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The present operation of the ground-based network of gravitational-wave laser interferometers in

enhanced configuration and the beginning of the construction of second-generation (or advanced)

interferometers with planned observation runs beginning by 2015 bring the search for gravitational waves

into a regime where detection is highly plausible. The development of techniques that allow us to

discriminate a signal of astrophysical origin from instrumental artefacts in the interferometer data and to

extract the full range of information are therefore some of the primary goals of the current work. Here we

report the details of a Bayesian approach to the problem of inference for gravitational wave observations

using a network (containing an arbitrary number) of instruments, for the computation of the Bayes factor

between two hypotheses and the evaluation of the marginalized posterior density functions of the

unknown model parameters. The numerical algorithm to tackle the notoriously difficult problem of the

evaluation of large multidimensional integrals is based on a technique known as nested sampling, which

provides an attractive (and possibly superior) alternative to more traditional Markov-chain Monte Carlo

methods. We discuss the details of the implementation of this algorithm and its performance against a

Gaussian model of the background noise, considering the specific case of the signal produced by the in-

spiral of binary systems of black holes and/or neutron stars, although the method is completely general

and can be applied to other classes of sources. We also demonstrate the utility of this approach by

introducing a new coherence test to distinguish between the presence of a coherent signal of astrophysical

origin in the data of multiple instruments and the presence of incoherent accidental artefacts, and the

effects on the estimation of the source parameters as a function of the number of instruments in the

network.
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I. INTRODUCTION

Searches for gravitational waves are entering a crucial
stage with the network of ground-based laser interferome-
ters—LIGO [1,2], Virgo [3], and GEO 600 [4]—now fully
operational and engaged in a new year-long data taking
period [5,6] at enhanced sensitivity, which may allow the
first direct detection of gravitational radiation.
Construction has already begun for the upgrade of the
instruments to advanced configuration (second-generation
interferometers) with installation at the sites that will start
at the end of 2011 [6–8]. When science observations
resume at much improved sensitivity by 2015, several
gravitational wave events are expected to be observed,
opening a new means to explore a variety of astrophysical
phenomena (see e.g. Refs. [9,10] and references therein).

Coalescing binary systems of compact objects—black
holes and neutron stars—will be the workhorse source for
gravitational wave observations. Ground-based laser inter-
ferometers will monitor the last seconds to minutes of the
coalescence of these systems. The theoretical modelling of
the (in-spiral) waveform is well in hand (see e.g. [11] and
references therein), and the search algorithms are well
understood [12–19]. The detection rate for ongoing
searches and observations with second-generation instru-
ments is estimated to lie in the range 9�

10�5 yr�1–0:7 yr�1 and 0:2 yr�1–1000 yr�1, respectively,
see [20] for a review. It is likely that in a few years time
ground-based laser interferometers will allow us to extract
a wealth of new information ranging from the formation
and evolution of binary stars, the nature of precursors of
(short) gamma-ray bursts, dynamical processes in star
clusters, and could yield a new set of standard candles
for precise cosmography.
As instruments are beginning to operate at a meaningful

sensitivity from an astrophysical, cosmological and funda-
mental physics point of view, much emphasis is now being
placed on the development of methods that offer the maxi-
mum discriminating power to separate disturbances of
instrumental origin from a true astrophysical signal, and
to extract the full range of information from the detected
signals. Bayesian inference provides a powerful approach
to both model selection (or hypothesis testing) and parame-
ter estimation. Despite the conceptual simplicity of the
Bayesian framework, there has been only limited use of
these methods for ground-based gravitational-wave data
analysis due to their computational burden, in this case
related to the need to compute large multidimensional
integrals. Additionally, the Gaussian likelihood functions
considered so far do not address the instrumental glitches
which are present in data from the current generation of
gravitational wave detectors.
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Here we present an efficient method to compute con-
currently the full set of quantities at the heart of Bayesian
inference: the Bayes factor between competing hypotheses
and the posterior density functions (PDFs) on the relevant
model parameters. The method is based on the nested
sampling algorithm [21–23] to perform multidimensional
integrals, that present the practical and computationally
intensive challenge for the implementation of Bayesian
methods. We demonstrate the algorithm by considering
multidetector observations of gravitational waves gener-
ated during the in-spiral phase of the coalescence of a
binary system, modeled using the restricted
post2:0-Newtonian stationary phase approximation, which
is the waveform used so far for searches of nonspinning
binary objects [24]. Initial results based on this method and
applied to simplified gravitational waveforms were re-
ported in [25,26]. An application to the study of different
waveform approximants to detect and estimate the parame-
ters of signals generated through the numerical integration
of the Einstein’s equations for the two body problem in the
context of the Numerical INJection Analysis (NINJA)
Project was reported in [27–29]. In this paper we:

(i) Provide for the first time full details about the theo-
retical and technical issues on which the computa-
tion of the evidence is based;

(ii) Discuss the errors associated with the computation
of the integrals and the associated computational
costs;

(iii) Show how from the nested samples one can construct
at negligible computational cost the marginalized
posterior PDFs on the source parameters;

(iv) Demonstrate the performance of this technique in
detecting a binary in-spiral signal against a Gaussian
model of background noise in coherent observations
using a network of detectors, and by introducing a
new coherence test to distinguish between the pres-
ence of a coherent signal of astrophysical origin in
the data of multiple instruments and the presence of
incoherent accidental artefacts, and

(v) Show the effects of the number of instruments in the
network on the estimation of the source parameters.

The method in its present implementation can be extended
in a straightforward way to the full coalescence waveform
of binary systems—in fact the first example applied on the
NINJA data set is described in [28,29]—and the software is
available as part of the LSC Analysis Library Applications
(LALapps) [30,31]. Work is already ongoing in this direc-
tion. Furthermore, the approach can also be extended to
other gravitational wave signals.

The paper is organized as follows: in Sec. II we review
the key concepts of Bayesian inference and the signal
generated by in-spiralling gravitational wave signals; in
Sec. III we describe our implementation of the numerical
computation of multidimensional integrals for the compu-
tation of the marginal likelihood and marginalized poste-

rior density functions based on nested-sampling the limited
likelihood function; Sec. IV contains the implementation
details of the algorithm, including a quantification of the
errors that affect the results as a function of the choice of
the main tuning parameters of the algorithm and the effects
on the scaling of the computational costs. Section V con-
tains the results from the applications of this method to
several test cases, including a Bayesian coherence test that
we introduce here for the first time.
Throughout the paper we use geometric units, in which

G ¼ c ¼ 1.

II. BAYESIAN INFERENCE FOR BINARY
IN-SPIRALS

Statistical inference can be roughly divided into two
problems: (i) Model selection, or hypothesis testing, be-
tween competing hypotheses through the computation of
the evidences (or marginal likelihoods) of models, and
(ii) parameter estimation (of the unknown parameters on
which a model depends). In the context of Bayesian infer-
ence, both aspects are simply tackled through an applica-
tion of Bayes’ theorem and the standard rules of
probability theory.
While this approach is mathematically straightforward,

its implementation is hampered by the need to explore
large parameters spaces and perform what are in general
computationally costly, high-dimensional integrals. For
gravitational waves generated by binaries with negligible
spins and eccentricity—the case considered in this paper—
the number of dimensions of parameter space is 9, and for a
generic binary system (described by general relativity) the
total number of parameters increases up to 17. This tech-
nical aspect is one of the main factors that has limited the
application of a Bayesian approach in a number of
problems.
Model selection has been tackled through a number of

techniques, including reversible jump Markov-chain
Monte Carlo (MCMC) [32] and thermodynamic integra-
tion [33]. Parameter estimation is usually dealt with using
MCMC methods [34,35], which may include advanced
techniques such as parallel tempering [36,37] and delayed
rejection [38–41] to enhance the exploration of the pa-
rameter space. For applications of these and other
Bayesian methods in ground-based gravitational wave ob-
servations, see e.g. [26,29,42–53].
Nested sampling [21–23] is a powerful numerical tech-

nique to deal with multidimensional integrals. It differs
from other Monte Carlo techniques such as MCMC meth-
ods [34,35] that are popular in applications of Bayesian
inference, in that it is specifically designed to estimate the
evidence integral itself, see Eq. (4), with the marginalized
posterior PDFs being optional by-products.
In this section we outline the key concepts of Bayesian

inference and review the signal model—in-spiral signals
generated by nonspinning binary systems in circular or-
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bits—on which we concentrate the development and ap-
plication of the algorithm. Many of the technical imple-
mentation aspects are associated to sampling effectively
the likelihood function in the sky position parameters, and
are therefore completely general for any application to
short-lived bursts characterized by an arbitrary waveform.

A. Model selection

In the formalism of Bayesian inference, the probability
of a model or hypothesis H i, given a set of observational

data ~d and prior information I is given by Bayes’ theorem,

PðH ij ~d; IÞ ¼ PðH ijIÞPð ~djH i; IÞ
Pð ~djIÞ : (1)

In this expression, PðH ijIÞ is the prior probability ofH i,

Pð ~djH i; IÞ is the likelihood function of the data, given that
H i is true, and

Pð ~djIÞ ¼ X
i

Pð ~djH i; IÞ

is the marginal probability of the data set ~d, which can only
be calculated if there exists a complete set of independent

hypotheses such that
P

jPðHjj ~d; IÞ ¼ 1. Here we do not

enumerate such a set of models, but we can still make
comparisons between the models we do have by calculat-
ing the relative probabilities in the form of the posterior
odds ratio Oij between two of them,

Oi;j ¼ PðH ijIÞ
PðH jjIÞ

Pð ~djH i; IÞ
Pð ~djH j; IÞ

¼ PðH ijIÞ
PðH jjIÞ

Bij; (2)

in the previous equation the normalization factor Pð ~djIÞ
cancels out, and

Bi;j � Pð ~djH i; IÞ
Pð ~djH j; IÞ

(3)

is known as the Bayes factor or ratio of likelihoods.
The Bayes factors can be directly found for hypotheses

which have no free parameters, but the gravitational wave
signal we are modelling depends on a set of parameters,
~� 2 �, described in Section II C, where� is the parameter
space. In this case, the likelihood of the modelH must be
marginalized over all the parameters weighted by their
prior probability distribution, giving the marginal likeli-
hood or evidence,

Z ¼ Pð ~djH ; IÞ ¼
Z
�
pð ~�jH ; IÞpð ~djH ; ~�; IÞd ~�; (4)

where pð ~�jH ; IÞ is the prior probability distribution over
the parameter space.

The integral (4) cannot be computed analytically in all
but the most trivial cases, and standard grid-based numeri-
cal approaches can take a prohibitively long time to com-

plete when the model is high-dimensional and/or very large
with respect to the posterior as is the case for gravitational
wave observations. By using the nested sampling algo-
rithm, developed by Skilling [21], we have been able to
solve the problem of calculating this integral—and as a
consequence the desired Bayes factors and the marginal-
ized posterior density functions of the unknown model

parameters ~�—in a time that makes Bayesian techniques
applicable in actual gravitational wave search pipelines.
Section III provides an overview of the algorithm, and the
implementation strategy that we have adopted. Further
implementation details, as well as the characterization of
its accuracy in the evaluation of the evidence integral as a
function of CPU time are discussed in Sec. IV.

B. Parameter estimation

In general the hypotheses depend on a set of unknown

parameters ~� 2 �. As part of the inference process, one
wants also to compute the PDF

pð ~�j ~d;H ; IÞ ¼ pð ~�jH ; IÞpð ~dj ~�;H ; IÞ
pð ~djH ; IÞ (5)

of the parameters, in this specific case of binary systems
quantities such as the masses, position in the sky and
distance.

The marginalized PDF on a subset ~�A of the parame-

ters—our notation is ~� � f ~�A; ~�Bg, ~�A;B 2 �A;B—is de-

fined as

pð ~�Aj ~d;H ; IÞ ¼
Z
�B

pð ~�j ~d;H ; IÞd ~�B: (6)

From pð ~�Aj ~d;H ; IÞ it is then straightforward to compute
e.g. the posterior mean

h ~�Ai ¼
Z
�A

~�Apð ~�Aj ~d;H ; IÞd ~�A: (7)

We will show in Sec. III B that the nested sampling algo-
rithm provides a way of computing the marginalized pos-
terior PDFs, Eq. (5), with totally negligible additional
computational costs from the results of the numerical
evaluation of the evidence, Eq. (4). In this respect, nested
sampling may provide advantages with respect to more
traditional MCMC algorithms.

C. Target waveform

In this paper we consider observations of gravitational
waves from a network (of an arbitrary number) of interfer-
ometers. The datum (in the frequency domain) at fre-
quency f from each detector that we label with D is:

~d ðDÞðfÞ ¼ ~hðDÞðfÞ þ ~nðDÞðfÞ; (8)

where ~hðDÞðfÞ and ~nðDÞðfÞ are the gravitational wave signal
and noise contribution, respectively. In Sec. V we will
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consider specific choices of the interferometer network,
and we will label with D ¼ H, L, V, the LIGO Hanford 4-
km arm instrument, the LIGO Livingston interferometer
and Virgo, respectively. In practice, one works with dis-

crete data, and we will refer to dðDÞ
k (and analogously ~hðDÞ

k

and ~nðDÞ
k for the signal and noise, respectively) as the data

point at discrete frequency fk of the instrument D. As

shorthand notation, we will use ~d to identify the whole
data set from the relevant network of instruments, and to

dðDÞ to the data set from a single detector D, so that

~d ¼ fdðHÞ; dðLÞ; . . .g: (9)

Let us consider a (geocentric) reference frame, and a
gravitational wave source described by the two polariza-

tion amplitudes ~hþðfÞ and ~h�ðfÞ located in the sky at
ð�; �Þ, where � is the right ascension and � the declination
of the source. The signal as measured at the output of the
detector D is therefore

~h ðDÞðfÞ ¼ ½FðDÞ
þ ~hþðfÞ þ FðDÞ

� ~h�ðfÞ�e�2�if�tðDÞ
; (10)

where FðDÞ
þ ðc ; �; �; t0Þ and FðDÞ

� ðc ; �; �; t0Þ are the detec-
tor response functions to each polarization, dependent on
the polarization angle c (see e.g. Appendix B of [54] for
the definition conventions), and the time of observation t0.
These are computed using functions available in the LSC
Algorithm Library [30]. Given a source at location ð�; �Þ,
�tðDÞð�; �; t0Þ is the difference in gravitational wave ar-
rival time between the geocenter and the detector D, com-
puted with respect to a reference time t0 that identifies the
observation, see the text after Eq. (13) below for our

specific choice of t0. �t
ðDÞ depends on the time of obser-

vation, as for a fixed position in the sky, the signal impinges
on the instruments with different relative time delays due
to the Earth’s rotation. By using the transformation (10),
the waveform phase which is the most expensive part of the
model, needs only to be calculated once, and is then trans-
formed to the observed signal in each detector.

In this paper, we concentrate on the in-spiral signal
generated during the coalescence of a binary system of
compact objects (black holes or neutron stars) of masses
m1 and m2. Other mass parameters that we will use are the
total mass M ¼ m1 þm2, the symmetric mass ratio � ¼
m1m2=ðm1 þm2Þ2 and the chirp mass M ¼
ðm1m2Þ3=5=ðm1 þm2Þ1=5. We assume circular orbits and
we further restrict to compact objects that are nonspinning.
We note however, that (an earlier implementation of) the
approach discussed here was already successfully applied
to the case of the full coalescence waveform generated by
compact binaries [28,29]. Moreover, most of the results
presented in this paper are totally general and independent
of the specific waveform model, and can be applied and/or
extended to any class of signals.

The model for the gravitational wave signal that we
consider is the frequency domain, stationary phase,

post2:0-Newtonian approximation to the waveform, and
more precisely the so-called ‘‘TaylorF2’’ approximant—
for an up-to-date summary of the different TaylorF/T ap-
proximants we refer the reader to [55] and references
therein. The waveform is therefore described by two in-
trinsic parameters, the two masses or any two independent
combinations of them, such as M and �. We note that the
specific choice of the post-Newtonian order is irrelevant for
the issues discussed in this paper, as long as the waveform
model used to construct the likelihood function matches
the one adopted in the ‘‘injections’’ [56] to generate syn-
thetic data sets to explore the algorithm. As a consequence
the results presented here would be essentially identical if
we had adopted the post3:5-Newtonian order which is
currently used in the analysis of the LIGO/Virgo data for
the current science run (S6/VSR2). We generate the wave-
form directly in the frequency domain using functions of
the LSC Analysis Library (LAL) [30]. The frequency
domain gravitational wave polarization amplitudes are
given by

~hþðfÞ ¼ Að1þ cos2�Þf�7=6ei�ðfÞ; (11)

~h�ðfÞ ¼ 2A cos�f�7=6ei�ðfÞ�i�=2: (12)

Here, the symbol � denotes the inclination angle, defined as
the angle between the line of sight to the source from the
detector and the constant direction (as the objects are
assumed to be nonspinning) of the orbital angular momen-
tum. The gravitational wave phase �ðfÞ at the
post2-Newtonian order is given by

�ðM; �; t0; �0; fÞ ¼ 2�ft0 ��0 þ c Nð�Þ

� X4
k¼0

c kð�Þð�MfÞðk�5Þ=3; (13)

where c N and c k are the standard Newtonian and post-
Newtonian coefficients, whose expressions can be found in
e.g. Ref. [57]. In our implementation, t0 is taken as the GPS
time at the geocenter at which the frequency of the gravi-
tational wave passes that of the nominal innermost stable

circular orbit, fISCO ¼ ð63=2�MÞ�1, and consequently �0

is the phase of the signal at this time. The amplitude of the

gravitational waveA / M5=6=DL and is computed by the
LAL stationary phase approximation template [30]. In
summary, the observed signal is therefore dependent on
nine quantities, which for convenience we will write as the
parameter vector

~� ¼ fM; �; t0; �0; DL; �; �; c ; �g: (14)

Finally, we discuss the assumptions on the noise nðDÞ.
We will make the standard assumption that the noise is a
Gaussian and stationary process with zero mean and vari-
ance described through the one-sided noise spectral density

SðDÞ
n ðfÞ:
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h~nðfÞðDÞi ¼ 0; (15)

h~nðDÞðfÞ~nðDÞ� ðf0Þi ¼ 1
2�ðf� f0ÞSðfÞ; (16)

where h:i stands for the ensemble average. Under these
assumptions, the likelihood of a given noise realisation

nðDÞ ¼ n0 is simply given by the multivariate Gaussian
distribution

pðnðDÞ ¼ n0Þ / e�ðn0jn0Þ=2; (17)

where ð:j:Þ stands for the usual inner product [58], see Eq.
(A17) of the appendix.

We will further assume that the noise in different detec-
tors is uncorrelated, so that we generalize Eq. (16) to

h~nðDÞðfÞ~nðD0Þ� ðf0Þi ¼ 1
2�ðf� f0Þ�DD0SðDÞðfÞ: (18)

The latter assumption is appropriate for sites that are well
isolated from each other, but this may not be true for the
two instruments colocated at the Hanford site. Here we
only consider a simulated network with no more than one
instrument at any location. In terms of the elements ~nk of
the discrete Fourier series of the discretely-sampled time
domain data, with sampling interval�t and segment length
T, this is given as �t2hj~nkj2i ¼ T

2 SðfkÞ. Full details of the
conventions used for discretely sampled data are given in
the appendix.

D. Models

The problem of assessing the confidence of detection of
a signal in interferometer data is the primary motivation for
the nested sampling technique and implementation we
present here. Translated into the Bayesian framework,
assessing the confidence of detection means computing
the Bayes factor between two hypotheses, and therefore
we must specify exactly which models we are comparing.
These models are the mathematical descriptions of the data
~d, Eqs. (8) and (9), which either contain a gravitational

wave signal ~hð ~�Þ parametrized by a certain vector ~� (de-
scribed in section II C), or it does not. In addition, the data
also contain a contribution from instrumental noise, de-
scribed by Eqs. (15)–(18). The two models we will use can
be written as:

(i) H N: the noise-only model, that corresponds to the
hypothesis that there is only noise (with statistical
properties described in Sec. II C) present in the data
set:

~d ¼ ~n; (19)

note that in our application we assume that the noise
spectral density is known [59] and this model has
therefore no free parameters;

(ii) H S: the signal model, that corresponds to the hy-
pothesis that the data contain noise (as before) and a
gravitational wave described by the waveform fam-

ily hð ~�Þ:
~d ¼ ~nþ ~hð ~�Þ: (20)

Although in reality, there is also a wide range of instru-
mental glitches and artefacts which alters the evidence of
each model in a variety of ways, initially we focus on
characterizing the algorithm with simulated data.
Strategies for distinguishing between a coherent signal
and other artefacts are discussed in Sec. VC 1.
The computation of the marginal likelihood Eq. (4) and

Bayes factor, Eq. (3) requires the integration of the like-

lihood function, pð ~dj ~�;H ; IÞ, where H is either H N or
H S, multiplied by the prior density function of the un-
known parameters for the given hypothesis. We discuss the
choice of prior in Sec. VA. Here we concentrate on the
expression of the likelihood function. In the case of the
hypothesis H N , the likelihood function is simply

pðdðDÞj ~�;H N; IÞ / e�ðdðDÞjdðDÞÞ=2; (21)

see Eq. (17).
For the hypothesis H S, the likelihood of observing a

data set dðDÞ at the output of the instrument D given the

presence of a gravitational wave hðDÞð ~�Þ characterized by

the parameter vector ~� is

pðdðDÞj ~�;H S; IÞ / e�ðdðDÞ�hðDÞjdðDÞ�hðDÞÞ=2: (22)

The constant of proportionality is equal in Eqs. (22) and
(21), and cancels when the ratio of these quantities is taken.
If we have a data set comprising observations from mul-

tiple interferometers, say ~d ¼ f ~dH; ~dL; . . .g, the Bayesian
framework allows straightforward coherent analysis. To do
this, we simply write the joint likelihood of the indepen-
dent data sets in all the detectors

pð ~dj ~�;H ; IÞ ¼ Y
ðDÞ

pð ~dðDÞj ~�;H ; IÞ; (23)

where pð ~dðDÞj ~�;H ; IÞ is either given by Eq. (17) or (22). In
the appendix we provide explicit expressions for the like-
lihood function (23) in the case of discrete data used for the
implementation in the software code.

III. THE NESTED SAMPLING ALGORITHM

The nested sampling algorithm is described by Skilling
[21] as a reversal of the usual approach to Bayesian infer-
ence, in that it directly targets the computation of the
evidence integral (4), producing samples from the posterior

PDF, Eq. (5) of the model parameters ~� as a by-product.
Although the original formulation was designed as a tool
for Bayesian inference, it is actually a general method of
numerical integration which could be applied to other
continuous integrals. The basic algorithm, described in
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[21], is therefore applicable to a wide range of problems,
but in its generality it leaves considerable decisions to be
made on the implementation, configuration and tuning to
each specific application. In this section, we will review the
core algorithm, Sec. III A, and the processing of the output
of the algorithm to extract samples from the posterior PDF
which can then be used for parameter estimation,
Sec. III B. In Sec. IV we provide detailed information on
our solution of the problem of sampling the limited prior
distribution, Sec. IVA, and we will also examine the
theoretical accuracy achievable with the algorithm. This
result will then be compared to the practical accuracy
achieved and its trade-off with computational cost in
Sec. IVB.

More recently, MultiNest [60,61], based on the tech-
nique of nested sampling, has been applied to data sets
primarily in the context of cosmology [62–64] and particle
physics [65–70]. More recently it has been used on selected
mock data sets of the Laser Interferometer Space Antenna
to search for and estimate the parameters of massive black
hole binary systems characterized by high �1000 signal-
to-noise ratio [71]. Our implementation is fundamentally
different from MultiNest in the way in which the structure
of the likelihood function is explored, and, in particular, it
replaces the clustering algorithm or ellipsoidal rejection
schemes with (nontrivial) MCMC explorations of the prior
range, that are specifically tailored to the observation of
gravitational waves with a network of ground-based instru-
ments at moderate-to-low ( & 20) signal-to-noise ratio.
Moreover, given the large amount of data and the need to
maximize computational efficiency while retaining the
accuracy of the evaluation of the relevant integrals, our
study concentrates on quantifying the errors in the evalu-
ation of the key quantities and relating them to the compu-
tational costs.

A. Computing the evidence integral

The evidence Z ¼ Pð ~djH ; IÞ, given in Eq. (4) is found
by integrating the product of the prior distribution with the
likelihood function, in other words, Z is the expectation of
the likelihood with respect to the prior. Using the product
rule we can easily see the relationship between the prior,
likelihood, posterior PDFs and the evidence,

pð ~�jH ; IÞ � pð ~dj ~�;H ; IÞ ¼ Z� pð ~�j ~d;H ; IÞ
Prior� Likelihood ¼ Evidence� Posterior:

(24)

As the prior and posterior are by definition normalized, the
magnitude of the evidence is governed by the likelihood
function, which provides a measure of how well the data
fits the hypothesisH . In order to evaluate Z one must sum

the product on the left side of Eq. (24) at each point ~� 2 �
in parameter space. In our case the parameter space is a
continuous manifold, and the likelihood function is a
smooth function on the manifold � which we integrate.

When this integral is not solvable using analytic methods,
we must approximate it by using a subset of points on �,
for instance by placing a lattice on parameter space. Once
such an approximation to a finite number of points is made,
the result becomes subject to an integration error which is
dependent on the precise means of integration.
Instead of a regular lattice of points, consider a stochas-

tic sampling of the prior distribution to generate a basket of
N samples—in the nested sampling jargon called live

points—which we will denote ~�i, with i ¼ 1 . . .N. The
evidence integral [Eq. (4)] could then be expressed as

Z ¼
Z
�
pð ~�jH ; IÞpð ~djH ; ~�; IÞd ~�;

� XN
i¼1

pð ~dj ~�i;H ; IÞwi; � XN
i¼1

Liwi;

(25)

where the ‘‘weight’’

wi ¼ pð ~�ijH ; IÞd ~� (26)

is the fraction of the prior distribution represented by the

ith sample, and Li � pð ~djH ; ~�i; IÞ is its likelihood. In the
presence of a signal, the evidence integral is typically
dominated by a small region of the prior where the like-
lihood is high, concentrated in a fraction e�H of parameter
space.H is called the information in the data, subject to the
particular model and parametrization used, and is mea-
sured in nats (using base 2 instead of base e would give
information measured in bits, where 1 nat ¼ log2e bits �
1:44 bits). H is defined as

H ¼
Z

pð ~�j ~d;H ; IÞ log
�
pð ~�j ~d;H ; IÞd ~�

dX

�
d ~�; (27)

and will be used in Sec. IVB to quantify the accuracy [21];
X is the prior mass, and is defined in Eq. (28) below. If it is
not known in advance where in parameter space the pos-
terior is concentrated, approximately eH points would be
needed to avoid the possibility of missing the maximum of
the likelihood function using a regular grid. In the case of a
compact binary in-spiral signal as observed in a network of
ground-based interferometers and using the parametriza-
tion given in Sec. II C, H * 20 nats. If a regular grid of
points was used (assuming a uniform prior), finding the
weights associated with each point wi ¼ 1=N would be
simple, but the number of samples needed, N becomes
prohibitively large. The key concept on which the nested
sampling algorithm rests is the means to calculate thewi of
stochastically sampled points. By evolving the collection
of N points to higher likelihood areas of parameter space,
the algorithm simultaneously searches for the peaks of the
distribution and accumulates the evidence integral as it
progresses.

In order to find the weights associated with each point ~�i,
it is useful to think of each point as lying on a (not
necessarily closed) contour surface of equal likelihood in
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the parameter space. The prior mass—that is the fraction
of the total prior volume—enclosed by the ith contour
surface is denoted Xi, with the lowest likelihood contour
line enclosing the largest volume and the maximum like-
lihood point enclosing the smallest. With this definition,
X0 ¼ 1. We can then think of a mapping between the
contour lines in physical parameter space and the fractions
of the prior Xi, where the likelihood LðXÞ increases toward
smaller values of X, as shown in Fig. 1, and �Xi ¼ Xiþ1 �
Xi. The evidence, Eq. (4) or (25) can then be expressed as
the one-dimensional integral

Z ¼
Z

LðXÞdX � X
i

LðXiÞ�Xi: (28)

As the inverse mapping ~�ðXÞ is not known, the analytical
integral cannot be performed. However, as we know that
the prior distribution is normalized to unity, the unknown
prior mass enclosed by the outermost contour through X1

has a probability distribution PðX1Þ which is equal to the
distribution of a new variable t1 2 ½0; 1�, the maximum of
N random numbers drawn from the uniform distribution
Uð0; 1Þ. If we then replace the first point with a new point
sampled from the prior distribution limited to the volume
lying at higher likelihood than L1, XðL > L1Þ, we can
repeat the process so that X2 ¼ t2X1 and Xi ¼ tiXi�1,
where by definition ti � Xi=Xi�1 is the shrinkage ratio.
The probability of ti is PðtiÞ ¼ NtN�1

i , where ti is the
largest of N random numbers drawn from Uð0; 1Þ. The
volume enclosed at each iteration therefore shrinks geo-
metrically, ensuring the speedy convergence of the inte-
gral. The mean decrease in the volume at each iteration is

E ½logt� ¼
Z 1

0
logðtÞpðtÞdt ¼ �N�1; (29)

and an estimate of the statistical variance introduced by
this process is

Z 1

0
ðlogt� E½logt�Þ2pðtÞdt ¼ N�2: (30)

The distribution of t can also be sampled by generating the

N uniform random numbers and creating many realizations
of the ts for each iteration in the algorithm. In our testing
with this procedure, it was found that for a reasonable
number of realizations, the estimated mean and variance
were very close to the expected figures. Using the approxi-
mation of the mean, we can therefore write the fractional
prior volumes

logXi � �ði� ffiffi
i

p Þ=N; (31)

and we use this approximation in the implementation,
where we work with logarithmic quantities to overcome
the huge range of the variables.
As we now have an approximation to the proportion of

the prior mass remaining after the ith iteration, we can
assign a weight to each sample as wi ¼ Xi � Xi�1.
As all structure of the likelihood function in the parame-

ter space � is eliminated by the mapping to X, the nested
sampling algorithm is in principle robust against multi-
modal distributions, degeneracies and problems arising
from the high dimensionality of the parameter space.
However, this relies on being able to sample the
likelihood-limited prior distribution effectively. This diffi-
cult problem can be solved in a variety of ways, but the
approach which we have found effective is described in
Sec. IVA.
Note that if the bulk of the posterior is concentrated in a

region of size e�H of the prior, it will take approximately

NH � ffiffiffiffiffiffiffiffi
NH

p
iterations of the geometric shrinkage to reach

the zone of high likelihood. This tells us that the algorithm
will take longer to compute the integral if there is a larger
amount of information in the data. This means the run time
of the implementation is essentially dependent on the
signal-to-noise ratio of any found signals, as well as on
the number of live points N used.
Finally, we need to specify a termination condition,

upon which we decide that the integral is finished. We
could set a hard number for this, or a certain fraction of
the prior, but the total number of points needed varies a
great deal, particularly with the signal-to-noise ratio of the
signal, if any. In our implementation, we keep track of the
maximum likelihood point so far discovered. The algo-
rithm will keep running until the total evidence that would
be left if all the remaining points lay at the maximum
likelihood so far discovered becomes less than a certain
fraction of the total evidence so far accumulated. Based
upon experience, we have found that continuing while
Lmaxwi > Zie

�5 gives consistent results.
To summarize, the algorithm can be described in pseu-

docode (where ~�� pð ~�jH ; IÞ means ~� is drawn from the

distribution pð ~�jH ; IÞ) as:
(1) Draw N points ~�a, a 2 1 . . .N from prior pð ~�Þ, and

calculate their La’s.
(2) Set Z0 ¼ 0, i ¼ 0, logw0 ¼ 0
(3) While Lmaxwi > Zie

�5

(a) i ¼ iþ 1

FIG. 1. Each sample in the basket of live points can be thought
of as lying on a contour line of equal likelihood value. Figure
reproduced from [21].
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(b) Lmin ¼ minðfLagÞ
(c) logwi ¼ logwi�1 � N�1

(d) Zi ¼ Zi�1 þ Lminwi

(e) Replace ~�min with ~�� pð ~�jH ; IÞ: Lð ~�Þ>Lmin

(f) Add the remaining points: For all a 2 1 . . .N, Zi ¼
Zi þ Lð ~�aÞwi

With the algorithm as it is outlined above, the crucial
idea is the sorting of the likelihoods so that progressively
smaller contour-lines can be assigned to each of them, and
the integral (25) builds up. This leads us to a natural means
of parallelizing the algorithm, so that we may take advan-
tage of multiple processors or compute nodes on a cluster.
If the algorithm is run in parallel with identical data and
parameters, but a different random seed (this requires no
internode communication), the sets of samples generated
will differ. If we save each sample and its likelihood value,
we can then collate the results of multiple runs, and sort the
resulting samples by their likelihood values. So long as the
number of parallel runs Nruns remains constant as the
integration progresses, each subsequent sample from the
limited prior distribution can be treated as being part of a

collection of NT ¼ PNruns

k¼1 Nk samples—where each paral-

lel run has Nk live points—as we no longer know which
sample belongs to which run. This then allows us to
reapply the nested sampling algorithm as described above,
but with a lower weight for each sample, substituting for N
the number NT .

After applying this procedure, a more accurate estimate
of the evidence integral can be obtained, using our greater
number of total live points. This procedure also increases
the accuracy of the evaluation of the posterior PDFs that
we discuss in the next section. It was found that this
procedure allows the accuracy to scale with the total num-
ber of parallel live points as shown in Fig. 4, provided that
each run has a sufficiently large number of live points to
avoid under-sampling of the parameter space. The issue of
increasing accuracy at the expense of additional run time is
discussed further in Sec. IVB.

B. Extracting the posterior PDF

As the nested sampling algorithm proceeds, the list of
points used in approximating the integral is stored, along
with the likelihood values of each sample, the correspond-
ing value of the parameter vector, and logXi � i=N. These
samples are drawn from the prior distribution, limited by a
likelihood contour to a fraction Xi of the full prior, mean-
ing that the density of the samples is boosted within the
contour by the probability that is excluded, as it is zero
outside the contour. We can therefore write in shorthand
the probability density of the ith point from the nested
sampling output as

pð ~�ijNSÞ ¼ pð ~�ijH ; IÞ
Xi

; (32)

whereas samples from the posterior PDF, Eq. (6) have
probability density

pð ~�ij ~d;H ; IÞ / pð ~�ijH ; IÞpð ~dj ~�i;H ; IÞ: (33)

Since the nested sampling points are independent samples,
they can be reused to generate samples from the posterior
PDF by resampling them. Substituting Eq. (32) into
Eq. (33), it is easy to see that the probabilities are related
by,

pð ~�ij ~d;H ; IÞ / pð ~�ijNSÞpð ~dj ~�i;H ; IÞXi; (34)

and so the resampling weight of each one is /
pð ~dj ~�i;H ; IÞXi. As a consequence, the joint posterior
PDF can be easily calculated by post-processing the output
of the nested sampling algorithm (at negligible computa-
tional cost). Marginalized posterior PDFs, Eq. (6) can then
be obtained as in the case of MCMC methods, by histo-
gramming the samples. In this way we can easily perform
both evidence integrals and estimation of the posterior
PDF, making both model selection and parameter estima-
tion possible. It is important to note that the method of
extracting posterior samples using nested sampling is dif-
ferent to that in standard MCMC algorithms, as the algo-
rithm is designed to move the ensemble of points uphill
from a sampling of the entire prior toward the highest
likelihood point, whereas MCMC can also move downhill
(with probability <1) and requires sufficient burn-in time
to fully explore the full range of the prior. If the location of
the true maximum is not known, nested sampling offers the
ability to home in on the true location with its geometric
shrinkage of the sampling volume, making it an excellent
tool for searching the parameter space for maxima.
On the other hand, the number of posterior samples

generated by the nested sampling algorithm is limited by
the number of live points used, with more live points
corresponding to more samples within the uppermost con-
tour lines. In order to get the posterior sampling desired, it
might be necessary to increase N, or run parallel compu-
tations, which has the effect of causing the algorithm to
converge more slowly (but also more accurately, see
Sec. IVB).

IV. IMPLEMENTATION DETAILS

In the previous section we have described the conceptual
approach to the computation of the evidence integral using
a nested sampling technique; furthermore, at the end of
Section III A, we have provided a pseudocode with the key
steps of the algorithm. One of the key challenges in the
efficient implementation of the algorithm is to replace at
each iteration the active point characterized by the mini-
mum value of the likelihood function Lmin, drawing a
sample from the prior distribution limited to the volume
that satisfy the condition L > Lmin. We do so by means of a
Metropolis-Hastings Markov chain Monte Carlo with M
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steps that proceeds as follows. We randomly select one of

theN live points, corresponding to say ~�, that we assume as
the starting point of the Markov chain, the ‘‘current state.’’

We then propose a new state ~�0 drawn from a proposal

distribution (also called transition kernel) qð ~�; ~�0Þ, i.e. the
probability of ~�0 given ~�. The new state is accepted with
probability

�Hð ~�; ~�0Þ ¼
�
min½1; pð ~�0Þqð ~�0; ~�Þ

pð ~�Þqð ~�; ~�0Þ � Lð ~�0Þ> Lmin

0 Lð ~�0Þ 	 Lmin

(35)

and equivalently the chain remains at ~� with probability

1� �Hð ~�; ~�0Þ. We continue to evolve the chain to accumu-
lateM states, and the last one is set to be the new live point
that replace that characterized by L ¼ Lmin. If no points
have been accepted during theM proposals, then the chain
will have remained at the preexisting point, and so we must
rerun the chain using a different live point as an initial
state.

In Sec. IVAwe describe the details of the exploration of

the limited prior, that is the choice of qð ~�; ~�0Þ; in Sec. IVB
we quantify how the errors in the evidence evaluation scale
with the number of live points and MCMC elements,N and
M, respectively, and how they are related to the CPU
processing time.

A. Sampling the limited prior

In order to produce a new live point for each iteration of
the nested sampling algorithm, it is necessary to draw a
sample from the prior distribution, limited to volumes with
likelihood greater than Lmin. This distribution changes
from the entire prior distribution at the zeroth iteration,
to a tiny fraction, typically<10�10, of the parameter space
when the posterior mode has been located, see e.g. Fig. 2.
In between these extremes, as Lmin increases, it will cause
‘‘islands’’ of probability to separate from each other and
disappear, as if being submerged by a rising tide. There
may also be multiple maxima of similar likelihood values,
and these modes are generally curved or ‘‘banana-shaped’’
in the multidimensional volume, an example of which is
shown in Fig. 3.

Maintaining an accurate and efficient sampling of all
these islands is the biggest challenge in implementing
nested sampling, as it is in other Monte Carlo methods
such as MCMC’s. The character of these islands and their
shapes will vary from problem to problem, but here we
have attempted to proceed in a general way, through the
use of a semiadaptive Markov-chain Monte Carlo algo-
rithm to sample the prior, where the number of iterations of
the chain M can be specified. This approach was aug-
mented with custom proposals, based on some simple
intuition on the structure of the likelihood function, which
were found to improve the efficiency of sampling, or

alternatively the speed of chain mixing, and will be de-
scribed below in section IVA1.
By using an MCMC sampling of the prior, we have to

choose a proposal distribution qð ~�; ~�0Þ which will give a
decent acceptance ratio at all stages of the nested sampling.
As the scale of the problem varies by ten or more orders of
magnitude, this is impossible to achieve with a static
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FIG. 2 (color online). An illustrative plot of the log likelihood
against the fraction of the prior Xi, generated as the algorithm
progresses, to be compared with Fig. 1. Reading this from right
to left, as the fraction of the prior enclosed by the contour line
decreases, the likelihood increases as the algorithm proceeds.
The individual details of the distribution are smoothed out by the
projection onto the X parameter. The bulk of the probability from
the signal occurs at around 10�11 ¼ e�25:3, in good agreement
with the estimated information content of �25:7 nats. The inset
shows the slightly different results gathered by running the
algorithm 10 times with a different random seed, where the
precise samples used to integrate are different.
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FIG. 3 (color online). The structure of the likelihood function
can clearly be seen in the samples from the posterior PDF. These
figures show the distributions obtained when using the
Livingston-Virgo (green �), Hanford-Livingston (magenta �),
Hanford-Virgo (blue �) and Hanford-Livingston-Virgo (red �)
networks of detectors to analyze the same stretch of simulated
data. The true position of the injection is marked ?. With two
detectors, the distribution lies on the circle produced by keeping
the time of arrival constant in both instruments. With a network
of three detectors, the timing can be kept constant by reflecting
the position of the source across the plane of the three detectors.
This causes two local maxima at the two places where the three
circles intersect, with one of these being the true location.
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choice of proposals. However, we have additional infor-
mation available, in the form of the location of the N live
points, which can help us select proposal distributions
dynamically.

As the collection of live points shrinks at each iteration,
we can obtain an estimate of the size and orientation of the
area we need to sample by computing the covariance
matrix C of the collection of live points,

Cij ¼ hð�i � h�iiÞð�j � h�jiÞi; (36)

where the indices i, j denote the dimensions (9 in this
specific case) of the parameter space, and h:i should be
interpreted as the sample mean over the active live points.
In the case of the cyclical angular parameters�0 and �, we
need to take into account the wrapping of the boundary,
and set the covariance between these and the other parame-
ters to zero. The variances C�0�0

and C�� are then com-

puted using the circular mean and circular difference in
place of the mean and difference in the above expression
[72]. The matrix Cij is recomputed at regular intervals (in

practice, once every N=10 iterations) as the shrinking
proceeds, scaled by a factor of 0.1, and used in the sam-
pling of a multivariate student distribution, with mean
centered on the previous point, and 2 degrees of freedom,
when evolving the prior samples. In order to do this, a
vector ~v is drawn from the multivariate normal distribution
with mean zero and covariance matrix given by the ex-

pression (36), then multiplied by a factor
ffiffiffiffiffiffiffiffi
2=x

p
, where x is

drawn from a �2 distribution with 2 degrees of freedom to
yield a multivariate student deviate. The vector ~v is then

added to ~� to yield the new proposed point ~�0 ¼ ~�þ ~v.
The advantages of this somewhat ad hocmethod are that

it is fast to compute, and is applicable whenever the
number of live points is greater than the dimensionality
of the problem to avoid a singular matrix (which in practice
is always the case). As a consequence, it can be used
without modification if one wants to examine a model
with additional parameters, or with some of the parameters
constrained. It also adapts to the shrinking volume of the
limited prior distribution as the algorithm progresses. This
type of proposal is used for the majority of the jumps used
in the sampler. However, there are certain types of pro-
posals that we use specifically for short-lived bursts (such
as gravitational waves generated by coalescing binaries)
specifically discussed in this paper that are designed to
move along the degeneracies of the distribution.

1. Custom proposals for sky position

The coherent analysis of data from interferometers at
different locations on the Earth, as it is the case for the
LIGO-Virgo network, offers a number of advantages that
we will discuss in more detail in the next section.
Particularly relevant for the implementation details dis-
cussed here is the fact that multiple instruments allow us
to reconstruct partial or full information (depending on the

number of instruments in the network and their location/
orientation) about the source position in the sky. Such
information is encoded in the structure of the likelihood
function, and its functional dependency on ðt0; �; �Þ.
However, distinctive features in the distribution also pro-
vide a challenge in exploring them in a accurate, yet
efficient way. The relative timing offset between the arrival
time of a gravitational wave at multiple sites encodes the
majority of the information about location in the sky (of
course additional information is contained in the antenna
beam patterns Fþ;�). More specifically, given two detec-

tors there exists a locus of points in the sky that traces a
circle about the baseline between the two sites that yield
the same time-delay at the two detectors. If one adds a third
site, the three circles intersect in two points: one corre-
sponds to the actual source position in the sky, whereas the
other represents a ‘‘mirror image’’ that is located on the
opposite side across the plane that passes through the three
sites. The likelihood function therefore exhibits certain
degeneracies or near-degeneracies in the ðt0; �; �Þ sub-
space of parameter space. This results in distributions
which trace out arcs of a circle on the sky, with modulation
in t0, as shown in Fig. 3.
In the exploration of the parameter space one can there-

fore take advantage of the known geometrical symmetries
of the problem, by suitably choosing the proposals that
control the geometrical parameters. It is therefore much
more efficient to move ‘‘in circles’’ in the sky—subject to
the constraints that we have discussed above—rather than
to make proposals based on the distribution discussed in
Sec. IVA. We have indeed observed that custom-made
proposals dramatically improve the performance of the
algorithm, both in term of efficiency and accuracy. As
the relative timing offsets between detectors provide the
majority of the information about location on the sky, we
therefore propose a fraction of new states of the MCMC
chain by keeping the time of arrival of the signal constant
in each detector. In the case of a network of two detectors,
this constrains the jump to a ring, centered on the vector
between the two detectors, which we sample by applying a
rotation matrix with uniform random angle between 0 and
2� to the position vector of the source (and accounting for
the relative rotation between the earth-fixed detector coor-
dinates and the sky-fixed source coordinates). In the case of
three detectors, in order to keep the same time of arrival in
all detectors, the source must be reflected in their plane. As
a consequence, if x̂ is the current and x̂0 the proposed
Cartesian unit vector to the source, and the detectors are
located at the points ~xH, ~xL, ~xV in the same coordinate
system, with a normal to their plane n̂ ¼ ½ð ~xL � ~xHÞ �
ð ~xV � ~xHÞ�=j½ð ~xL � ~xHÞ � ð ~xV � ~xHÞ�j, the jump is there-
fore

x̂ 0 ¼ x̂� 2n̂jn̂ 
 ðx̂� x̂HÞj: (37)

In both cases, as the detectors are offset from the geocenter,
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and it is the time of arrival at the geocenter t0 which is used
as a parameter, there is also an adjustment to be made to

this parameter when moving to a new sky location, t00 ¼
t0 þ ~xH 
 ðx̂� x̂0Þ. Here, ~xH, etc. are measured in seconds.

The custom proposals discussed here apply to any like-
lihood exploration that involves short-lived (with respect to
the time-scale of the Earth’s rotation and orbit) bursts of
gravitational waves, as it is simply connected to the relative
time delays observed between different detectors.

2. Differential evolution

When the limited prior distribution splits into multiple
isolated islands of probability, see e.g. Fig. 3, the method of
using the covariance matrix of the live points as a proposal
distribution leads to less efficient sampling. In order to
combat this effect, it is necessary to propose jumps which
have a length scale characteristic of moving between, or
within the multiple modes. One possible technique is to
analyze the current live points as belonging to a number of
clusters, then propose new states from within these clus-
ters, which is the approach adopted by the MultiNest
algorithm [60,61].

In our implementation, we have introduced a new type
of MCMC proposal which attempts to capture some of the
structure of multimodal distributions, based on a simple
iteration of proposals inspired by differential evolution
MCMC algorithms, see e.g. Ref. [73]. From the whole

set of live points ~�1; . . . ; ~�N , we select a random point,

say ~�a that we want to evolve to point ~�0a; we then select

two random existing points, say ~�b and ~�c, such that a �
b � c. The proposed new state is then given by

~� 0
a ¼ ~�a þ ð ~�c � ~�bÞ; (38)

which is accepted with the usual Hastings ratio, Eq. (35).
As the probability of drawing ðb; cÞ for the randommove is
equal to that of drawing ðc; bÞ, the move is reversible, and
therefore upholds the principle of detailed balance.

When used for a fraction of the jumps (10% in our case,
chosen through trial and error to explore adjacent modes
while still maintaining good diffusion of points through the
standard jumps), this type of move allows proposals to be
made at all the characteristic scales between the different
modes in a multimodal distribution (as well as at the scale
of the width of each mode), and so increases the efficiency
when such a distribution is encountered. Note that this type
of proposal needs no scale to be set by the user, and is
independent of the parameters used.

B. Accuracy: Quantifying errors

Because of the probabilistic nature of the algorithm,
when computing the Bayes factor there is an associated
uncertainty with the result obtained by applying the nested
sampling algorithm. As the evidence integral is written

Z ¼ XNtot

i¼1

Liwi; (39)

there is a Poissonian uncertainty arising from the variable
number of iterations needed to find the region of high

posterior probability, Ntot ¼ NH � ffiffiffiffiffiffiffiffi
NH

p
, which gives

rise to an uncertainty in logZ of � ffiffiffiffiffiffiffiffiffiffiffi
H=N

p
. In [21],

Skilling suggests that this error will dominate other sources
of uncertainty, but makes the assumption that the sampling
of the limited prior distribution is done perfectly. If the
sampling is not done perfectly, for example, if a small
isolated mode is not properly sampled as there are no
live points in its neighborhood, an additional error will
be introduced into the quantitieswi. Rather than attempting
to derive this quantity, we have performed Monte Carlo
simulations on many sets of identical data and signals,
while changing the parameters of the algorithm N and
M, and examined how the distribution of estimated Z
values changes. By doing this, we can also explore to
which value N and M should be set to attain a given level
of accuracy in the evidence computation.

Figure 4 shows the theoretical
ffiffiffiffiffiffiffiffiffiffiffi
H=N

p
level of uncer-

tainty, along with the actual standard deviation of the
estimates of Z, over 50 trials, for a range of N and M.

The actual distribution of recovered Z scales as� 1=
ffiffiffiffi
N

p
as

theoretically predicted. It is however noticeably larger than

that predicted by the
ffiffiffiffiffiffiffiffiffiffiffi
H=N

p
error alone, and is dependent

on both the number of live points and the number of
MCMC samples used. We can see that when N and M
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FIG. 4 (color online). The statistical error (standard deviation)
computed over 50 trials with different random seeds (identical
signal and noise) plotted against the number of live points used,
using M ¼ 50, 50, 100, 200, 500, 1000, and the theoretical
prediction of the statistical error based on Skilling’s estimate.
These results show that the empirical error is greater than the
theoretical one, indicating an additional source of uncertainty.
This is greatly reduced with the number of MCMC samples used,
with chains of 1000 samples (solid yellow line) approaching the
theoretical limit (solid black line). This suggests that the extra
uncertainty is produced by correlation between samples, caused
by less than perfect mixing in the MCMC sampling of the
limited prior.
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increase, the variance decreases, suggesting that there is an
additional source of error related to the sampling of the
limited prior distribution. This is not entirely surprising, as
the limited prior distribution consists of a number of iso-
lated islands, between which it is difficult to move with an
MCMC sampler. If there is residual correlation in the
MCMC chain used to sample the parameter space, this
will introduce an overweighting of the area of over-density
of samples, which, depending on whether this is a region
with higher or lower likelihood will cause an increase or
decrease in the Z integral. As the correlation between start
and end decreases with the length of the Markov chain, the
added error decreases with increasing M. It is in fact clear
that, at a given N, by increasing M the result approaches
the theoretical error.

By tuning N and M appropriately, we can therefore
attain any desired level of accuracy, in principle, but at
the expense of increasing the computational burden, as the
number of likelihood evaluations is approximately propor-
tional to the productNM. This can be seen clearly in Fig. 5,
where we show the number of likelihood evaluations re-
quired to achieve the accuracies presented in Fig. 4. The
actual processing time then depends on the time taken to
evaluate a single value of the likelihood function, which
varies with the mass of the signal, and the length of data
and sampling rate used. As an example, to compute the
result with N ¼ 500, M ¼ 200, which gives an accuracy
on logB of �0:8, �3� 106 likelihoods were evaluated. In
this case the algorithm took approximately 1 h 20 mins to
complete on a 2.4 GHz Intel Xeon processor. Assuming
that the overhead beyond the likelihood calculation is
minimal, this gives an approximate time of 1.5 ms per
likelihood. The system used in these tests was a 30M� �
1:4M� binary system injected into 3 data streams, but the
full parameter space (see Sec. VA) was explored so that
templates across the whole low-mass range were gener-
ated. It should be noted that this number is mostly depen-
dent on the time taken to generate the waveform, which is

lowest for the stationary phase approximation templates
used here, but is higher for time domain templates and
those requiring the numerical solution of differential equa-
tions to produce the waveform.

V. RESULTS

In this section we present a range of tests to demonstrate
the effectiveness of a Bayesian approach in identifying
gravitational wave signals in the data from a network of
interferometers and estimating the associated parameters.
We first investigate the detection efficiency of our algo-
rithm, using logB as a ‘‘detection statistics’’; we then
introduce and characterize a new test to discriminate a
coherent gravitational wave at the output of multiple in-
struments from the presence of incoherent instrumental
artefacts. We conclude by showing the impact of the num-
ber of instruments in the recovery of the source parameters.
For the tests presented in this section, we have chosen

four systems of different combination of masses for the
values used in the injections, shown in Table I. The first
three systems lie near the corners of the irregular prior,
shown in Fig. 6 and discussed in Sec. VA, while the fourth
lies somewhat towards the middle. Using these systems,
the performance of the algorithm across different signals
lying in different parts of parameter space is assessed.
Unless stated otherwise, we run all tests using three

simulated interferometers operating as a network. These
are located at the sites of LIGO Hanford, LIGO Livingston
and Virgo (Cascina), and have simulated noise power
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FIG. 5 (color online). The mean number of likelihood evalu-
ations performed in each of the trials shown in Fig. 4. The
number of likelihoods scales linearly with both the number of
live points and the number of MCMC iterations used.

TABLE I. Mass parameters of the injections used in testing.

Name m1 (M�) m2 (M�) M �

System 1 1.4 1.4 1.219 0.25

System 2 30 1.4 4.727 0.043

System 3 15 15 13.06 0.25

System 4 25 5 9.18 0.139
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FIG. 6 (color online). pðM; �jHs; IÞ, the prior probability
distribution for the parameters M and �. The white area is
excluded by the boundary conditions imposed on the component
masses (see Sec. VA), and the distribution given by Eq. (43).
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spectral densities chosen to correspond to the design sen-
sitivies of each of these real instruments, as modeled by the
appropriate LAL functions. The Gaussian and stationary
colored noise is then generated in the frequency domain,
with the appropriate noise spectrum. A low-frequency cut-
off of 50 Hz and Nyquist frequency of 1024 Hz are used
throughout the analysis.

A. Priors

The choice of prior distribution pð ~�jH ; IÞ is an impor-
tant factor in Bayesian inference, and will affect the Bayes
factor as it is included in the evidence integral, Eq. (4). The
prior effectively determines exactly which model is being
used, by incorporating the ranges of the model parameters,
and probability distribution on those parameters before the
data are analyzed. In the case of our implementation, the
prior must be sampled using an MCMC technique, which
will be more efficient when there is minimal structure in
the chosen parametrization of the signal, in the sense that
fewer iterations will be required to adequately sample it.

For many of the model parameters, the choice of prior
distribution is obvious: we use an isotropic distribution for
the source sky location ð�; �Þ and the direction of the
orbital angular momentum ð�; c Þ over the full range on
the angular parameters of the model, reflecting total igno-
rance and no reasons to prefer a particular geometry of a
binary. We also choose a flat distribution on�0 and t0 over
the range 0 	 �0 	 2� and a time interval of 100 msec,
respectively. For distance and masses, we use a uniform
prior on logDL in the range DL 2 ½1; 100� Mpc, a uniform

prior in � and a prior on chirp mass of the form pðMjIÞ /
M�11=6. As we desire to test our approach on the mass
region covered by the LIGO-Virgo low-mass searches for
in-spiral signals [12,13], limits were imposed directly on
the component masses, such that m1, m2 	 35M�, where
by our conventionm1 � m2. We also place a lower limit on
the mass ratio, such that of �> 0:01, and on the chirp
mass, M> 0:87, to ensure that the waveforms generated
are nonzero and of a length suitable for our analysis. These
constraints result in a convoluted shape for the allowed
regions of parameter space in the ðM; �Þ plane, shown in
Fig. 6. The specific choice of the distance and mass priors
is determined by the need to ensure the accuracy of the
integration, which we now discuss.

Within the core sampler, we have changed the variable
used to logM, in order to reduce the range of the prior
density, leading to better sampling of the space than using
M itself. The prior probability density function we use on
logM is based on an approximation to the Jeffreys prior,

pð ~�jH ; IÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det�ð ~�Þ

q
, where �ð ~�Þ is the Fisher informa-

tion matrix, defined as

�ijð ~�Þ ¼
�
@i ~hð ~�Þ
@�i

��������
@j ~hð ~�Þ
@�j

�
: (40)

This type of prior is used when there is no information
about the parameters of the signal at all, and should there-
fore be invariant under a change of coordinates [74,75]. For
simplicity, in our initial implementation we ignore the
correlations between the chirp mass and the other parame-
ters and we just take the leading order Newtonian quadru-

pole approximation of the inspiral waveform ~hðfÞ to
compute the scaling of the prior. Under these assumptions
we obtain

@~hðfÞ
@ logM

¼ � 5i

4
ð8�MfÞ�5=3 ~hðfÞ (41)

and the prior is therefore

pðlogMjIÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
@~hð ~�Þ
@ logM

��������
@~hð ~�Þ
@ logM

�vuut
; / M�5=6;

(42)

pðMjIÞ / M�11=6: (43)

The Jeffreys prior is based on the notion that one should
assign equal probabilities to equal volume elements in the
parameter space of the signal. Here the Fisher matrix is
used as a metric, allowing us to calculate the volume
element at each point. The Jeffreys prior encodes the fact
that the volume element of a curved parameter space may
vary with respect to the parametrization, and so the density
of templates is greater at lower chirp masses. Failure to
account for this will result in an under-sampling of certain
regions of parameter space, which will increase the chan-
ces of failing to detect a signal there (or increase the
number of live points needed for a given probability of
detection). This effect is most significant in the M pa-
rameter, which is why we have found it necessary to
include it here, however a full calculation of the Fisher
metric in the M, � space would further improve the
sampling, and is a goal for future development of this
work.
Note that the use of this prior, as with the one for

distance, ignores any available information about the
mass distribution of neutron stars and black holes, and
focusses simply on the detection of the signal with un-
known parameters.

B. Detection efficiency

In order to test the detection efficiency of our imple-
mentation, we have chosen to treat the Bayes factor of the
signal vs noise hypotheses

BS;N ¼ Pð ~djH S; IÞ
Pð ~djH N; IÞ

; (44)

see Eq. (3) and Sec. II D, as a detection statistic. By
performing a large number of runs on a signal-free data
set, we can find the distribution of logBS;N in the absence of
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a signal, and therefore choose a threshold value which will
give a certain false alarm rate. This is the same approach
that we have adopted in Refs. [25], however in this paper
we consider coherent observations with multiple interfer-
ometers. Using this threshold, we can therefore decide
whether or not the analysis of a data set which contains
an actual injection yields a detection or not. To achieve
this, we analyzed 5000 different realizations of Gaussian
noise, and obtained the distribution of logBS;N. This is

shown as a histogram in Fig. 7, where the vertical line
represents the threshold logBS;N ¼ 2:786 corresponding to
a false alarm rate of 1% for any single trial.

Taking this threshold, we then classify each result as
detected if logB> 2:786, and otherwise not. The detection
efficiency is then assessed by performing 50 injections of
each test signal at varying signal-to-noise ratios (by chang-
ing the distance to the source) and determining the fraction
which are detected vs those which are not. This allows us to
build up a detection efficiency curve for each of the test
systems, given the desired false alarm rate, which is shown
in Fig. 8. From these results, we can see that the 30�
1:4M�, 15� 15M�, and 25� 5M� systems show consis-
tency in their chance of being detected as a function of
signal-to-noise ratio, following a typical sigmoid curve
with a transition zone between signal-to-noise ratios 4
and 8 where there is an intermediate chance of detection,
explained by the different noise realizations. Each of these
curves crosses the 50% detection efficiency at approxi-
mately signal-to-noise ratio of 6.5, and approaches 100%
detection efficiency with a signal-to-noise ratio above 8. In
contrast, the algorithm performs slightly more poorly in the
detection of the binary neutron star system with 1:4�
1:4M� component masses, with 50% detection efficiency
at signal-to-noise ratio of 7.5 and a wider zone of transi-
tion. An examination of the raw Bayes factors output by
the algorithm for this system indicated that the detected
binary neutron star signals are allocated Bayes factors
consistent with other signals of the same signal-to-noise

ratio, but that there is a larger fraction of sources which are
not detected, producing a Bayes factor consistent with
noise. This may be due to the sampler failing to identify
the correct region of parameter space, as the parameter
volume of signals at low mass is considerably smaller, and
therefore has a lower probability of being found by a
probabilistic algorithm.
It is suggested that improved performance could be

obtained for these systems by incorporating the full metric
into the calculation of density required in the M, � sub-
space, which would then distribute the samples more ap-
propriately. However, the results broadly show that the
algorithm is capable of correctly analyzing and detecting
signals at an SNR comparable to existing methods. Other
recent work has shown that prior distributions may be
found which balance the need for efficient detection with
astrophysical prior information [76].
Using the distribution of Bayes factors produced by the

noise-only runs, we can also examine the relationship
between false alarm rate and detection efficiency. For a
choice of signal-to-noise ratio, the threshold of detection is
varied, causing a change in the number of detected signals
but also the number of false alarms, which can be plotted in
a receiver operations curve (ROC), as shown in Fig. 9. In
this figure, we have used system 1, see Table I with
component masses 30M� and 1:4M� to produce the ROC
curves for SNRs below, in and above the transition region.
These results were produced with 50 independent trials at
each optimal SNR, and so the error bars shown represent

the Poissonian error of 50�1=2.

C. Coherent analysis

Every gravitational wave search critically relies on mul-
tiple (at least two) instruments in order to make confident
detections of astrophysical signals. Multiple interferome-
ters are beneficial in two main ways. First, the signal in
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FIG. 7 (color online). The distribution of the log Bayes factor
for 5000 runs on synthetic Gaussian noise. The vertical solid line
represents the 1% false alarm rate threshold of logBS;N ¼ 2:786.

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

signal to noise ratio

D
et

ec
tio

n 
ef

fi
ci

en
cy 30−1.4

1.4−1.4

15−15

25−5

FIG. 8 (color online). Detection efficiency curve for the nested
sampling algorithm for the four test systems as a function of the
coherent network signal-to-noise ratio, with a detection thresh-
old of logBS:N > 2:786, corresponding to a 1% false alarm rate,
see Fig. 7. Error bars indicate the 67% probability interval
assuming a binomial distribution for the results of the 50 trials.

J. VEITCH AND A. VECCHIO PHYSICAL REVIEW D 81, 062003 (2010)

062003-14



each detector can be cross checked against those observed
in the others, giving us an additional way of isolating a real
gravitational wave which must yield consistent observa-
tions in all the instruments; in fact, the searches for short-
lived gravitational waves employ one or more ‘‘detection
confidence tests,’’ see e.g. [77] and references therein.
Second, if the interferometers are not colocated and
aligned (as is the case of the ground-based network cur-
rently in operation) then they will see a different projection
of the strain tensor of the passing gravitational wave; in
turn, this allows a better estimation of the parameters of the
incoming signal, and can break degeneracies between pa-
rameters present with only one data set. In particular,
simultaneous observations with three or more instruments
allows us to determine the geometry of the source, such as
its distance and location in the sky.

Using the mathematical and computational framework
developed and described above, we can address both these
points in a natural way. In this section we propose and
demonstrate a new coherence test which can discriminate
between coherent and incoherent signals, making optimal
use of the data and we demonstrate the improvement in
parameter estimation when using a detector network.

1. Coherence test

Having a network of detectors is essential to discrimi-
nate a real astrophysical signal from the background of
spurious noise events which resemble gravitational wave
signals, i.e. those with BS;N  1 in the language of model

selection. We know that a real gravitational wave signal
must be observed in all the detectors with compatible
estimates for the physical parameters, and relative time
delays that are consistent with the location of the instru-
ments on Earth and a point on the celestial sphere. On the
other hand, instrumental glitches will appear indepen-
dently in each detector. To be more specific, the observed
data in each detector must be consistent with the physical
gravitational wave: the different characteristics of each
detector, including their instantaneous noise levels and
orientations mean that the signal-to-noise ratios will vary
between them.

There will naturally be times when glitches occur simul-
taneously in multiple detectors. When this happens, we can
use the network in a coherent manner to test whether the
event is consistent with a coherent gravitational wave, or
more likely to be a gravitational-wave–like glitch occur-
ring independently in each detector. Translated into our
framework of inference, we want to compare the two
following hypotheses:

(i) Coherent model, H coh: The data sets ~d ¼
fdð1Þ; dð2Þ; . . . ; dðNDÞg from each of the ND detectors
contain a coherent gravitational wave signal de-
scribed by the same polarization amplitudes
~hþðf; ~�Þ and ~h�ðf; ~�Þ with the same parameters ~�.
The posterior probability of the coherent hypothesis
is as before

PðH cohj ~dÞ ¼ PðH cohÞ
Pð ~dÞ Zcoh; (45)

where the evidence is

Zcoh ¼
Z
�
pð ~�jH cohÞpð ~dj ~�;H cohÞd ~� (46)

and the joint likelihood of the observation ~d is

pð ~dj ~�;H cohÞ ¼ QND

i pðdðiÞj ~�;H cohÞ, see Eq. (23).
(ii) Incoherent model,H inc: The data set at each instru-

ment, dð1Þ, dð2Þ; . . . ; dðNDÞ contains independent
gravitational-wave–like glitches, characterized by

the parameters ~�ð1Þ, ~�ð2Þ; . . . ; ~�ðNDÞ, in general differ-
ent for each detector. In this case, assuming that the
data and signals at each instrument are independent,
the marginal likelihood of the model factorizes into
the marginal likelihoods of each signal in the rele-
vant detector, and the posterior probability is

PðH incj ~dÞ ¼ PðH incÞ
Pð ~dÞ Zinc ¼ PðH incÞ

Pð ~dÞ
YND

i¼1

ZðiÞ

(47)

where the evidence for the signal in each detector is

ZðiÞ ¼
Z
�ðiÞ

pð ~�ðiÞjH incÞpðdðiÞj ~�ðiÞ;H incÞd ~�ðiÞ;

(48)

in the equation above pðdðiÞj ~�ðiÞ;H incÞ is the like-

lihood of the data set dðiÞ at the ith instrument output,

characterized by the parameter vector ~�ðiÞ defined

over the space �ðiÞ.
In order to distinguish between these possibilities, we need
to compute the odds ratio, Eq. (2), between the coherent
and incoherent model

Ocoh;inc ¼ PðH cohÞ
PðH incÞ

Bcoh;inc (49)
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FIG. 9 (color online). Receiver Operation Characteristics
curve for the nested sampling algorithm, obtained with 50 trials
at each signal-to-noise ratio for the 30M� � 1M� test binary.
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where the Bayes factor is

Bcoh;inc ¼ Zcoh

Zinc

¼ ZcohQ
N
i ZðiÞ ; (50)

see Eqs. (45) and (47). Essentially the test computes the
difference between the integral of the product and the
product of the integrals for each data set. The incoherent
model used here might be regarded as the worst possible
type of glitch, in that it models a disturbance which appears
exactly as a real gravitational wave would in a single
detector. As usual the evaluation of the odds ratio requires
to specify the prior odds, which is a subjective matter, and
here we simply concentrate on the Bayes factor.

Why does this work? If we think of the parameter space
of the coherent model as being embedded in the larger

parameter space f ~�ð1Þ; ~�ð2Þ; . . . ; ~�ðNDÞg of the incoherent
model, we see that it lies in the nine dimensional subspace

where ~�ð1Þ ¼ ~�ð2Þ ¼ . . . ¼ ~�ðNDÞ. If a coherent signal is
present, the distribution in the incoherent space will be
peaked on or near this subspace, which will intersect a
relatively large total probability mass. As the coherent
subspace has fewer dimensions, in this case 9ND�1, its prior
is smaller and the model is more predictive. Loosely stated,
this means that it will gain whenever its prediction is
correct over the more general incoherent model. This is
the so-called Occam factor which arises from comparing
models with different predictive power.

The larger space of the incoherent model will also
capture a greater amount of evidence from the data when
a large glitch is present which causes a high likelihood in
many parts of the parameter space, as any signal which is
not completely parametrized by the chosen parametriza-
tion will produce a broader peak on that manifold (such a
glitch may provide a high evidence value when compared
with the noise model only, but contains less information
about the parameters). In this case (unless there is by
chance a coherent glitch in the other detectors) the same
argument will apply and cause the test to discriminate
against the coherent signal model.

Performing model selection with the Bayes factor, Eq.
(50), will then give us the optimal means of distinguishing
a coherent gravitational wave from incoherent glitches
which have a significant component which looks like an
inspiral signal. This can be thought of as an enhanced
coincidence check, which uses all the parameters to check
for consistency in the observed signals, and also incorpo-
rates a check for a better explanation as simultaneous
glitches.

Here we provide two examples to test this technique.
First we consider how the test performs in the analysis of
data sets that contain gravitational wave signals that have
identical parameters, but are characterized by an unphys-
ical time-offset; in the second case we analyze the case in
which a gravitational wave is present only in the data of
one of the instruments of the network.

For the first test, we inject a signal characterized by
identical physical parameters—we choose M1 ¼ 4M�,
M2 ¼ 3M� and random position, orientation and distance
such that the network optimal SNR is 17.8 in the case of a
coherent injection—into the simulated data streams of
LIGO-Hanford, LIGO-Livingston and Virgo; we first per-
form the injection coherently in the data of the three
interferometers, and then we repeat it by introducing a
nonphysical time shift �T 	 10 ms in the time of coales-
cence at the different sites (the coherent injection case
corresponds therefore to �T ¼ 0). The noise realization
is identical in each case; however, due to the slightly offset
time of arrival of the signals and therefore the slightly
different sum of data and signal, there is some spread in
the recovered evidences. We compute Bcoh;inc, Eq. (50) as a

function of �T, considering the case in which the analysis
is carried out using the two LIGO instruments (HL-
network) and the three-instrument (HLV-network). The
results are shown in Fig. 10, where we plot the Bayes
factor against the time shift �T. As expected, when the
signal is injected with �T ¼ 0 the evidence favors the
coherent model strongly, by a factor of �36 461 in the
case of the HLV-network and�328 in the HL-network. As
the time shift �T increases (the light-travel-time between
Hanford and Livigston is � 10 msec), the evidence
switches to favoring the incoherent model at around 4
msec in both HLVand HL networks, and rapidly decreases
to strongly exclude the coherent model with a Bayes factor
of<10�10. With a large separation between the signals, the
incoherent model becomes very strongly preferred, by a
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FIG. 10 (color online). Bayes factor Bcoh;inc between the co-
herent and incoherent model, Eq. (50) with varying relative time
delay between the arrival time of a gravitational wave at different
interferometers. In solid blue, the value of Bcoh;inc when the

network of the LIGO-Hanford, LIGO-Livingston and Virgo
instruments (HLV) was used, and in dashed red the network of
the two LIGO interferometers (HL). The time delay in milli-
seconds is applied equally between Hanford and Livingston, and
Livingston and Virgo. The signal used had component masses
3M� and 4M�, and a coherent network signal-to-noise ratio of
17.8. The curve shows a strong fall in coherence probability
above a time-delay of � 3:5 msec, allowing us to rule out a
single coherent signal.
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factor up to �2� 1022 in the case of the HLV and �1�
1024 in the case of the HL network. One would naively
assume that HLV would yield more stringent rejection than
HL, which is not the case here We note that for �T &
3:5 msec the coherent model is still favored, as the proba-
bility distribution still contains a sufficient probability of
intersecting the coherent signal manifold. Although this
plot is merely representative of a single test of coherence
and particular details will vary with the signals and data
sets, we have specifically used identical signals so that the
PDF should peak at the same value in all but the time
parameter. This should correspond to a situation where it is
extremely difficult to determine whether or not the mul-
tiple signals are incoherent or coherent and provide a
challenging test of the method.

We consider now a second test of this method. A situ-
ation which commonly arises is the presence of a ‘‘glitch’’
or instrumental artefact in a single interferometer which is
not present in the others in the network. This situation is
handled in the case of an incoherent search by checking
that corresponding triggers, with consistent physical pa-
rameters, exist in all interferometers. As a useful sanity
check for the coherence test, we examined the case in
which the glitch has exactly the functional form of a
gravitational wave from an inspiral signal, but is present
only in one instrument. In this case, the Bayes factor of the
coherent model against the Gaussian noise model is ele-
vated, however our coherence test should allow us to
exclude an event such as this due to the lack of a consistent
signal in the other detectors.

Table II displays the detailed results of performing the
coherent and incoherent analyses on a signal with an SNR
of 9.8 injected only into LIGO-Hanford (H) simulated data.
It is notable that even using the coherent model, the signal
causes an elevated Bayes factor to be found, as there is
some set of parameters which give a compromise signal in
the network of detectors. This gives us the undesirable
situation where BS;N, the Bayes factor of signal against

Gaussian noise, Eq. (44), would be triggered by an event in
a single detector. However, by performing the coherence

test, we can see that the incoherent model is favored by a
factor � 103 to the coherent model, indicating that this
situation is unlikely to be a true coherent gravitational
wave, and so it can be safely ruled out.
This also works in the case of a two-detector network,

although in this case there is a much stronger possibility
that a signal may be observed in only one of the two
detectors, and so the corresponding analysis infers that
there is only a 2.9 times greater chance of the incoherent
model than the coherent one.
This test of coherence gives us a powerful means of

distinguishing coherent from incoherent events, which can
be used to quantify the additional confidence that we
achieve through the use of a network. This result follows
naturally from the precise statement of the hypotheses
using the conceptual and computational framework that
we have developed and demonstrates the power that
Bayesian methodology can bring.

2. Parameter resolution

We have shown in Section III B that from the output of
the nested sampling algorithm for the evidence/Bayes
factor computation one can construct at no additional
computational costs the marginalized posterior PDFs on
the unknown source parameters. Here we show an example
of the evaluation of such PDFs with nested sampling as a
function of the number of instruments in the network,
applied to the coherent observations of an in-spiral binary
signal. We consider a system with an optimal signal-to-
noise ratio of 9.3, 12.8, and 14.4, respectively, in the
simulated network configurations of Hanford only,
Hanford-Livingston and Hanford-Livingston-Virgo. The
actual values of the parameters used for the injection are
shown by the black vertical lines in Fig. 11.
Each instrument measures essentially two independent

quantities—an amplitude and a phase—as a function of
time. As the duration of an inspiral is negligible in com-
parison to the period of rotation of the Earth, there is no
observable evolution of the antennae response functions
during the period of observation (from which one would
otherwise reconstruct the source location in the sky). From
the signal strain and the time of arrival of the gravitational
wave burst, one must infer the parametersM, �, t0,DL, �,
�, c , and �. The chirp mass M (and to lesser extent the
symmetric mass ratio �) determines the phase evolution of
the signal, which provides a large amount of information to
constrain this parameter independent of the others listed
here. However, in the remaining parameters a large degree
of degeneracy is present, producing correlated joint poste-
rior PDFs. For the case of observations with one interfer-
ometer, this manifests as a broad distribution in the one-
dimensional marginal PDFs shown in Fig. 11. When there
is insufficient information available to determine these
parameters, the posterior PDFs can be influenced more

TABLE II. Results of performing the coherence test on a
signal injected only into the LIGO-Hanford simulated data set.
The test successfully rules out a signal which does not appear in
more than one detector, despite the coherent signal vs noise
comparison (BS;N) still favoring the signal model for HLV and

HL observations.

Instruments logeZ logeBS;N logeBcoh;inc

H inc H coh H inc H coh

H 
 
 
 �5950:45 
 
 
 45.78 
 
 

L 
 
 
 �6106:47 
 
 
 0.39 
 
 

V 
 
 
 �6059:44 
 
 
 �0:80 
 
 

HL �12 056:93 �12 058:00 46.16 45.09 �1:07
HLV �18 116:37 �18 123:29 45.36 7.52 �6:92
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strongly by the prior distribution, as it is the case, in
particular, for DL, �, �, c , and �.

With the addition of a second, independent detector at a
geographically different location, the possible sky loca-
tions and times of arrival are strongly constrained to lie
on the surface described in Sec. IVA 1, but there is still
substantial uncertainty in the marginal distributions for the
chosen parameters. This is finally broken when a third
detector is added to the network (red line in Fig. 11), which
allows the sky location to be determined uniquely, along
with the remaining parameters. In this figure we can see the
evolution of the posterior PDFs with additional observa-
tions, as described above. For this injection, an inclination
was used which placed the orbital plane of the binary
almost edge-on to the line of sight to the Earth, meaning
that only one polarization was detectable. This is reflected
in the underestimation of the distance to the system for a
network of less than 3 detectors, as there are many posi-
tions which are not edge-on which lead to a higher overall
observed signal amplitude, and therefore must be located
farther away.

This provides an example of the necessity of multiple
detectors, operating as a network, if we are to make full use
of the astrophysical information carried by gravitational
waves. By underdetermining the parameters of the signal,
biases or at least additional uncertainties may be intro-
duced into our conclusions about the nature of observed
sources.

VI. CONCLUSIONS

By taking a Bayesian approach to the analysis of data for
the detection and characterization of in-spiral signals, we
have been able to implement a conceptually simple yet
flexible framework for drawing inference from observa-
tions. Although the Bayesian formalism calls for the evalu-
ation and integration of high-dimensional likelihood
functions, we have shown that the nested sampling tech-
nique provides us with a means to both search for and
estimate the parameters of a signal. Further work remains
to be done in improving the efficiency and reliability of
detection at low masses, but the particular implementation
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FIG. 11 (color online). The one-dimensional marginalized posterior probability density functions of the nine parameters that
describe a gravitational wave inspiral signal from a circular binary of nonspinning compact objects. The plots show the effect of the
coherent network analysis on the estimation of the parameters. The true values of each parameter is indicated by a vertical, black line.
The signal was injected in simulated Gaussian and stationary noise representing the LIGO-Hanford, LIGO-Livingston, and Virgo
instruments, with an optimal signal-to-noise ratio of 9.3 (H), 12.8 (HL), and 14.4 (HLV), respectively. As more detectors are added to
the network, the parameters of the signal become better constrained, with three detectors being necessary to fully resolve all the signal
parameters. Lines represent kernel density estimates of the parameters, based on the samples from the PDF generated as in Sec. III B.
Edge effects from the smoothing function are responsible for lowered density estimates near the edges in the distributions of �0 and �.
The density estimation was performed using the Matlab function ksdensity.
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that we describe here provides a solid basis for these future

improvements.
We have used our implementation to demonstrate the

power of Bayesian model selection in classifying putative
gravitational wave signals, through the use of the coher-
ence test described in Sec. VC. The coherence test goes
some way to implementing a robust and Bayesian defence
against glitches present in gravitational wave data which
do not resemble coherent gravitational waves by providing
an internal consistency check within the detector network.
Tests of this kind may provide a useful new additional
discriminator when analyzing candidate gravitational
waves, and are only achievable through the treatment of
the detector network in a coherent way. Notably, this test is
only possible through the use of the Occam factor and the
comparison of probability distributions which differ in

their dimensionality, and could not be possible with point
estimates of maximum likelihood. Indeed, the maximum

likelihood of the coherent and incoherent models can be
trivially shown to be identical. In addition to such tests, it

would also be desirable to model the detector data in a way
which is nonstationary or Gaussian, but this is beyond the
scope of this work. Furthermore, the use of the Bayesian

parameter estimation framework is invaluable in inferring
the signal parameters, and produces the full posterior
probability distribution, not just maximum likelihood
points and estimates of variance. The covariance and in-
terdependence of the parameters does not prevent us from
calculating consistent joint PDFs on the full parameter
space even when point estimates have little meaning, and

this allows us to see the benefit of using a network of
detectors in a coherent fashion.

One of the main benefits in the use of the nested sam-
pling and Bayesian evidence approach is the ease with

which it can be extended or adapted to different signal
models with minimal changes needed to the implementa-
tion. In other work past and ongoing, we have shown how

this method may be applied to the discrimination between
candidate waveforms when comparing to a numerical rela-
tivity simulation; how one may place bounds on the
Compton wavelength of the graviton given a single or
multiple observations of an inspiral signal, and testing

the effects of including spins in the detection and estima-
tion of inspiral signals [28,78].

Future work on the implementation of the core algorithm
will focus on achieving a better reliability and efficiency in

the sampling of the parameter space, which should lead to
further improvements in the performance in a real world
situation, and on testing on the full set of waveform ap-
proximants used in present searches for coalescing binary

systems. The work presented here forms the basis of the

LALAPPS_INSPNEST program, which is can be found in the
LALApps software distribution, released under the terms
of the GNU general public license [31].
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and Christian Röver for their comments and suggestions.
The simulations presented in this paper were carried out on
the Tsunami Beowulf clusters of the University of
Birmingham and the Atlas cluster of the AEI Hannover.
This work has been supported by the UK Science and
Technology Facilities Council. This paper has been as-
signed the LIGO Document Number LIGO-P0900117.

APPENDIX: DEFINITIONS AND CONVENTIONS

We provide the definitions and conventions that we have
adopted to link the continuous representation of a time
series which is used in the main body of the paper with
the discrete representation. The latter is what is actually
used for applications, and corresponds to the expressions
implemented in the LALAPPS_INSPNEST software. This ap-
pendix provides also a mapping of the notation used in our
previous papers [25,26] and the one used here.
Consider a time series aðtÞ sampled at time intervals

�t ¼ 1=ð2fNyÞ, where fNy is the Nyquist frequency, for a

total observation time T. The total number of data samples
is therefore Np ¼ T=�t ¼ 2TfNy. Given a generic real

function aðtÞ, our conventions for the Fourier transform
are [79]:

~aðfÞ ¼
Z þ1

�1
aðtÞe�2�iftdt; (A1)

and the inverse transform is

aðtÞ ¼
Z þ1

�1
~aðfÞeþ2�iftdf: (A2)

The data points at time tj and frequency fk are therefore:

aðtjÞ ¼ aðj�tÞ ¼ aj (A3)

~aðfkÞ ¼ ~aðk=TÞ ¼ �t� ~ak; (A4)

where we have defined the Fourier series as

~a k ¼
X
j

aje
�2�ijk=Np ; (A5)

aj ¼ 1

Np

X
j

~ake
þ2�ijk=Np : (A6)

In the following we will indicate with ~aðfkÞ the (dimen-
sionfull) approximation to the Fourier Transform of ~aðfÞ at
frequency f ¼ fk.
We consider now the statistical properties of the noise.

The one-sided noise spectral density SðfÞ is defined in the
continuous case as:
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SðfÞ ¼ 2
Z þ1

�1
hnðtþ 	Þnð	Þie�i2�ftdt; (A7)

which yields

h~nðfÞ~n�ðf0Þi ¼ 1
2SðfÞ�ðf� f0Þ ¼ Sð2ÞðfÞ�ðf� f0Þ; (A8)

where the factor 1=2 comes from the fact that SðfÞ is the
one-sided noise spectral density; this is related to the two-

sided noise spectral density Sð2ÞðfÞ by
Sð2ÞðfÞ ¼ 1

2SðfÞ: (A9)

If we explicitly write the real and imaginary part of the
noise contribution in the Fourier domain, which is the
notation adopted in [25,26] as

~nðfkÞ ¼ ~xðfkÞ þ i~yðfkÞ; (A10)

and we substitute into Eq. (A8), we obtain:

hj~nðfkÞj2i ¼ hj~xðfkÞj2i þ hj~yðfkÞj2i ¼ T

2
SðfkÞ; (A11)

where the first equality comes from the fact that ~xðfkÞ and
~yðfkÞ are independent. In terms of the elements of the
Fourier series one has

�t2hj~nkj2i ¼ �t2½hj~xkj2i þ hj~ykj2i�: ¼ T

2
SðfkÞ

(A12)

If one defines


2
k ¼ hj~nkj2i �2k ¼ hj~xkj2i ¼ hj~ykj2i 
2

k ¼ 2�2k
(A13)

the variance of the (complex) noise and the real and
imaginary part of the Fourier series elements, then

SðfkÞ ¼ 2
�t2

T

2

k ¼ 2
�t

N

2

k; ¼ 4
�t

N
�2k : (A14)

Let us now considered the usual inner product ð:j:Þ [58]
between two (real) functions a and b and its approximation
in the finite case:

ðajbÞ ¼ 2
Z 1

0

~aðfÞ~b�ðfÞ þ ~a�ðfÞ~bðfÞ
SðfÞ df (A15)

� 2

T

X
k>0

~aðfkÞ~b�ðfkÞ þ ~a�ðfkÞ~bðfkÞ
SðfkÞ (A16)

� X
k>0

~ak ~b
�
k þ ~a�k ~bk

2

k

(A17)

The optimal signal-to-noise ratio is just the square root of
the norm of h, and using Eq. (A17) it yields

ðhjhÞ¼4
Z 1

0

j~hðfÞj2
SðfÞ df; � 4

T

X
k>0

j~hðfkÞj2
SðfkÞ ; �2

X
k>0

j~akj2

2

k

:

(A18)

The likelihood function for the data set d given the model
h, Eq. (22) therefore becomes

pðdjh;H SÞ / exp

�
� 1

2
ðd� hjd� hÞ

�
(A19)

/ exp

�
� 2

T

X
k>0

j~dðfkÞ � ~hðfkÞj2
SðfkÞ

�
; (A20)

and this is the expression used in the software implemen-
tation through Eqs. (A4), (A5), and (A14).
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