the next step, we study effects on power spectrum of perturbations. We

calculate spectrum of perturbations from the bounce and from the joined bounceþ inflation phase. Based

on these studies, we indicate a possible way to relate quantum cosmological models with the astronomical

observations. Using the Sachs-Wolfe approximation, we calculate the spectrum of the superhorizontal

CMB anisotropies. We show that quantum cosmological effects can, in the natural way, explain

suppression of the low CMB multipoles. We show that fine-tuning is not required here, and the model

is consistent with observations. We also analyze other possible probes of the quantum cosmologies and

discuss perspectives of their implementation.
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I. INTRODUCTION

A main obstacle in formulating the quantum theory of
gravitational interactions is the lack of any empirical clue.
Here, the problem is that quantum gravity effects are
expected to be significant at the energies approaching
1019 GeV (the Planck scale). With the present generation
of accelerators, energies up to 103 GeV can be reached,
what is 16 orders of magnitude below the Planck scale.
Therefore, direct experimental investigation of quantum
gravity effects becomes inaccessible. In other words, it is
like probing atomic structure with Earth size resolution
devices. This suggests that alternative methods of inves-
tigation should be taken into account. One, perhaps most
promising, possibility of escape from this impasse is in-
direct methods. In this paper, we consider one particular
type of indirect probing of quantum gravitational effects,
which is based on cosmological observations.

In order to perform any quantitative predictions, the
mathematical model of the given process has to be known.
The process considered here is the behavior of the Universe
in the Planck epoch. In this epoch, evolution of the
Universe is determined by the quantum gravitational ef-
fects. In our considerations, this phase is described by loop
quantum cosmology (LQC) [1]. LQC is based on a non-
perturbative approach to quantize gravity called loop quan-
tum gravity (LQG) [2]. The starting point in formulating
both LQG and LQC is the parametrization of the phase
space of the gravitational field by the SUð2Þ connection
and by its conjugated momenta. These canonical fields are

so-called Ashtekar variables (A ¼ Ai
a�idx

a, E ¼ Ea
i �

i@a)
which take value in suð2Þ and suð2Þ� algebras, respec-
tively, and fulfil the Poisson bracket

fAi
aðxÞ; Eb

j ðyÞg ¼ ���b
a�

i
j�

ð3Þðx� yÞ; (1)

where � ¼ 8�G and � is the Barbero-Immirzi parameter.
Parameter � is the unknown constant of the theory.
However, because � is related with a black hole entropy,
its value can be recovered from comparison with the
Hawking-Bekenstein formula SBH ¼ k

4l2
Pl

A. In our consid-

erations, we use the value � ¼ �M ¼ 0:2375 calculated by
Meissner in Ref. [3].
Loop quantum cosmology can be considered on the two

levels: the first is the purely quantum approach and the
second is a semiclassical, effective framework. The first
approach is more complete with respect to the effective
approach. However, the semiclassical approach is more
useful in relating quantum cosmological effects with clas-
sical physics. Moreover, main features of the complete
approach are sufficiently well reproduced by the effective
approach. Because our aim here is to relate effects of LQC
with subsequent classical evolution, the semiclassical ap-
proach will be more adequate. Therefore, in all of the
considerations performed in this paper, we base them on
semiclassical LQC.
In the cosmological applications, canonical variables

(A; E) can be split for the homogeneous and perturbation
parts:

Ai
a ¼ �Ai

a þ �Ai
a and Eb

j ¼ �Eb
j þ �Eb

j : (2)
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the flat Friedmann-Robertson-Walker (FRW) metric, then
�Ai
a ¼ �p�i

a and �Eb
j ¼ � �k�b

j . Here,
�k and �p are new canoni-

cal variables which fulfill the Poisson bracket f �k; �pg ¼ �
3V0

.

The parameter V0 is the fiducial cell which regularizes
integration over the infinite spatial part. The �p variable
can be expressed in terms of the scale factor, �p ¼ a2 and
�k ¼ _�p=2 �p. Having canonical variables, one can introduce
the Hamiltonian. The Hamiltonian can be also decomposed

for the homogeneous and the background parts, Hphen
G ¼

�Hphen
G þ �Hphen

G . Here, the upper index symbolizes that the

classical Hamiltonian contains additional phenomenologi-
cal quantum corrections. The lower index indicates that the
gravitational part is considered. However, in the realistic
models, the matter Hamiltonian also contributes, then

Hphen ¼ Hphen
G þHm. In the considered models, there are

no quantum corrections to the matter Hamiltonian, what is
indicated by the lack of the upper index. The matter
Hamiltonian can also be decomposed for the homogeneous
and perturbations parts. We will analyze such a case in this
paper.

In this paper, we consider effective LQC with a scalar
field. In particular, we concentrate our attention on the
model with a massive potential. In this case, it will be
possible to investigate realization of the inflationary phase.
In this approach, parameters of inflation are dependent on
the previous quantum cosmological evolution. We will
consider perturbations in the emerging bounceþ
inflation scenario. This will allow us to relate quantum
cosmological effects with classical perturbations. This fi-
nally lets us study LQC modifications of the CMB
anisotropy.

In this paper, we consider possible observational effects
due to the modified background dynamics only. The mod-
ifications are introduced by the so-called holonomy cor-
rections. In general, other types of corrections are also
expected, as inverse volume corrections. In the present
paper, we however take into account holonomy corrections
only. The inverse volume corrections in the flat FRW
models depend on the fiducial volume, and therefore in-
terpretation of their effects is rather obscure. Moreover,
self-interaction of the scalar field can, in principle, also
lead to the additional quantum gravitational corrections.
Such an effect was discussed in Ref. [4], where effective
equations for the loop quantum cosmology were derived.
In the present paper, we neglect any corrections due to the
self-interacting scalar field. The studies of perturbations
are also simplified. This is mainly because the theory of
perturbations in loop quantum cosmology is at present
incomplete. In particular, equations for the scalar models
with holonomy corrections are not derived yet.

Despite the fact that equations of loop quantum cosmol-
ogy are at present incomplete, the main results obtained in
the simplified considerations should survive also in the
more detailed models. Therefore, we concentrate on these
main features of the loop quantum cosmology. Such a

feature is a cosmic bounce predicted in the framework of
LQC. In this paper, we concentrate on the possible obser-
vational consequences of the quantum bounce. In particu-
lar, we study how the standard inflationary scenario is
realized in the bouncing universe and how effects of the
cosmic bounce can influence a spectrum of the cosmic
microwave radiation.
The organization of the text is the following. In Sec. II,

we introduce the concept of cosmic bounce in the frame-
work of the effective LQC. Subsequently, in Sec. III we
construct a model of inflation in the applied framework.
We set initial conditions in the contracting phase and study
how parameters of inflation vary with them. We show that
the phase of bounce can easily set proper initial conditions
for the subsequent phase of inflation. In the next step, in
Sec. IV, we discuss perturbations in the considered model.
We restrict ourselves to the fluctuations of the scalar field.
We calculate the spectrum of the perturbations from the
bounce and from the joined bounceþ inflation phase.
These results can be applied in calculating the spectrum
of the CMB anisotropies. In Sec. V, based on the Sachs-
Wolfe approximation, we calculate the spectrum of tem-
perature anisotropies in CMB. We show that the phase of
bounce can lead to suppression of the low multipoles in the
spectrum of CMB anisotropies. Subsequently, in Sec. VI,
we discuss other kinds of the observational probes of LQC.
Finally, in Sec. VII we summarize our results.

II. BACKGROUND DYNAMICS

In our considerations, the Hamiltonian of the gravita-
tional homogeneous part is given by

�H phen
G ¼ � 3V0

�

ffiffiffiffi
�p

p �
sin ��� �k

���

�
2
: (3)

The crucial element of this Hamiltonian is the factor ��.
This parameter contains details of the quantum modifica-
tions, and when �� ! 0, the classical limit is recovered.
The main ambiguity in LQC comes from the choice of ��.

The mostly used form of �� is that given by �� ¼
ffiffiffi
�
�p

q
, where

� ¼ 2
ffiffiffi
3

p
��l2Pl. In our investigations, we use this particu-

lar expression for ��. The choice of � is motivated by the
existence of the gap in the spectrum of area operator in
LQG. However, � is the result of the kinematic sector of
LQG, and extrapolation of this result to LQC is an assump-
tion. This issue is discussed in Refs. [5,6]. The problem
here is that the relation between LQC and LQG is not fully
understood. In particular, it should be possible to derive
LQC directly from LQG, and then the problem of ambi-
guities in LQC should be overcome. Recently, one prom-
ising step has been taken towards deriving LQC from LQG.
In their work, Rovelli and Vidotto show how LQC can be
derived in the spin networks formalism. Another possibil-
ity is that presented in [5,7], where �� ¼ �=

ffiffiffiffi
�p

p
, and � is

some unknown constant unrelated with �. From this point
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of view, � is some phenomenological parameter which
should be determined from the observations rather from
the theory.

Taking the Hamilton equation _�p ¼ f �p; �Hm þ �H
phen
G g to-

gether with the scalar constraint �Hm þ �H
phen
G ¼ 0, one can

derive the modified Friedmann equation

H2 :¼
�
1

2 �p

d �p

dt

�
2 ¼ �

3
�

�
1� �

�c

�
; (4)

where

�c ¼
ffiffiffi
3

p
16�2�3l4Pl

¼ 0:82m4
Pl (5)

is the critical energy density. This value was calculated
with the fixed area gap parameter �. As one can find from
Eq. (4), the physical solutions are allowed only for � � �c.
The � ¼ �c is a turning point, commonly called a bounce.
Moreover, while � ! 0, the classical dynamics is recov-
ered. One can also find that the maximal value of the
Hubble factor defined in Eq. (4) is reached for �max ¼
�c

2 . The maximal value of the Hubble factor is H2
max ¼

�
12�c. In Fig. 1, we show a typical symmetric bounce

obtained for the model with a free scalar field.

III. QUANTUM BOUNCE AND INFLATION

In this section, we are going to construct a realistic
model of inflation embedded in the framework of effective
loop quantum cosmology. Qualitative studies of inflation in
LQC have been already performed in Ref. [8]. The issue of
inflation in LQC has been raised also in Refs. [9,10]. In our
studies, we model the phase of inflation with the massive
scalar field. Since we consider the flat FRW model, the
equation for the homogeneous component of the field ’
holds the classical form

d2 �’

dt2
þ 3H

d �’

dt
þ dV

d �’
¼ 0; (6)

where the massive potential is given by

Vð’Þ ¼ m2

2
’2: (7)

The energy density of the considered homogeneous scalar
field is

� ¼ 1

2

�
d �’

dt

�
2 þ Vð �’Þ: (8)

Dynamics of the model is governed by the set of equa-
tions

dH

dt
¼ �

P2

2

�
2

�c

�
P2

2
þ Vð �’Þ

�
� 1

�
; (9)

d �p

dt
¼ 2H �p; (10)

d �’

dt
¼ P; (11)

dP

dt
¼ �3HP� dVð �’Þ

d �’
: (12)

It should be clear that the parameter P introduced here is
not a canonical momentum. It can be however related with

the canonical momentum by �� ¼ P �p3=2. Phase space of
this system has been studied in Ref. [8]. Analogous dy-
namics for the closed FRW model has been studied re-
cently in Ref. [11].
In our consideration, we are going to restrict ourselves to

the subset of initial conditions. We consider the initial
condition in the prebounce stage at the time t0. We make
a very general assumption that at this arbitrary time, the
field is placed in the bottom of the potential, therefore
�’ðt0Þ ¼ 0. Since � � �c, we obtain a restriction for P at
t0, namely jPðt0Þj �

ffiffiffiffiffiffiffiffi
2�c

p
. Taking a particular value of

Pðt0Þ, we can compute the value of the Hubble factor

Hðt0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3

P2ðt0Þ
2

�
1� P2ðt0Þ

2�c

�s
: (13)

In the dynamical system defined by Eqs. (9)–(12), one
can distinguish the subsystem (H; �’;P) whose evolution
does not depend on �p. In this subsystem, initial conditions
are specified by the value of Pðt0Þ, because �’ðt0Þ ¼ 0 and
Hðt0Þ is given by Eq. (13). The initial value of �p can be set
arbitrarily, since only changes of �p have physical meaning.
In the subsequent part of this section, we will show how

parameters of inflation depend on the choice of Pðt0Þ and
m.

p

H

1.0 0.5 0.0 0.5 1.0
t

FIG. 1 (color online). Evolution of variable �p and Hubble
factor H in the bouncing universe (thick lines) with a free scalar
field. Dashed lines represent classical evolution. Dots represent
the points ðt�;�HmaxÞ ¼ ð� 1ffiffiffiffiffiffiffiffi

3��c

p ;� ffiffiffiffiffiffiffiffiffiffi
�
12�c

p Þ.
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A. Analytical approximations

Dynamics of the considered model is nonlinear and
cannot be traced analytically. However, we can distinguish
two regions where approximated analytical solutions can
be found. The first is the phase of contraction, and the
second is the phase of slow-roll inflation. In this first phase,
the field oscillates in the bottom of the potential well.
Therefore, the value of �’ ¼ 0 is reached many times,
what motivates our choice of the initial condition �’ðt0Þ ¼
0. The oscillations are amplified when the moment of the
bounce is approached. In this regime, evolution of the field
is approximated by

�’ðtÞ ¼ C
cos½mðt� t0Þ�

�p3=4
: (14)

In the subsequent phase of the slow-roll inflation, evolution
of the scalar field is approximated by

�’ðtÞ ¼ �’max � mffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p t: (15)

In Fig. 2, we show exemplary evolution of the scalar field
for the considered model. We show also how approximated
solutions fit to the solution obtained numerically. In the
contracting phase, the scalar field follows the approxi-
mated solution given by Eq. (14). Therefore, energy den-

sity behaves like � ’ C2m2

2 �p3=2 . This is equivalent with the case

of the Universe filled by the dust matter. Corresponding
evolution of the parameter �p is in this case given by

�pðtÞ ¼
�
�

ffiffiffiffiffiffi
3�

p
2

Cmtþ �p3=4
i

�
4=3

: (16)

In the subsequent phase of the slow-roll inflation, the
approximated solution is given by

�pðtÞ ¼ �pi exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

3

s
m

�
�’maxt� mffiffiffiffiffiffiffiffiffiffiffiffiffi

48�G
p t2

��
: (17)

In Fig. 3, we show exemplary evolution of the canonical
variable �p for the considered model. We show also how

approximated solutions fit to the solution obtained
numerically.

B. Conditions for inflation

When the field �’ reaches a point of maximal displace-
ment �’max, then it turns back and consequently, Pð �’maxÞ ¼
0. At this point, energy of the field is given only by the
potential part. Because the total energy density is restricted
by � � �c, we obtain the following constraint:

j �’maxj �
ffiffiffiffiffiffiffiffi
2�c

p
m

¼ 1:3
m2

Pl

m
: (18)

The parameter �’max is important, since it gives good
characterization of the inflation. Moreover, based on its
value, one can express the e-folding number as follows:

N ’ 2�
�’2
max

m2
Pl

: (19)

Based on this expression and Eq. (18), we obtain another
bound

Nm2 � 4��c

m2
Pl

¼ 10:3m2
Pl: (20)

In the bounds given by Eqs. (18) and (20), we have
assumed the value of �c given by Eq. (5). However, these
bounds can be seen also in the different way. Namely,
having parameters of inflation, one can restrict the value
of �c.
In the considered setup, the value of �’max depends only

on Pðt0Þ and m. It is worth studying how the value of �’max

is sensitive on them. The results of our investigation are
shown in Table I.
In this table, we collected values of �’max obtained for the

different values of initial parameters. The main conclusion
coming from this data is that despite the substantial change
of the parameters, the value of �’max does not change
considerably. Therefore, no fine-tuning is required to ob-
tainthe proper phase of inflation. Moreover, it is worth
stressing that the phase of bounce indeed leads to the

40 20 20 40
mt

2

1

1

2

3

4

FIG. 2 (color online). Evolution of the field �’. Dashed lines
represent analytical approximations. Here, m ¼ 10�4mPl and
�’max ¼ 2:9mPl.

40 20 0 20 40
mt

1000

109

1015

1021

1027

p

FIG. 3 (color online). Evolution of the variable �p. Dashed lines
represent analytical approximations. Here, m ¼ 10�4mPl and
�’max ¼ 2:9mPl.
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proper inflationary scenario. In the classical considera-
tions, the high value of �’max has to be assumed, while in
the LQC inspired model, this value can be obtained
naturally.

C. Constraining �c, �, and �

Now let us assume that parameters of inflation are given
by m ¼ 10�6mPl and �’max ¼ 3:4mPl, which gives N ’ 73.
These values comes partially from the CMB observations
and partially from the requirement of solving the horizon
problem. Based on these values and from Eq. (18), we
obtain the following constraint:

�c � 6 � 10�12m4
Pl: (21)

This constraint is not very useful, because it is very weak.
However, the point is just to show the possibility of con-
straining and indicate the presently available cosmological
bounds. Lets us also examine the restriction of the Barbero-
Immirzi parameter. Taking Eq. (5) together with the con-
straint Eq. (21), we obtain

� � 1222: (22)

Now one can also constrain the value of parameter �
from the formulation presented in Ref. [7], where �� ¼
�=

ffiffiffiffi
�p

p
. Here, � is the phenomenological scale of the loop

quantization (polymerization). Now �c ¼ 3
8�

m2
Pl

�2�2 and as-

suming � ¼ �M ¼ 0:2375, we obtain

� � 7 � 104lPl: (23)

IV. PERTURBATIONS

Cosmological perturbations are essential elements in
searching for the quantum gravitational signatures. It is
because the superhorizontal modes of perturbations can
carry information from the inflationary and even preinfla-
tionary epoch. Another important issue is that generation
of perturbations can have quantum gravitational origin.

In LQC, as we already mentioned in the introduction, the
perturbations are introduced according to Eq. (2).
Perturbations (�A; �E) can be split for the:

(i) Scalar modes (coupled with a scalar field)
This type of perturbation with LQG corrections was
studied in Refs. [12–14]. However, until now, only
inverse volume corrections have been introduced
systematically. Consistent introduction of the holon-
omy corrections to the scalar modes is still awaiting.

(ii) Vector modes
This kind of perturbation is, in general, of the sec-
ondary importance in cosmology. It is because they
are decaying modes and cannot affect the CMB
substantially. However, in the contracting phase,
the vector modes are amplified and therefore can
be of potential importance. This type of perturba-
tions was studied in the context of LQC in Ref. [15].

(iii) Tensor modes (gravitational waves)
Tensor modes in LQC were studied in numerous
papers. In contrast to the other two types of pertur-
bations, in this case phenomenological implica-
tions were also studied. The effect of inverse
volume corrections were studied in Refs. [16–19],
while effects of the holonomy corrections were
investigated in Refs. [16,20–23]. In these papers,
creation of gravitational waves was considered ei-
ther during the phase of a bounce or during the
phase of inflation. The next natural step here is to
consider creation of the gravitational waves at the
joined bounceþ inflation phase considered in
Sec. III.

In this section, we will consider a simplified model of
perturbations. Namely, we will consider perturbations of
the matter field only. The gravitational field is set to be
homogeneous. This is only idealization, however, many
results from these studies can be extrapolated to the case of
scalar and tensor perturbations.

A. Scalar field perturbations

The Hamiltonian of the scalar field is given by

H’ ¼
Z
V0

d3x

�
1

2

�2
’ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp þ 1

2

Ea
i E

b
i @a’@b’ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEj

p
Vð’Þ

�
: (24)

Similarly like in the case of gravitational field, the scalar
field can be decomposed for homogeneous and perturba-
tion parts

’ ¼ �’þ �’�’ ¼ ��’ þ ��’: (25)

Here, homogeneous parts are defined as follows:

�’ðtÞ ¼ 1

V0

Z
V0

d3x’ðx; tÞ; (26)

��’ðtÞ ¼ 1

V0

Z
V0

d3x�’ðx; tÞ: (27)

TABLE I. Values of �’max for the different Pðt0Þ and m (all
parameters in Planck units).

Pðt0Þ=m 1 10�1 10�2 10�3 10�4 10�5 10�6

1 0.5 0.8 1.1 1.4 1.8 2.1 2.2

10�1 0.9 1.1 1.5 1.8 2.2 2.4 2.7

10�2 0.7 1.6 1.8 2.2 2.5 2.8 3.0

10�3 1.3 2.2 2.5 2.9 3.2 3.4

10�4 2.0 3.0 3.2 3.6 4.0

10�5 2.7 3.7 3.9 4.2

10�6 3.4 4.4 4.5

10�7 4.1 5.0
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Equations of motion for the background and perturba-
tion parts are given by

_�’ ¼ f �’;H’g ¼ �p�3=2 ��’; (28)

_��’ ¼ f ��’;H’g ¼ � �p3=2 dVð �’Þ
d �’

; (29)

� _’ ¼ f�’;H’g ¼ �p�3=2��’; (30)

� _�’ ¼ f��’;H’g ¼
� ffiffiffiffi

�p
p r2�’� �p3=2 d

2Vð �’Þ
d �’2

�’

�
:

(31)

Combining Eqs. (28) and (29), we obtain Eq. (6). Variable
�’ can be decomposed for the Fourier modes

�’ð	;xÞ ¼
Z d3k

ð2�Þ3
uð	;kÞffiffiffiffi

�p
p eik�x: (32)

Based on this decomposition and on Eqs. (30) and (31), we
obtain the equation

d2

d	2
uð	;kÞ þ ½k2 þm2

eff�uð	;kÞ ¼ 0; (33)

where k2 ¼ k � k and

m2
eff ¼ �p

d2Vð �’Þ
d �’2

� 1ffiffiffiffi
�p

p d2
ffiffiffiffi
�p

p
d	2

: (34)

In order to describe properties of the perturbations, it is
useful to introduce a quantity called the power spectrum
which is defined as follows:

P u ¼ k3

2�2
juj2: (35)

In the following two subsections, we compute this quan-
tity for two quantum cosmological models. The first will be
the model of the symmetric bounce with the free scalar
field. The second will be the model with the joined
bounceþ inflation phase.

B. Symmetric bounce

As in the first case, we consider scalar field perturbations
at the symmetric bounce. In the considered case the field is
free, V ¼ 0. We set the initial conditions to be the
Minkowski vacuum

uin ¼ e�ik	ffiffiffiffiffi
2k

p : (36)

This approximation works, however, only for the subhor-
izontal modes. With these initial conditions, we solve
Eq. (33) numerically. Based on these computations, we
obtain the power spectrum of the field u in the post-bounce
phase. We show the results in Fig. 4. In this figure, the
black straight line represents the analytical approximation

of the spectrum. In order to derive this approximation, we
assume

uout ¼ 
kffiffiffiffiffi
2k

p e�ik	 þ �kffiffiffiffiffi
2k

p eik	: (37)

Here, the relation j
kj2 � j�kj2 ¼ 1 holds, as a conse-
quence of the normalization condition. Now, we base on
the integral representation

uð	;kÞ ¼ uinð	;kÞ þ 1

k

Z 	

�1
d	0Uð	0Þ

	 sinkð	� 	0Þuð	;kÞ (38)

of Eq. (33), where Uð	Þ ¼ �m2
effð	Þ. Solving this equa-

tion in the first order of perturbative expansion, we com-
pute values of 
k and �k. We approximate the Uð	Þ
function by the step function Uð	Þ ¼ U0�ð	þ
	0Þ�ð	0 � 	Þ of the width 2	0. The values of parameters
U0 and 	0 can be fixed from the numerical computation of
the full model. However, we expect that

U0 
�m2
effðt ¼ 0Þ ¼ �

3
ð2 ��’�cÞ2=3; (39)

where the equality comes from the analytical expression
for the m2

eff function (see Ref. [20]). Moreover, it was

shown in Ref. [20] that 	0 can be related with the value
of conformal time at Hmax, then

	0 ¼ 	ðt0Þ ¼
2F1½12 ; 16 ; 32 ;�1�ffiffiffiffiffiffi
3�

p
�1=3
c ð ��2

’=2Þ1=6
: (40)

The value of parameter 	0 does not have to be however
precisely equal to 	ðt0Þ. We expect rather 	0 
 	ðt0Þ.
Namely, its value can not be much bigger or much lower
than 	ðt0Þ. In Fig. 4, we showed the case ��’ ¼ 0:1m2

Pl

which was approximated by the model above with U0 ¼
2m2

Pl and 	0 ¼ 0:1lPl. Based on the values of 	ðt0Þ and

IR

UV

t 50 lPl

0.01 0.1 1 10 k

10 6

10 4

0.01

1

100

u

FIG. 4 (color online). Numerical power spectrum of the field u
with ��’ ¼ 0:1m2

Pl (green points). The black line represents the

analytical spectrum given by Eq. (43) with U0 ¼ 2m2
Pl and 	0 ¼

0:1lPl. Dashed lines represent UV and IR limits given by
Eqs. (44) and (45).
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�m2
effðt ¼ 0Þ, we obtain 	0 ¼ 0:3lPl and U0 ¼ 2:5m2

Pl.

The better fit to numerical data is obtained when the step
function is more narrow than 2	ðt0Þ and a bit lower than
�m2

effðt ¼ 0Þ.
Based on the performed step function approximation, we

find


k � 1þ i

2k

Z 1

�1
d	Uð	Þ ¼ 1þ i

U0	0

k
; (41)

�k � � i

2k

Z 1

�1
d	Uð	Þe�2ik	 ¼ �i

U0

2k2
sinð2k	0Þ:

(42)

Now, with use of the definition of the power spectrum, we
obtain the analytical expression

P u ¼
�
k

2�

�
2 þU0ðsin½2k	0�2U0 þ 4k2U0	

2
0 þ 4k sin½2k	0�ðk sin½2	k� � cos½2	k�U0	0ÞÞ

16�k2
; (43)

which was shown in Fig. 4. In the UV and IR limits, the
power spectrum given by Eq. (43) behaves like

P UV
u !

�
k

2�

�
2
; (44)

P IR
u !

�
k

2�

�
2ð1þ 4U0	0	þ 4U2

0	
2
0	

2Þ: (45)

The term in the second bracket in Eq. (45) is the difference
between the UV and IR slopes in Fig. 4.

The analytical model correctly reproduces the structure
of oscillations obtained from the numerical simulations.
However, the relative amplitudes of the modes are not
exactly recovered. In particular, the analytical model pre-
dicts more power for the low values of k.

The spectrum obtained in this subsection is similar to
this obtained in the case of gravitational waves in Ref. [20].
The difference is that in the case of the scalar field, the
effective mass m2

eff , is negative in the vicinity of the

bounce, while in the case of the gravitational waves with
holonomy corrections, the effective mass is a positive
function during the whole evolution.

C. Bounceþ Inflation model

The phase of symmetric bounce is a very idealized
situation. More physically relevant is the joined bounceþ
inflation phase. In this subsection, we show a simple
analytical model of perturbations in this phase. It will be
a model of perturbations created in the scenario described
in Sec. III. In the contracting phase, the subhorizontal
modes are given by Eq. (36). The subsequent phase of
inflation is approximated by a de Sitter phase where evo-
lution of the scale factor is given by a ¼ � 1

H0	
. In this

phase, modes of fluctuations are given by the superposition
of Bunch-Davies modes

uout ¼ 
kffiffiffiffiffi
2k

p e�ik	

�
1� i

k	

�
þ �kffiffiffiffiffi

2k
p eik	

�
1þ i

k	

�
; (46)

where relation j
kj2 � j�kj2 ¼ 1 holds. Performing
matching conditions uinð	iÞ ¼ uoutð	iÞ and u0inð	iÞ ¼

u0outð	iÞ, we determinate coefficients


k ¼ � 1� 2ik	i � 2k2	2
i

2k2	2
i

; (47)

�k ¼ � e�2ik	i

2k2	2
i

: (48)

Based on this, we can derive the power spectrum. At the
time 	 ! 0�, it takes a form

P �’ ¼
�
H0

2�

�
2 þ

�
H0

2�

�
2 k4�
2k4

�
1þ cos

�
2k

k�

��
�1þ 2k2

k2�

�

� 2k

k�
sin

�
2k

k�

��
; (49)

where we have defined k� ¼ �1=	i. We show plot of this
spectrum in Fig. 5.
The obtained spectrum is characterized by the suppres-

sion for the low values of k. For the large k, the spectrum
holds the inflationary form. Another important feature is
oscillations which are the residue of the bouncing phase.
We see that damping begins when �	ik
 1. This corre-
sponds to the k on the horizon scale at time 	i. At the time
	i, a value of the scale factor is given by ai ¼ � 1

H0	i
,

0.001 0.01 0.1 1 10 100 k

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H0 2 2

FIG. 5 (color online). Power spectrum of the field �’. Here,
	i ¼ �1, �10, �100 (from right to left).
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therefore k� ¼ aiH0. Defining the length scale �� ¼ ai=k�,
we obtain �� ¼ 1

H0
. Today, the value of �� is given by

��a0=ai, where a0 is the present value of a scale factor.
The similar power spectrum to this obtained here was

derived also in Refs. [24,25].

V. CMB ANISOTROPY

As we have shown, there are two effects of the bounce
phase on the primordial power spectrum: damping of the
low energy modes and oscillations. This first effect is
dominant, and in this section we are going to investigate
its impact of the CMB anisotropy.

A. Sachs-Wolfe approximation

Because we expect that effects of the bounce can affect
superhorizontal modes, the Sachs-Wolfe approximation
can be used to study the resulting spectrum of CMB. In
this approximation, subhorizontal evolution of the primor-
dial plasma is neglected since it does not affect the con-
sidered modes. Expression for the CMB multipoles is
given by

Cl ¼ 4�

25

Z 1

0

dk

k
PRðkÞj2l ðkD?Þ; (50)

where D? ¼ 1:4 � 104 Mpc is distance to last scattering

shell. Moreover, PRðkÞ � k3

2�2 jRkj2, where R ¼ � v
z

and v is the Mukhanov variable which fulfils the equation

v00 þ
�
k2 � z00

z

�
v ¼ 0; and where z ¼

ffiffiffiffi
�p

p
_�’

H
:

We see that while the approximation z00=z � a00=a holds,
then the evolution of v and u variables are the same. The
validity of this approximation was indicated in
Refs. [24,25]. The assumption we made here is the lack
of the quantum modification to the equation for the v

variable. However, we do not have a right equation for
the scalar modes in presence of holonomy corrections. In
case of the tensor modes, it was shown in Ref. [20] that
corrections to the mode equation do not change the spec-
trum significantly. It was shown that the shape of the
spectrum is determined mainly by the background evolu-
tion. Therefore, we assume here that the spectrum of the
scalar perturbations is not affected significantly by the
holonomy corrections to the mode equation. Then, the
spectrum from the joined bounce and inflation phase
should have the generic form derived in Sec. IV. In order
to build the analytic model, we can average the spectrum
over the secondary oscillations. Then, the power spectrum
from the joined bounceþ inflation is approximated by

P RðkÞ ¼ A2
R�ðk� k�Þ þA2

R�ðk� � kÞ
�
k

k�

�
2
: (51)

Based on this spectrum, one can derive the analytical
formula for the spectrum of the low multipoles of the
CMB anisotropy. Instead of the variable Cl, it is convenient
to consider the variable

C l � lðlþ 1Þ
2�

Cl: (52)

It is motivated by the fact that for the scale invariant
Harrison-Zeldovich power spectrum, this quantity holds
constant value. Performing integral (50) with the spectrum
(51), we obtain

C l ¼ Cinflationl þ Cbouncel ; (53)

where

C inflation
l ¼ A2

R

25
; (54)

and

C bounce
l ¼ A2

R

25

x2�
41þl�2ðlþ 3=2Þ ½l2F3ð1þ l; 1þ l; lþ 3=2; 2þ l; 2lþ 2;�x2�Þ � ð1þ lÞ1F2ðl; lþ 3=2; 2lþ 2;�x2�Þ�:

(55)

Here, we have introduced the parameter x� ¼ k�D?. In
Fig. 6, we show the Cl spectrum with the parameterA2

R ¼
2:6 � 10�9 set to fit the CMB data and TCMB ¼ 2:726 K.
We see that effects of the bounce lead to suppression of the
low multipoles in CMB, what is favored observationally.
This possibility was indicated earlier in Refs. [21,25].

The value of parameter A2
R can be calculated from the

slow-roll inflation model

A 2
R ¼ 1

2m2
Pl�

�
H

2�

�
2
; (56)

where � is the slow-roll parameter

� :¼ 1

2�

�
1

V

dV

d �’

�
2 ¼ 1

4�

m2
Pl

�’2
: (57)

Based on this, we can calculate the value of the Hubble
factor at the beginning of inflation

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A2

R

q
m2

Pl

�’max

¼ 3:8 � 10�5mPl; (58)

where in the last equality we assumed �’max ¼ 3:4mPl.
An important limitation of the method based on the low

multipoles in CMB comes from the so-called cosmic vari-
ance. It is a purely statistical effect which is significant at
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the horizontal scales. In case of CMB, this corresponds to
the low multipoles regime. Relative uncertainty coming
from the cosmic variance is given by

�Cl

Cl

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2lþ 1

s
: (59)

Taking for example l ¼ 2, we obtain a relative uncertainty
equal 0.63. Therefore, the outcome of the measurement is
comparable with its uncertainty. This effect cannot be
removed and imposes a substantial limitation on our ap-
proach to constraint quantum cosmological models.

B. Discussion

In the previous subsection, we showed that bounce can
lead to observed suppression of the low CMB multipoles.
Now, we would like to discuss whether this scenario is
realistic and does non require fine-tuning. At the begin-
ning, we would like to however mention one important
adjustment. Namely, the observed scale of cutoff in the
CMB spectrum overlaps with the present size of the cosmic
horizon. This property was indicated in Ref. [24].
Therefore, there is an intriguing possibility that the ob-
served cutoff is due to unknown evolution of the super-
horizontal modes. Therefore, it is not related to the
preinflationary dynamics. Such an explanation seems to
be more likely. However, the model of this superhorizontal
damping does not exist yet.

It is indicated by the observations that the present scale
of cutoff ��ðt0Þ is comparable with D?, ��ðt0Þ � D?.
Therefore,

D? � ��ðtiÞ a0ai ¼ ��ðtiÞeN TGUT

Tdec

ð1þ zdecÞ: (60)

Because ��ðtiÞ ¼ 1=H0, taking Eqs. (58) and (19) we
obtain

2Ne2N ¼ ; (61)

where

 ¼ 2D2
?ð2�Þ2m2

PlA
2
R

ð1þ zdecÞ2
�
Tdec

TGUT

�
2
: (62)

It is worth noting that Eq. (61) has a form of the Lambert

equation WðzÞeWðzÞ ¼ z which defines the Lambert W
function, therefore N ¼ 1

2WðÞ. In order to determinate

the parameter , we take zdec ’ 1070, Tdec ’ 0:2 eV,
TGUT ’ 1014 GeV, and A2

R ¼ 2:6 � 10�9. Based on this,

we obtain  ¼ 5:1 � 1062 and subsequently N ¼ 69:7.
Now, one can determinate the second independent parame-
ter of inflation e.g. m. We can easily derive the equation

m ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
A2

R

s
2�

N
mPl; (63)

which gives m ¼ 5:6 � 10�6mPl. As we see, the obtained
parameters of inflation are fully consistent with these
usually considered. The model is therefore in full agree-
ment with the present observational facts. Moreover, a fine-
tuning of inflationary parameters is not required to explain
suppression of the low multipoles by the quantum cosmo-
logical effects. This however can be seen as a coincidence
that the scale of horizon at the beginning of inflation
coincides with the present size of the horizon. It remains
therefore to check whether this effect is generic and does
not depend on the details of inflation, or it is realized only
for the particular inflation type.

VI. OTHER OBSERVATIONAL PROBES OF LQC

Besides the effect of suppression of the low multipoles,
other potential probes of quantum cosmologies are also
available. In this section, we review four possible
approaches.

A. Polarization of CMB

In Sec. V, we have shown how the quantum cosmologi-
cal effects can be related with the spectrum of CMB
anisotropy. This method gives us one possible approach
to constraint quantum cosmologies. However, observations
of CMB bring us much more information than only anisot-
ropies of temperature. Another important measured quan-
tity is the polarization of CMB radiation. This polarization
can be described by the spectrum, which depends on the
primordial perturbations. While E-type polarization de-
pends on both the scalar and tensor components of pertur-
bations, the B-type polarization depends only on the tensor
component. Spectrum of the E type is already observed and
can be used e.g. to constrain the cutoff of the power
spectrum. Recently, such a study was performed in
Ref. [26]. Based on the joined anisotropy and polarization
data, it was shown that the scale of cutoff in the power

spectrum is C ¼ kc
10�4 Mpc�1 < 4:2 at 95% confidence level,

while the constraint based only on the polarization gives
C< 5:2. This result shows that polarization is a good tool
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FIG. 6 (color online). Spectrum of CMB anisotropy.

POSSIBLE OBSERVATIONAL EFFECTS OF LOOP . . . PHYSICAL REVIEW D 81, 063503 (2010)

063503-9



to constrain the cutoff in the power spectrum. In particular,
while the considerations based only on the CMB anisotro-
pies indicate a cutoff, the joined anisotropy and polariza-
tion data indicate a limit on the cutoff. This is crucial while
constraining quantum cosmologies based on cutoffs result-
ing from them.

The second, B-type polarization still remains unreach-
able observationally. However, there is presently a huge
effort to detect it. In particular, a mission like PLANCK
aims to detect this type of polarization. If the B-type
polarization will be measured, then the amplitude of the
tensor power spectrum can be determined. In the case of
slow-roll inflation, this amplitude is given by

A 2
T ¼ 16

�

�
H

mPl

�
2
: (64)

Because H2 ’ �
3 �, the measurements of the B-type polar-

ization enable us to determine energy scale of inflation.
Therefore, absolute values of parameters N and m can be
found. This also gives us restriction on the prebounce
initial condition, in particular, on Pðt0Þ.

B. Nongaussianity

When different modes of perturbations interact with one
another, the field becomes non-Gaussian. This interaction
can be produced by the potential of the scalar field, higher
order corrections in the perturbative expansion or by the
quantum gravitational effects.

In case of the Gaussian field, all of its statistical prop-
erties are fully described by the two point function

h’k1
’�

k2
i ¼ �ð3Þðk1 � k2Þ 2�2

k3
P’ðkÞ, where P’ðkÞ is the

power spectrum given by Eq. (35). In order to describe
non-Gaussian effects, it is necessary to consider higher
order correlation functions. The first contribution of non-
linearity comes in a tree-point function

h’k1
’k2

’k3
i ¼ �ð3Þðk1 þ k2 þ k3ÞP3ðk1;k2;k3Þ; (65)

where P3ðk1;k2;k3Þ is called the bispectrum. In case of
the Gaussian field, this spectrum is equal zero.

The primordial non-Gaussianity, if present, could affect
also the spectrum of CMB anisotropies leading to its non-
Gaussianity. Present observations indicate however that the
CMB spectrum is nearly Gaussian. This gives us constraint
on the cosmological models with a huge amount of non-
linearity. In particular, based on these observations, some
quantum cosmological models can be constrained or even
excluded. For example, preliminary studies on non-
Gaussianity in LQC were performed in Ref. [27]. In these
studies, non-Gaussianity is produced by the specific scalar
field potential, not by the quantum gravity effects itself.
However, this model gives an example of non-Gaussianity
production in the bouncing universe. It was shown that in
this model, non-Gaussianity is produced in the vicinity of
the points tþ and t�, where the Hubble factor reaches its

maximal value. Another example of non-Gaussianity pro-
duction in the bouncing cosmology can be found in
Ref. [28]. In this paper, production of the non-
Gaussianity at the matter bounce is considered and indi-
cates that this form of non-Gaussianity can be potentially
distinguished from this produced during the inflationary
phase.

C. Trans-Planckian modes

When the length of the mode of perturbation approaches
the Planck scale, then semiclassical approximation fails.
The notion of a continuous wave is missed, and fully
quantum gravitational considerations have to be applied.
Therefore, these so-called trans-Planckian modes cannot
be studied with use of quantum field theory on curved
spaces as it was done in the present paper. More adequate
would be the application of the quantum field theory on
quantum spaces. Some preliminary studies of such a theory
were performed in Ref. [29]. However, only the case of a
quantum isotropic background is discussed there. The
complete approach should take into account also the in-
homogeneous backgrounds.
In Fig. 7, we show the evolution of the different length

scales in the bouncing universe. We see that modes with
� > lc can be described by the semiclassical approxima-
tion. It is exactly the case considered in this paper.
However, when � < lc, then new formulation has to be
applied. This would lead to potentially new effects.
However, these trans-Planckian modes can decay before
crossing the horizon during the inflation. Then, any signa-
ture of the quantum gravity effects can be lost. However,
investigations as those performed in Ref. [30] suggest that
the effects of trans-Planckian modes can lead to potentially
observational effects.

D. Large scale structures

If the quantum cosmologies can give imprints on CMB,
then some of these effects could be seen also in the sub-
sequent structures. The region of the low multipoles cor-
responds now to the largest visible distances in the

FIG. 7 (color online). Evolution of the different length scales
in the bouncing universe.
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Universe. Gravitational structures on these scales are
called large scale structures. Therefore, observations of
the large scale structures are complementary to the obser-
vations of the low multipoles in CMB. Both of these
methods were already applied to investigate the effects of
the bouncing cosmological scenario in Ref. [31]. In this
paper, the authors predict oscillations in the power spec-
trum on the horizontal scales due to the bounce. However,
available observational data from e.g. Sloan Digital Sky
Survey are still not sufficient to probe these effects.

VII. SUMMARY

In this paper, we have investigated realization of the
inflationary phase in the framework of loop quantum cos-
mology. We have shown that the phase of a quantum
bounce sets proper initial conditions for inflation.
Moreover, we found that parameters of inflation depend
only logarithmically on the prebounce initial conditions.
Subsequently, we considered the model of perturbations at
the bounce and at the joined bounceþ inflation phase. We
showed that this second model can explain the suppression
of the low multipoles in CMB. Moreover, we have indi-
cated that the model is fully consistent and the scale of the
cutoff agrees with the present size of horizon. This indi-
cates that fine-tuning is not required to produce suppres-
sion on the horizontal scales.

The results of the paper indicate the possible way to
relate quantum cosmological models with astronomical
observations. The presented method can be used to con-
strain models of the Universe in the Planck epoch. In
particular, we constrained the Barbero-Immirzi parameter
�, critical density �c, and parameter �. The obtained
constraints are however still very weak and ambiguous.
The part of this ambiguity can be removed by fixing the
parameters of inflation (N andm). At present, we can put a
lower limit on N from the so-called tensor-to-scalar ratio,
which gives N > 36. The value of N can be estimated by
the requirement of solving the horizon problem. One can
also try to determine N based on the observed value of the
spectral index ns. Namely, one can find that N ¼ 2=ð1�
nsÞ, which for e.g. ns ¼ 0:97 gives N ¼ 67. However, the
value of the e-folding number obtained in this way can be
treated, only as the lower limit on N. There can be more e
folding before the seeds of the observed structures were
created (Then �’max � �’ ¼ 3:4mPl). With the upper limit
on N, the situation is even worse. In the classical cosmol-
ogy, the total value of N can be arbitrarily high. However,
in the framework of loop quantum cosmology, the total
value of e folding is bounded. Namely, inserting the upper

bound (18) into expression (19), we find Nmax � 11
m2

Pl

m2 .

Therefore, by knowing the vale ofm, one can put the upper
constraint on the e-folding number. In particular, for the
realistic vale m ¼ 10�6mPl, we find the upper limit on the
e-folding number, Nmax � 1013. This limitation is however
very weak. Therefore, with the present cosmological ob-
servations, only the lower limit on N can be estimated.
Having N, the value of m can be determined from the

amplitude of the CMB anisotropies. However, due to the
problems discussed above, N remains unknown.
Therefore, at present, one can only fix the relation between
N an m but not their absolute values. In order to fix one of
these parameters, another observable has to be measured.
The most promising is an amplitude of tensor perturba-
tions. These perturbations produce B-type polarization in
CMB. Therefore, if this polarization would be measured,
then parameters N and m can be fixed. This will enable us
to perform a less ambiguous constraint on the LQC pa-
rameters, in particular, on critical energy density.
Besides the cosmological approach to constrain quan-

tum gravity effects, other indirect methods are also avail-
able, in particular, astrophysical measurements of the
Lorentz symmetry violation. It is in principle possible to
derive quantitative predictions about this effect directly
from LQG. However, the process of derivation requires
construction of the semiclassical states, where unknown
phenomenological parameters appear. Since their values
are unknown, the predictive power of this approach is
marginal. If these difficulties would be removed, then
this method can be complementary with the cosmological
approach. Also, the quantum effects on the gravitational
collapses give a possible way to put constraint on the LQG.
Here, the theoretical predictions are less ambiguous; how-
ever, it is harder to relate them with any astrophysical data.
As we see, the difficulties lie here on both the theoretical

and empirical sides. Without knowledge about the relation
between the LQC and LQG, we can treat parameters of this
first rather as phenomenological. If these difficulties would
not be overcome, it will be hard to perform complementary
constraints of the same parameters, with the use of the
different methods, e.g. observations of CMB and gamma
ray bursts.
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