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The mass varying neutrino scenario is a model that successfully explains the origin of dark energy while

at the same time solves the coincidence problem. The model is, however, heavily constrained by its

stability towards the formation of neutrino bound states when the neutrinos become nonrelativistic. We

discuss these constraints and find that natural, adiabatic, stable models with the right amount of dark

energy today do not exist. Second, we explain why using the lightest neutrino, which is still relativistic, as

an explanation for dark energy does not work because of a feedback mechanism from the heavier

neutrinos.
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I. INTRODUCTION

Precision observations of the cosmic microwave back-
ground [1–3], the large scale structure of galaxies [4], and
distant type Ia supernovae [5–8] have led to a new standard
model of cosmology in which the energy density is domi-
nated by dark energy with negative pressure, leading to an
accelerated expansion of the universe.

Avery interesting proposal is the so-called mass varying
neutrino (MaVaN) model [9–11] in which a light scalar
field couples to neutrinos, see also [12–51] for background.
Because of the coupling, the mass of the scalar field does
not have to be as small as the Hubble scale but can be
larger, while the model still accomplishes late-time
acceleration.

In this paper we discuss the different criteria that need to
be fulfilled in order to have a stable, adiabatic mass varying
neutrino model with the correct cosmology today—i.e.
�DE ¼ 0:7, �M ¼ 0:3 and w��1. Our aim is to show
that it is only possible as long as the scalar field potential
resembles a cosmological constant—and hence the model
loses its prediction of the current neutrino mass and fails to
solve the coincidence problem.

In addition, we discuss the suggestion that the lightest
neutrino, which can be relativistic today, may be respon-
sible for dark energy. We find that there is evidence that the
relativistic neutrino will feel an instability towards the
formation of neutrino nuggets.

In the next section we briefly review the formalism
needed to study mass varying neutrinos and in Sec. III
we discuss the different criteria in the MaVaN framework.
In Sec. IV we discuss MaVaNs with a relativistic neutrino
and in Sec. V we conclude.

II. MASS VARYING NEUTRINOS

The idea in the mass varying neutrino scenario [9–11] is
to introduce a coupling between neutrinos and a light scalar
field and to identify the coupled fluid with dark energy. In
this scenario the neutrino mass m� is generated from the
vacuum expectation value (VEV) of the scalar field. Thus
at scale factor a the pressure P�ðm�ð�Þ; aÞ and energy
density ��ðm�ð�Þ; aÞ of the uniform neutrino background
contribute to the effective potential Vð�; aÞ of the scalar
field in the following way

Vð�Þ ¼ V�ð�Þ þ ð�� � 3P�Þ (1)

where V�ð�Þ denotes the fundamental scalar potential.

The energy density and pressure of the scalar field are
given by the usual expressions,

��ðaÞ ¼ 1

2a2
_�2 þ V�ð�Þ;

P�ðaÞ ¼ 1

2a2
_�2 � V�ð�Þ:

(2)

Definingw ¼ PDE=�DE to be the equation of state of the
coupled dark energy fluid, where PDE ¼ P� þ P� denotes

its pressure and �DE ¼ �� þ �� its energy density, the

requirement of energy conservation gives,

_� DE þ 3H�DEð1þ wÞ ¼ 0: (3)

Here H � _a
a and we use dots to refer to the derivative

with respect to conformal time. Taking Eq. (3) into ac-
count, one arrives at a modified Klein-Gordon equation
describing the evolution of �,

€�þ 2H _�þ a2V 0
� ¼ �a2�ð�� � 3P�Þ: (4)
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Here and in the following primes denote derivatives with

respect to � (0 ¼ @=@�) and � ¼ d logm�

d� is the coupling

between the scalar field and the neutrinos.
In the nonrelativistic case P� ’ 0, such that Eq. (1) takes

the form

V ¼ �� þ V� (5)

Assuming the curvature scale of the potential and thus
the mass of the scalar field m� to be much larger than the

expansion rate of the Universe,

V 00 ¼ ��ð�0 þ �2Þ þ V 00
� � m2

� � H2; (6)

the adiabatic solution to the equation of motion of the
scalar field in Eq. (4) applies [11]. As a consequence, the
scalar field instantaneously tracks the minimum of its
effective potential V

V 0 ¼ �0
� þ V 0

� ¼ ��� þ V0
� ¼ 0 (7)

MaVaNs models has a possibility of becoming unstable
on sub-Hubble scalesm�1

� < a=k < H�1 in the nonrelativ-

istic regime of the neutrinos, where the perturbations ���

evolve adiabatically.
In Ref. [27] it is shown that the equation of motion for

the neutrino density contrast [52] ���

��
in the regime m�1

� <

a=k < H�1 can be written as

€� � þH _�� þ
�
�P�

���

k2 � 3

2
H2��

Geff

G

�
��

¼ 3

2
H2½�CDM�CDM þ�b�b� (8)

where

Geff ¼ G

�
1þ 2�2M2

pl

1þ a2

k2
fV00

� þ ���
0g
�

(9)

and

�i ¼ a2�i

3H2M2
pl

: (10)

Since neutrinos not only interact through gravity, but
also through the force mediated by the scalar field, they
feel an effective Newton’s constant Geff as defined in
Eq. (9). The force depends upon the MaVaNmodel specific
functions � and V� and takes values between G and

Gð1þ 2�2M2
plÞ on very large and small length scales,

respectively.
In certain cases of strong coupling neutrinos suffer

an instability towards clumping in which case they stop
behaving as dark energy [21]. In Ref. [27] a criterion

for the stability was developed. ð1þ 2�2M2
pl

1þa2

k2
fV00

�
þ���

0gÞ���� <

�CDM�CDM þ�b�b. This can be recast in a more conve-

nient form
2�2M2

pl

1þa2

k2
fV00

�
þ���

0g�� <�M, where we have ne-

glected the effect of baryons compared to cold dark
matter and we have assumed the density contrasts of
roughly the same order.

III. MODEL REQUIREMENTS

In summary we have the following different criteria for
an adiabatic MaVaN model.
(1) The model needs to satisfy current observations i.e.

w��1. This is easily fulfilled by demanding _��
0 since we know the neutrino contribution to both
pressure and energy density is smaller than the
scalar field contribution.

(2) We want a neutrino mass at present that satisfies the
current neutrino mass bounds from cosmology, that
is m� & 1 eV. Using this, we get a maximal value
for the neutrino density parameter �� & 0:02
[3,4,53].

(3) The model must produce the right cosmology, i.e.

�DE � 0:70. This gives us roughly
��

��
� V�

��
> 35.

(4) In order to have a prediction for the current neutrino
mass, we are looking for an adiabatic model that
continuously tracks the minimum of the effective
potential, i.e. V0 ¼ V0

� þ ��� ¼ 0. In addition, to

avoid severe fine-tuning, we demand m�1
� � H�1

[21,54]. Hence V 00
� þ ð�2 þ �0Þ�� � H2, using a

constant coupling gives us V 00
� þ �2�� � H2.

(5) We want our model to be stable towards the forma-
tion of neutrino nuggets at present. This gives the

requirement
2�2M2

pl

1þa2

k2
fV00

�
þ���

0g�� <�M. Since we are in

the adiabatic regime, we are looking on scales where

k=a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V00
� þ ���

0q
. Combined with the fact that

�M � 0:30, this criterion simply reduces to
2�2M2

pl

2 ¼
�2M2

pl < 15.

Combining the criteria above and using H2 ¼
�total

M2
pl

� V�

M2
pl

, we can see that in the case of a constant cou-

pling we get
V00
�

V�
þ �2 ��

V�
� V�

M2
PLV�

, which reduces to

V00
�
M2

PL

V�
þ 15

35 � 1 or roughly

V 00
�M

2
PL

V�

� 1: (11)

We propose potentials that resemble those originally
proposed in Ref. [11], and in order to be able to explain
the coincidence problem we want a potential as simple as
possible without any type of cosmological constant [55].
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However all single field potentials previously studied in
this context do not fulfill the constraint Eq. (11).

Hence we need a sort of hybrid model as suggested by
[26]. In this type of model we have effectively two minima.
One is the true minimum which has zero energy density
and the other is the false minimum in which our current
universe sits. The offset between the two minima is then
what is referred to as the dark energy density. The dynam-
ics of the scalar field is given by the movement of the false
minimum with the dilution of the universe. One very nice
feature of this model is that it is implemented in super-
symmetry and hence explains the stability of a very small
scalar field mass. However, since we have an offset it can
be interpreted as an effective cosmological constant and as
such the hybrid model fails to address the coincidence
problem. In addition, to keep the model stable it is sug-
gested that the lightest neutrino is still relativistic and that
we associate dark energy with this. We address this issue
below.

IV. MAVAN MODELWITH A RELATIVISTIC
NEUTRINO

We aim at keeping the model as simple as possible, so
we propose the existence of just one scalar field with a
democratic coupling to all light neutrino species [56]. In
that case it is assumed that the lightest neutrino does not
clump because of pressure, while the two heavier neutrinos
become unstable. In the following we will argue that this is
not possible since a feedback from the growth of the heavy
neutrino perturbations will cause the relativistic neutrino
perturbation to grow as well. The problem in this scenario
can be neatly illustrated by the following equation [22]

��� ¼ 1

a4

Z
q2dqd��f0ðqÞ�þ ���ð�� � 3P�Þ: (12)

The equation explains the growth of the neutrino per-
turbation and applies to both the interaction between a
relativistic neutrino and a scalar field as well as that of a
nonrelativistic neutrino and a scalar field.

Let us consider a system consisting of three neutrinos,
two heavy nonrelativistic neutrinos (H) and one light
relativistic neutrino (L) both interacting with a scalar field.
We only have one scalar field so the nonrelativistic neu-
trinos will inevitably become unstable towards clumping
and ���ðHÞ grows to very large values. For an interaction
with a nonrelativistic neutrino, the average scalar field
perturbation can be written as [27]

� �� ¼ � �����

ðV 00
� þ ���

0Þ þ k2

a2

: (13)

As we can see the scalar field perturbation is effectively
proportional to the neutrino perturbation. Note that in
reality there will be extra terms in Eq. (13) since we also

have a relativistic neutrino, however, these terms will be
subdominant compared to the terms from the heavier neu-
trinos. So � �� will grow as a result.
Turning our attention to ���ðLÞ, we consider the second

term in Eq. (12). � �� is growing uninhibited to large values,
the coupling � is for simplicity assumed of order unity
(Planck units) [57]. ð�� � 3P�Þ is a suppression factor of
the order m=E—this factor will act to delay the growth of
���ðLÞ. However, since � �� will continue its growth, the
inevitable conclusion is that ���ðLÞ will eventually start to
grow. Hence, there exists a type of feedback mechanisms
between the neutrinos. Note that in this treatment we only
considered the interaction between neutrinos of the same
type via exchange of the scalar field. If we include cou-
plings between different neutrinos, the feedback mecha-
nism will be even stronger. One could of course argue that
we are exactly living in a transition regime when ���ðLÞ
has still not turned unstable. However, that would require
serious fine-tuning.
We also investigate a MaVaN model with a relativistic

neutrino numerically using the publicly available CMBFAST

code [58], where we implement the scenario with two
heavy neutrinos with assumed masses m�ðHÞ ¼
0:312 eV and one species of relativistic neutrinos with
assumed mass m�ðLÞ ¼ 0:0001 eV. For the scalar-field
potential we use a Coleman-Weinberg [59] type scalar-
field potential similar to the one presented in Refs. [11,27]

V� ¼ V0 logð1þ ��Þ; (14)

where � and V0 are dimensionful constants, which are
fixed by demanding the appropriate amount of dark energy
in the universe today as well as solving for the minimum of
the effective potential. For the mass term of the three
neutrinos we choose the same mass term as in [27]

m� ¼ m0

�
; (15)

which results in a coupling � ¼ � 1
� [60].

The code calculates the background energy density and
pressure of different species from standard integration
methods while at the same time it solves for the minimum
of the effective potential of the neutrino-scalar field fluid
which is

Vð�Þ ¼ V�ð�Þ þ ð��ðHÞ � 3P�ðHÞÞ þ ð��ðLÞ � 3P�ðLÞÞ;
(16)

where we remember that there are now two heavy (H)
neutrinos and one light (L) neutrino. The expression above
can be recast in a more convenient form as [26]
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Vð�Þ ¼ V�ð�Þ þm�ðHÞn�ðHÞ þm�ðLÞ2T2
�

12
; (17)

where we introduced the neutrino number density n� and
neutrino temperature T�. At the same time as tracking the
background we calculate the perturbations to first order
such as

�� ¼ �� þ ���: (18)

This is done for both heavy and light neutrinos using
Eq. (12). The results are shown in Fig. 1, where we plot the
evolution of the neutrino perturbation and CDM perturba-
tion from a redshift of zþ 1 ¼ 11 until today.

What happens in Fig. 1 is that the perturbations of the
heavy neutrinos, which have already turned nonrelativistic
before the range of this plot, are already growing albeit at a
slow pace because of the growth-slowing effect of CDM—
see Eq. (8). The perturbation of the light neutrino is oscil-
lating (only visible if zoomed in) in this epoch, but also
growing slightly as a result of the growth of the coupling�.
The growth-slowing effect of CDM is, however, only
temporary and around a redshift of zþ 1� 2 the heavy
neutrino perturbation can no longer resist the temptation
towards unstable growth. The heavy neutrino perturbation
explodes and because of the increased value of �, the light
neutrino perturbation starts exploding as well. We do see
that eventually the CDM perturbation also starts exploding
and at this moment the linear code is no longer valid.
However at this moment both neutrino perturbations are
already in the nonlinear regime and will have started
forming neutrino bound states. In this regime the MaVaN
fluid will no longer act as dark energy and the model breaks
down. In conclusion, as a result of a feedback mechanism,
the blowing behavior of the nonrelativistic neutrino density
contrast causes the relativistic neutrinos to start clumping
as well. Hence the neutrino scalar-field fluid will start
acting as a cold dark matter component (clustering neutri-
nos) and hence cannot be attributed to dark energy.
The reason that the relativistic neutrino is able to clump

is that it will acquire an effective mass, thus it cannot be
regarded as a relativistic particle. Unfortunately, we cannot
use conventional bounds to constrain this effect since the
evolution of the neutrino perturbations become nonlinear,
i.e. the whole system of equations we are solving, starting
with the modified Klein-Gordon equation breaks down.
This has the effect that all current bounds are no longer
valid, as these are established in the linear regime.

V. CONCLUSION

Single scalar field models can be used to explain late-
time acceleration in the MaVaN scenario. However, in
general using these potentials leads to instabilities towards
neutrino bound states unless certain criteria are relaxed. In
order to obtain a stable or metastable model we direct the
reader to Ref. [27] in which one such model is presented.
The crucial thing is that the scalar field potential resembles
that of a cosmological constant. In this case we simply
move the fine-tuning problem to that of explaining the
small fraction in the power law—which unfortunately is
also rather unnatural.
Accordingly, it has been suggested to include an extra

scalar field in the treatment. This has some very nice
features and is easily capable of obtaining late-time accel-
eration as well as �DE ¼ 0:7 today. However, one draw-
back is the need for the lightest neutrino to be relativistic
today. As was explained above the feedback mechanism
will eventually cause the perturbations of the relativistic

FIG. 1 (color online). Density contrasts plotted as a function of
redshift for a system consisting of one light and two heavy
MaVaN neutrinos each interacting with the same scalar field.
The scale is k ¼ 0:1 Mpc�1 and we choose the current neutrino
masses m�ðLÞ ¼ 0:0001 eV and m�ðHÞ ¼ 0:312 eV (Note that
the choice of current neutrino masses does not affect the result
qualitatively). We have chosen � ¼ 1� 1018 in CMBFAST units
of ðMPL=MpcÞ�1=2 and V0 ¼ 1:11� 10�9 ðMPL=MpcÞ2 to fix
the cosmology. The solid black line is CDM-density contrast
defined as ��CDM

�CDM
, the dotted blue line is the heavy neutrino

density contrast ���ðHÞ
��

, and the dashed red line is the light

neutrino density contrast ���ðLÞ
��

. The heavy neutrinos grow

moderately until the coupling becomes large enough for the
instabilities to set in. The light neutrino is still relativistic, and
its density contrast oscillates as acoustic waves while growing
slightly. However, due to a feedback mechanism, the relativistic
neutrino density contrast tracks that of the nonrelativistic neu-
trino especially as the growth of the heavy neutrino perturbation
becomes unstable; i.e. both neutrino species will clump. Note
that the CDM perturbations also blow up at late times. This is an
effect of the system of differential equations breaking down as
all parameters go to infinity.
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neutrino to start growing. As a result, the MaVaN fluid will
cease to act as dark energy.
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