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Clifford M. Willx

McDonnell Center for the Space Sciences, Department of Physics, Washington University, St. Louis, Missouri 63130, USA
(Received 25 November 2009; published 12 March 2010)

The spin and quadrupole moment of the supermassive black hole at the Galactic center can in principle

be measured via astrometric monitoring of stars orbiting at milliparsec distances, allowing tests of general

relativistic ‘‘no-hair’’theorems [23]. One complicating factor is the presence of perturbations from other

stars, which may induce orbital precession of the same order of magnitude as that due to general

relativistic effects. The expected number of stars in this region is small enough that full N-body

simulations can be carried out. We present the results of a comprehensive set of such simulations, which

include a post-Newtonian treatment of spin-orbit effects. A number of possible models for the distribution

of stars and stellar remnants are considered. We find that stellar perturbations are likely to obscure the

signal due to frame dragging for stars beyond �0:5 mpc from the black hole, while measurement of the

quadrupole moment is likely to require observation of stars inside �0:2 mpc. A high fraction of stellar

remnants, e.g. 10M� black holes, in this region would make tests of general relativity problematic at all

radii. We discuss the possibility of separating the effects of stellar perturbations from those due to general

relativity.
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I. INTRODUCTION

The supermassive black hole (SBH) at the center of the
Milky Way galaxy is surrounded by a compact cluster of
stars that has been the target of observational surveys for
more than a decade [1–6]. Near-infrared monitoring of
stellar positions using adaptive optics techniques has al-
lowed orbital reconstruction for roughly 30 stars at dis-
tances ranging from 100–102 milliparsecs (mpc) from the
SBH [7–9]. One of these stars (S2) has an orbital period of
only �15 yr [10,11] and its orbit has been followed for
more than one full revolution; astrometric data for S2 yield
a well-constrained mass for the SBH, M� ¼ ð3:95�
0:06Þ � 106M� (assuming a galactocentric distance of
8.0 kpc) and a location on the plane of the sky that is
consistent with that of the radio source SgrA� [8,9,12–15].

The velocity of S2 near periapse is a few percent of the
speed of light, large enough that relativistic effects like
advance of the periastron become potentially measurable,
even on time scales as short as a few years [16–20]. No

such effects have so far been unambiguously observed
[15]; one complicating factor is the likely presence of a
distributed mass (stars, stellar remnants, dark matter etc.)
within S2’s orbit which could produce Newtonian preces-
sion of the same order of magnitude as that due to general
relativity [21,22].
If the SBH is rotating, new phenomena occur for stars

orbiting at very small separations, r & 1 mpc. Dragging of
inertial frames and torques from the SBH’s quadrupole
moment Q cause stellar orbital planes to precess, at rates
that depend, respectively, on the first and second powers of
the hole’s spin angular momentum J. These spin-related
effects are small compared with in-plane precession, but
(in the absence of other non-spherically symmetric com-
ponents of the gravitational potential) they contain unam-
biguous information about J and Q. In principle, observed
changes in the orbital orientations of just two stars would
be sufficient to independently constrain the four quantities
ðJ; QÞ, allowing tests of general relativistic (GR) ‘‘no-hair’’
theorems [23]. The amplitude of these spin-related preces-
sions is very small, of order microarcseconds (�as) per
year as seen from the Earth. Plans are being developed to
achieve infrared astrometry at this level [24,25].
Such measurements will require the presence of at least

a few bright stars on mpc-scale orbits around the SBH.
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While no such stars have yet been observed, extrapolation
of the observed stellar densities at distances of�1 pc from
the SBH suggests that of order 100–102 stars should be
present in this region. Because of their finite numbers,
these stars will generate a non-spherically symmetric com-
ponent to the gravitational potential with an amplitude that

scales as
ffiffiffiffi
N

p
m?, wherem? is the mass of a typical star and

N is their number. Simple arguments (Sec. II) suggest that
such stellar perturbations might produce changes in the
orbital orientations of test stars that are comparable in
magnitude to the spin-related effects. This would compli-
cate the testing of no-hair theorems by adding what is
effectively a source of noise to the measured precessions.

Because the expected number of stars in this region is so
small, directN-body integration of the equations of motion
for allN stars is feasible. The major technical requirements
are a high degree of accuracy in the N-body integrator and
the inclusion of terms describing the relativistic acceler-
ations due to the SBH, including spinless, spin-orbit, and
quadrupole-orbit contributions.

Here, we present the results of a comprehensive set of
such simulations. Our primary goal is to evaluate the
degree to which star-star perturbations might obscure the
signal due to the SBH’s spin; hence we focus on changes in
orbital orientations rather than on the evolution of the
phase-space variables ðr; vÞ [26,27]. We ignore all other
systematic effects that might limit the ability to carry out
the high-precision astrometry for stars in crowded fields at
the Galactic center [18,28].

In Sec. II we summarize the relevant time scales for
orbital evolution near the Milky Way SBH. Section III
presents the post-Newtonian N-body equations of motion
including the lowest-order spin-orbit terms and describes
the N-body integrator. Observational and theoretical con-
straints on the distribution of stars and stellar remnants
near the Galactic center SBH are summarized in Sec. IV,
which also describes the parametrized models used to
construct the N-body initial conditions. Section V summa-
rizes the results from the integrations, including estimates
of the number of stars that can be effectively used to
measure J and Q. Section VI discusses how the presence
of stellar perturbations in the astrometric data can poten-
tially be detected and removed from the GR signal.
Section VII offers our conclusions.

II. SOURCES OF ORBITAL EVOLUTION

A. Basic quantities

The orbital period of a star of semimajor axis a orbiting
around the Milky Way SBH is

P ¼ 2�a3=2ffiffiffiffiffiffiffiffiffiffiffi
GM�

p � 1:48~a3=2 yr; (1)

where M� is the mass of the SBH and ~a is the star’s
semimajor axis in units of mpc. The second relation as-

sumes M� ¼ 4:0� 106M� and m? � M�, assumptions
which we adopt in the remainder of the paper. The length
scale associated with the event horizon of the SBH is

rg 	 GM�
c2

� 1:92� 10
4 mpc: (2)

We define � to be the dimensionless spin angular mo-
mentum vector of the SBH,

J ¼ �

�
GM2�
c

�
; 0 � � � 1: (3)

The standard (no-hair) relation between J and the quadru-
pole moment is

Q ¼ 
 1

c

J2

M�
: (4)

We adopt this relation below unless otherwise noted.
In the regime of interest, stellar orbits around the SBH

can be approximated as Keplerian ellipses that experience
gradual changes in their orbital elements, due both to the
effects of relativity and to perturbations from other stars.
Here, we summarize the relevant sources of evolution and
their associated time scales under this approximation.

B. Relativistic precession

1. In-plane precession

In the orbit-averaged approximation, massless test par-
ticles orbiting a black hole experience advance of the
orbital periapse by an angle [29]

�$ ¼ AS 
 2AJ cosi
 1
2AQð1
 3cos2iÞ (5)

per orbit, where the subscripts S, J, Q denote the effects
due to the black holes’s mass (i.e., the Schwarzschild part
of the metric), spin and quadrupole moment (the Kerr part
of the metric), respectively, and i is the orbital inclination,
defined as the angle between the SBH spin vector and the
stellar orbital angular momentum vector. To lowest post-
Newtonian (PN) order,

AS ¼ 6�

c2
GM�

ð1
 e2Þa� 12:40ð1
 e2Þ
1~a
1; (6a)

AJ ¼ 4��

c3

�
GM�

ð1
 e2Þa
�
3=2 � 0:1150ð1
 e2Þ
3=2�~a
3=2;

(6b)

AQ ¼ 3��2

c4

�
GM�

ð1
 e2Þa
�
2 � 1:190 � 10
3ð1
 e2Þ
2�2~a
2;

(6c)

where e is the orbital eccentricity. Since the Schwarzschild
contribution exceeds in amplitude the spin- and quadrupole
contributions to the in-plane precession for að1
 e2Þ *
10
4 mpc � rg, advance of the periapse does not contain

much useful information about the SBH spin [23].
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We define the precession time scale due to the
Schwarzschild term alone as

tS 	
�
ASða; eÞ
�PðaÞ

�
1
; (7a)

¼ P

6

c2a

GM�
ð1
 e2Þ; (7b)

� 1:29� 103 yrð1
 e2Þ~a5=2: (7c)

The Schwarzschild contribution to the in-plane precession
is large enough to potentially be detectable via a few years’
monitoring of identified stars at�10 mpc separations from
the SBH [17,19,21].

2. Precession of orbital planes

The gravitational field of a Kerr black hole is not spheri-
cally symmetric. The dominant non-spherically symmetric
effect on test-particle orbits is the coupling between the
spin of the black hole and the orbital angular momentum of
the particle, known in the weak-field limit as the Lense-
Thirring effect [30,31]. Again to lowest PN order, the
change per orbit of the nodal angle � is [23]

�� ¼ AJ 
 AQ cosi (8)

[32]. Among relativistic effects, precession of orbital
planes depends only on J and Q. We note that the frame-
dragging contribution in Eq. (8), which dominates at most
distances of interest here, is independent of orbital incli-
nation while the quadrupole-induced precession is inclina-
tion dependent. Both precessions leave the inclination with
respect to the black hole spin unchanged.

Defining the associated time scales as in Eq. (7), we find

tJ ¼ P

4�

�
c2að1
 e2Þ

GM�

�
3=2

; (9a)

� 1:39� 105 yrð1
 e2Þ3=2�
1~a3; (9b)

tQ ¼ P

3�2

�
c2að1
 e2Þ

GM�

�
2
; (9c)

� 1:34� 107 yrð1
 e2Þ2�
2~a7=2: (9d)

Figure 1 plots tJ and tQ as functions of a and e.

C. Stellar perturbations

If there is a star cluster around the SBH, the smooth
contribution to the gravitational force from the distributed
mass breaks the degeneracy between radial and angular
periods in the classical Kepler problem, causing an in-
plane precession, in the opposite sense to the relativistic
periastron advance. Assuming that the stellar-mass density
follows r
�, with r the distance from the SBH, the advance
of orbital periapse in one period is

�$ � 2�
M?ðaÞ
M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 e2

p
Fð�Þ; (10)

whereM?ðrÞ is the distributed mass enclosed within radius
r and F ¼ ð3=2; 1Þ for � ¼ ð0; 1Þ [33]. Setting F � 1, the
associated time scale is

tM � P

2

M�
M?

ð1
 e2Þ
1=2; (11a)

� 3:0� 106 yr ~M
1
? ~a�
3=2ð1
 e2Þ
1=2; (11b)

where ~M? is the stellar mass within 1 mpc in units of the
solar mass. This time scale is long compared with the time
tS for relativistic periastron advance, Eq. (7), at all radii of
interest unless M? is unphysically large.
The discrete nature of the stellar cluster adds an addi-

tional, non-spherically symmetric component to the gravi-
tational potential, which can induce precession in orbital
planes that mimics the effects of frame dragging and
quadrupole torques. In the case that the time scale associ-
ated with this precession is long compared with both the
radial period [Eq. (1)] and with the time scale for in-plane
periastron advance [Eq. (7))] (assumptions that will be
verified below), orbits around the SBH respond to the
finite-N component of the gravitational force as if they
were annuli, changing their orientations but not their ec-
centricities (‘‘vector resonant relaxation’’; [34]).
Here, we estimate the rate of precession due to finite-N

stellar perturbations, adopting a purely Newtonian model
for star-star interactions.
Let q 	 m?=M� be the ratio between stellar mass and

SBHmass,N the number of stars and/or stellar remnants in
the region contained within a test star’s orbit (a more
precise definition of N is adopted in Sec. IV) and Lc the
angular momentum of a circular orbit of the same energy
as that of the test star. In the vector resonant relaxation
(RR) regime, orbital angular momenta evolve approxi-
mately as [34]

j�Lj
Lc

� �vq
ffiffiffiffi
N

p �t

P
(12)

for a time �t & tcoh, where �v is a constant of order unity
and tcoh is the time scale associated with the most rapid
process that randomizes orbital planes, thus breaking the
coherence.
In the absence of GR effects, the only source of coher-

ence breaking is the stellar perturbations themselves
(‘‘self-quenching’’), for which tcoh ¼ tN , where tN is de-
fined by the condition j�Lj=LcðtNÞ ¼ 1. On time scales
long compared to tN , and in the absence of frame dragging
or other torques, orbital orientations would evolve approxi-
mately as

j�Lj
Lc

� �vq
ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcoh�t

p
P

; (13)

i.e., as ð�tÞ1=2 rather than as ð�tÞ1. Figure 1 shows that tN is
* 104 yr for reasonable models of the stellar cluster, much
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longer than the �10 yr time scales of interest here; hence
the self-quenched regime is irrelevant in what follows.

However, at some radius, tN will exceed the time scales
associated with GR precession of orbital planes, and the
precession rate will be given by the expressions derived in
the previous section rather than by Eq. (12). To estimate
this radius, we begin by expressing the GR precessional
time scales defined above in terms of the ‘‘penetration
parameter’’ % 	 ð1þ eÞrp=rg > 1, where rp is the

Keplerian orbital periapse distance and rg is defined in

Eq. (2). The results are

tJ ¼ 1
4%

3=2�
1P; (14a)

tQ ¼ 1
3%

2�
2P; (14b)

and the vector RR time scale itself is

tN � 1

q
ffiffiffiffi
N

p P; (14c)

the latter expression is true only up to Oð1Þ factors which
have to be derived from simulations.
Since

tQ
tJ

¼ ð4=3�Þ%1=2 � 4=3; (15)

precession due to frame dragging is everywhere faster than
precession due to the quadrupole torque.
The condition that frame dragging dominate stellar per-

turbations is approximately

tN
tJ

� 4�

q
ffiffiffiffi
N

p
%3=2

> 1: (16)

Figure 1 shows that for � ¼ 1, this condition is satisfied
inside�1 mpc for reasonable values of the enclosed mass.
For �< 1, the critical radius is smaller. This justifies
looking at stellar perturbations as a source of ‘‘noise’’ in
tests of GR.

D. Comparing relativistic and Newtonian precessions

Precession of orbital planes induced by stellar perturba-
tions differs qualitatively from precession due to frame
dragging since it does not respect the direction of the
SBH spin axis. Figure 2 shows the results of a set of 2�
106 yr integrations (using the algorithm described in
Sec. III) that illustrate the difference. When the stellar

FIG. 1 (color online). Time scales associated with precession
of orbital planes about the Galactic supermassive black hole. tJ ,
tQ: precession time scales due to frame dragging and to the

quadrupole torque from a maximally spinning SBH. Line thick-
ness denotes orbital eccentricity, from e ¼ 0:99 (thickest) to e ¼
0:9 and e ¼ 0:5 (thinnest). tN : approximate precessional time
scale due to Newtonian perturbations from other stars, assumed
to have one Solar mass. Line thickness denotes total distributed
mass within 1 mpc from the SBH, from 103M� (thickest) to
1M� (thinnest), assuming that density falls off as r
1. Shaded
(green) region shows range of interesting time intervals for
observation, 1 yr � �t � 10 yr.

FIG. 2 (color online). Evolution of orbital planes in a cluster of
eight stars orbiting about the Galactic center SBH, for an elapsed
time of 2� 106 years. The SBH rotates about the z-axis with
maximal spin. Four different values were assumed for the stellar
masses m?, as indicated. Stars were placed initially on orbits
with semimajor axis 2 mpc and eccentricity 0.5 and with random
orientations.
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masses are set to zero, orbital angular momenta exhibit the
uniform precession about the SBH’s spin axis associated
with frame dragging; when stellar masses are increased,
the orbital angular momentum vectors move quasiran-
domly about the unit sphere.

In comparing GR precession with that due to stellar
perturbations, it is therefore useful to have a measure of
orientation that is invariant to the direction of the SBH
spin. We adopt ��, defined as the angle between the initial
and final orbital angular momentum vectors:

cos�� ¼ Li Lf

LiLf

: (17)

On time scales of relevance here, jLj is conserved, i.e.,
Li � Lf, because the time scales for both nonresonant and

resonant relaxation are much longer than 10 yr.
Precession induced by GR changes only the nodal angle

� [Eq. (8)]. Since

L ¼ Lðsin� siniex þ cos� siniey þ cosiezÞ; (18)

where the z axis is parallel to the SBH spin vector, Li ¼ Lf

implies

cos��GR ¼ cos2iþ sin2i cos��; (19)

which for small �� is

��GR � sini��: (20)

In the case of star-star perturbations, we need to express
�� in terms of �L=Lc. By definition,

j�Lj2 ¼ L2
i þ L2

f 
 2LiLf cos��; (21)

so

j�Lj2
L2
c

¼ 2
L2

L2
c

ð1
 cos��Þ; (22a)

� L2

L2
c

ð��Þ2; (22b)

where the last expression again assumes small ��.
Specializing Eq. (20) to the case of frame dragging, we

note that �� is independent of cosi. Considering orbits
with a single eccentricity e and with an isotropic distribu-
tion of inclinations, the rms values of the angles in Eq. (20)
are therefore related by

��J �
ffiffiffi
2

3

s
�� (23)

or [cf. Eq. (6b)]

��J � 4�

ffiffiffi
2

3

s
�%
3=2 �t

P
: (24)

In the case of quadrupole-induced precession, �� /
cosi. Again computing the rms values assuming random
orientations gives

��Q �
ffiffiffi
6

5

s
��2%
2 �t

P
: (25)

Finally, for stellar perturbations, we ignore a possible
dependence of j��Nj on orbital eccentricity. In an isotropic
cluster, the orbital angular momenta at any energy
(� radius) are distributed as nðLÞdL ¼ 2LdL=L2

c, so
hL2i=L2

c ¼ 1=2, and the rms values in Eq. (22) are related
by

��N � ffiffiffi
2

p j�Lj
Lc

: (26)

Using Eq. (12), this can be written

��N � ffiffiffi
2

p
�vq

ffiffiffiffi
N

p �t

P
: (27)

Eilon et al. [35] give �v � 1:8 as an average value for a
cluster with isotropically distributed velocities, if N is
defined as the number of stars within a sphere of radius r ¼
a. We can then write a slightly more accurate definition of
the vector RR time scale (again defined as the time such
that ��N ¼ �),

tN ¼ �ffiffiffi
2

p
�v

1

q
ffiffiffiffi
N

p P � 1:2

q
ffiffiffiffi
N

p P: (28)

This is the expression plotted in Fig. 1.
We have assumed that precession is due either to GR

spin effects or to stellar perturbations. In reality, one ex-
pects vector RR to be quenched somewhat by coherence
breaking due to GR precession even at radii where tN <
tJ;Q.
Equating (24) with (27), we obtain an approximate

expression for the radius at which frame dragging domi-
nates stellar perturbations:

%3=2
ffiffiffiffi
N

p � 4�ffiffiffi
3

p
�v

�

q
; (29)

i.e.,

rcrit � 1 mpcð1
 e2Þ
1�2=3

�
Ncrit

30

�
1=3
�

m?

10M�

�
2=3
;

(30)

where Ncrit is the number of stellar perturbers within rcrit of
mass m? each. We evaluate this expression in Sec. IV after
specifying a model for the stellar distribution, and in
Sec. V we present the results of full N-body simulations
that allow more precise estimates of rcrit.

III. N-BODY TREATMENT

Integrations of the N-body equations of motion were
carried out using algorithmic regularization [36,37] imple-
mented with a chain structure [38] and the time-
transformed leapfrog [39]. The algorithm produces exact
trajectories for Newtonian two-body motion and regular

TESTING PROPERTIES OF THE GALACTIC CENTER . . . PHYSICAL REVIEW D 81, 062002 (2010)

062002-5



results for close encounters involving arbitrary numbers of
bodies. Velocity-dependent forces were included via a
generalized midpoint method [40]; the ARCHAIN code
[41] also incorporates pairwise post-Newtonian forces for
nonspinning particles of orders up to and including PN2.5
[42]. We included PN terms in the interactions between the
SBH particle and the N 
 1 ‘‘star’’ particles. All N parti-
cles were included at all times in the chain. Accumulated
energy errors were never more than a few parts in 1010.

We modified ARCHAIN to include the lowest-order con-
tributions of the SBH’s spin and quadrupole moment to the
motions of the stars. In the covariant spin supplementary
condition gauge [44], the spin-related, N-body accelera-
tions aJ are

aJ;1 ¼ 
 3G2M�
c3

X
j�1

mj

r31j
f½v1j 
 ðn1j  v1jÞn1j�

� � 
 2n1jðn1j � v1jÞ  �g; (31a)

aJ;j ¼ 2G2M2�
c3r31j

f½2v1j 
 3ðn1j  v1jÞn1j�

� � 
 3n1jðn1j � v1jÞ  �g; (31b)

_� ¼ G

2c2
X
j�i

mj

r2ij
½n1j � ð3v1 
 4vjÞ� � �; (31c)

rij 	 jxi 
 xjj; xij 	 xi 
 xj;

nij ¼ xij=rij; vij 	 vi 
 vj: (31d)

Here, particle number 1 is the SBH and particles j, 2 �
j � N are the stars. The ‘‘linear momentum’’ that is con-
served by these equations is

P ¼ X
i

mivi þ G

c2
X
ij

mi

2r3ij
ðxij � JjÞ: (32)

Adopting Eq. (4) for the SBH quadrupole moment, the
equation of motion for the jth particle has the additional
term aQ;j, where

aQ;j ¼ þ 3

2
�2 G

3

c4
M3�
r4

½5n1jðn1j  ĴÞ2 
 2ðn1j  ĴÞĴ
 n1j�;
Ĵ 	 J=J: (33)

IV. MODELS FOR THE STELLAR DISTRIBUTION

A. Observational constraints

The distribution of stars and stellar remnants at distances
� 1 pc from the Galactic center SBH is poorly under-
stood. Only the brightest stars in the inner parsec have been
identified, via speckle or adaptive optics imaging and
spectroscopy in the near-infrared bands [43,45]. Most of
these stars appear to belong to one of two distinct popula-
tions: (1) ‘‘early-type’’ stars—apparently normal, upper-
main-sequence giant stars of O and B spectral types with
inferred masses of 7–80M� and ages less than the main-

sequence turnoff age, i.e., O½101–102� Myr; and (2) ‘‘late-
type’’ (LT) stars—old, metal-rich, M, K, and G-spectral-
type giant (post-main-sequence) stars with ages
O½100–101� Gyr and masses 1–2M�. The density of
early-type stars increases steeply toward the SBH, and
these stars account for a large part of the total luminosity
of the central cluster, but their total numbers are small,
roughly 102 in the inner 0.1 pc [5,9,46] with few if any on
orbits that bring them within �10 mpc from the SBH,
making them unlikely candidates either as test stars for
observing GR spin effects or as perturbers of the test stars.
The LT stars on the other hand are believed to be

characteristic of the dominant, old population; roughly
6000 LT stars have been identified in the inner �0:5 pc
and their K-band luminosity function suggests a roughly
continuous star formation history over the last �10 Gyr
[46,47]. In spite of their large numbers, the observed LT
stars appear to be weakly concentrated toward the SBH.
Number counts complete to K � 15:5 (corresponding to
the subgiant phase for 1M� stars) reveal a projected
density that is flat or declining inside a projected distance
of �0:5 pc from the SBH [46,48,49]. While the existence
of four LT stars on very tight (5 mpc & a & 20 mpc)
orbits around the SBH has been established [9], deprojec-
tion of the binned surface density profile implies a central
space density that is consistent with zero at distances
smaller than �0:1 pc from the SBH [50].
The low density of LT stars in the inner parsec is not well

understood. If the time scale for exchange of orbital kinetic
energy between stars (the two-body relaxation time; [51])
is shorter than several Gyr, one expects the stellar distri-
bution to have attained a quasi-steady-state distribution of
the form nðrÞ � r
�, 3=2 & � & 7=4 [52,53] within the
SBH gravitational influence radius, rinfl 	 GM�=�2

? �
100 pc. This is clearly not observed [48], suggesting either
that the relaxation time exceeds �10 Gyr throughout the
inner parsec, or that the brightest stars have been hidden
from view or destroyed. Collisions with main-sequence
stars or stellar remnants can remove the outer envelopes
of red-giant stars, potentially explaining the low observed
density of giants [45]. However, this mechanism only
appears to be effective at distances less than �0:1 pc
from the SBH [54–56], even assuming a high density for
the colliding populations (an assumption for which there is
currently no observational support). Even at these radii,
collisions would seem to be ineffective at explaining the
depletion of stars down to magnitudes as faint as 15.5 [56].
It has been argued that the stellar initial mass function

(IMF) may have been strongly truncated below �3M� in
the Galactic center region [57,58]. These are just the stars
that would dominate the K-band number counts now [56].
At the high-mass end, standard IMFs [59,60] predict that

�0:1% of stars have initial masses greater than 20M�,
ending their short lives as �5–15M� black holes (BHs).
The BHs are expected to segregate nearer to the SBH than
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the lower-mass components (stars, white dwarves, neutron
stars [61]), possibly dominating the total number density
inside �1 mpc [55,62,63] and providing the bulk of the
perturbations acting on the observed stars in this region.
However if the observed distribution of late-type stars is a
guide, the two-body relaxation time may be too long for
establishment of a mass-segregated distribution [50,55,64].
If this is the case, there is no compelling reason to assume
that the ratio of BHs to stars is as large as implied by the
mass-segregated models.

Proper motion studies of large samples of LT stars in the
inner parsec [65,66] yield dynamical constraints on the
distributed mass (stars, stellar remnants, gas etc.) in this
region. The proper motion data robustly require an ex-
tended mass of �0:5–1:5� 106M� within the central
parsec [66]. However, these data do not strongly constrain
the radial dependence of the distributed mass density nor
the amount of mass on the mpc scales of interest here.

B. Parametrized models

Given these uncertainties, we explored a range of differ-
ent models for the distribution of stars and stellar remnants
near the Galactic SBH. We define M? as the distributed
mass within 1 mpc from the SBH and ~M? 	 M?=M�. We
idealize the stellar populations in this region as consisting
of just two components: 1M� main-sequence (MS) stars
and 10M� BHs. The first population is assumed to be
amenable to astrometric monitoring, and all discussions of
orbital evolution presented below will refer to this popu-
lation. While the orbits of the BHs are also allowed to
evolve in our models, we do not describe that evolution in
what follows.

In addition toM?, three additional parameters define the
initial distributions of stars and stellar remnants in our
models:

(i) the power-law index � describing the number den-
sity profiles, nðrÞ / r
�; � is assumed to be the same
for both MS stars and BHs;

(ii) the (number) ratioR of BHs to MS stars, i.e.,R ¼
NBH=NMS;

(iii) the velocity anisotropy �, defined such that
�2

r=�
2
t ¼ ð1
 �Þ
1, where �r and �t are, respec-

tively, the one-dimensional velocity dispersions in
directions parallel and perpendicular to the radius
vector; � ¼ 0 corresponds to isotropy.

For M? we adopted one of the three values
ð10; 30; 100ÞM�; the latter value is roughly the enclosed
mass predicted by the relaxed, mass-segregated models
cited above. For � we considered the values (0, 1, 2); � ¼
0 corresponds to a constant density in the inner mpc,
roughly what is observed in the projected density of LT
stars, [67] while � ¼ 2 is approximately the value ex-
pected for a mass-segregated population around a SBH.
Adopting the proper-motion result that the distributed mass
within 1 pc is �106M� [66], the implied mass inside

1 mpc is�100ð103ÞM� for � ¼ ð1; 2Þ. We therefore asso-
ciated larger values of ~M? with larger values of �, although
as noted above, the proper-motion data do not directly
constrain the mass distribution on mpc scales. R was set
to (0, 0.1, 1); R ¼ 1 is roughly the largest value predicted
in the mass-segregated models assuming a standard IMF,
while R � 10
3 is expected in the absence of any mass
segregation. For the small (� 102) total particle numbers
in the N-body simulations, R ¼ 0 is essentially the same
as R ¼ 10
3.
A steady-state orbital distribution in a point-mass po-

tential requires �< �
 1=2, i.e., isotropic velocity dis-
tributions are not permitted when � < 0:5: the distribution
of orbital eccentricities must be biased toward small values
when the spatial distribution is flat. The Galactic center
proper motion data cited above [66] suggest approximate
isotropy in the (projected) inner parsec. Theoretically, two-
body encounters should drive the distribution toward iso-
tropy near the SBH while at the same time populating the
low-angular-momentum orbits, producing an isotropic
density cusp. However since the cusp is not observed, it
is not clear that relaxation has had sufficient time to reduce
anistropies to low values [50]. We therefore considered
nonzero values of � even when setting � ¼ 1 or 2.
The following distribution of orbital elements:

Nða; e2Þdade2 ¼ N0gðaÞhðe2Þdade2; (34a)

gðaÞ ¼ a2
�; (34b)

hðe2Þ ¼ ð1
 e2Þ
�; � � �
 1=2 (34c)

generates steady-state phase-space distributions with the
properties defined above. Monte Carlo realizations of
the stellar positions and velocities were generated from
this expression given the parameters ð�;�; ~M?;RÞ.
Relativistic corrections were ignored when generating the
initial conditions. We assumed that Nða; e2Þ ¼ 0 for a >
amax; in most of the simulations, amax ¼ 4 mpc, but
smaller values were adopted as necessary to limit the total
number of particles to �180, since for larger N the
ARCHAIN routine was found to run very slowly. Table I

gives the composition of all the models discussed below.
Stellar orbits were excluded from the initial conditions if

their periapse fell below 20GM�=c2, roughly the distance
at which a solar-mass star on the main sequence would be
tidally disrupted.
For each set of parameters defining the initial distribu-

tion, a set of different Monte Carlo realizations was gen-
erated and independently integrated forward in time. The
number Nrand of independent realizations was chosen such
that the total number of MS stars in the combined set of
integrations was * 103. In order to evaluate the effects of
the relativistic terms in the absence of Newtonian pertur-
bations, some integrations were repeated setting to zero the
masses of the MS stars and BHs. Some integrations were
also carried out with the SBH spin set to zero.
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Given these models for the stellar cluster, we can use
Eq. (29) to compute the approximate radii rcrit where
frame-dragging begins to dominate stellar perturbations.
Assuming that the density is dominated either by 1M� MS

stars (R � 1) or by 10M� BHs (R * 1), we find

grcrit � � ð43; 14Þ�
ð1
 e2Þ3=2 ~M1=2

?

�
2=ð6
�Þ

mpc; (35)

where the first number in parentheses refers to the MS
cluster and the second to the BH cluster. Figure 3 plots rcrit
vs ~M? for various values of � assuming e ¼ 2=3, the mean
eccentricity in an isotropic distribution.

V. RESULTS

In the N-body simulations, we characterized changes in
stellar orbital orientations in two ways: via��, the change
in the nodal angle (defined with respect to the SBH equa-
torial plane); and via the coordinate-independent quantity
��, the angle between the initial and final orbital angular
momentum vectors [Eq. (17)]. The nodal angle advances
uniformly in time in response to GR effects [Eq. (8)];

furthermore, for a given � and �t, the quantity ð1

e2Þ3=2�� depends only on a in the frame-dragging regime
[Eq. (6b) and (8)].

Figure 4 plots ð1
 e2Þ3=2�� and �� vs a for each of
the MS stars in a set of 10-year integrations of models with
� ¼ 2, � ¼ 0, R ¼ 1 and ~M? ¼ 30 and three different
values of the SBH spin, � ¼ ð1; 0:1; 0Þ. Also shown are the
predicted, rms values of �� from Eqs. (24) (frame drag-
ging) and (27) [stellar perturbations]. In this model cluster,
in which stellar BHs dominate the total mass, stellar per-
turbations dominate changes due to frame dragging beyond
radii of�1ð0:3Þ mpc for � ¼ 1ð0:1Þ. As measured via ��,
GR effects are strongest for eccentric orbits, as expected,
while the amplitude of the stellar perturbations is not

FIG. 3 (color online). Approximate value of the radius at
which stellar perturbations match frame dragging in terms of
their ability to change the direction of orbital angular momenta
[Eq. (29)]. Two models for the stellar cluster are shown: a steeply
rising density profile, � ¼ 2, that is dominated by 10M� stellar
black holes; and a shallower density profile, � ¼ 1, dominated
by 1M� main-sequence stars. Horizontal axis is the total
distributed mass within 1 mpc from the SBH. Line widths denote
SBH spin: � ¼ 1 (thickest), � ¼ 0:3, and � ¼ 0:1 (thinnest).

FIG. 4 (color online). Changes over 10 years in the orientations of stellar orbital planes, as measured via �� (top) and �� (bottom).
Parameters of the N-body models were � ¼ 2, � ¼ 0,R ¼ 1, andM? ¼ 30M� (NMS ¼ 10, NBH ¼ 11). Each point corresponds to a
single star in a single integration; red points are orbits with initial eccentricities 0:7< e � 1 and blue points have 0 � e � 0:7. In the
lower panels, dashed lines show Eq. (24), the frame-dragging precession, for e ¼ 2=3, and dotted lines show Eq. (27), the approximate
model for precession due to stellar perturbations.

MERRITT et al. PHYSICAL REVIEW D 81, 062002 (2010)

062002-8



noticeably e dependent. The stellar perturbation model
derived above is reasonably good at predicting the mean
value of �� in the integration with � ¼ 0, although the
observed dependence on a appears to be shallower than
predicted for a & 0:5 mpc.

Because of the large scatter in the amplitude of stellar
perturbations at each a, the radius at which the GR signal
clearly stands out from the ‘‘noise’’ is somewhat smaller
than would be predicted from the rms values alone (Fig. 3).

The dependence of these results on the amount of dis-
tributed mass is shown in Fig. 5, which summarizes results
from integrations of models with M? ¼ ð10; 30; 100ÞM�;
other parameters are as in Fig. 4. As M? is increased, the
amplitude of the noise from star-star perturbations in-
creases, roughly in proportion to M?. These plots also
indicate the expected amplitude of the quadrupole-induced
precession. For � ¼ 1, stellar perturbations dominate
changes due to the quadrupole at radii beyond
�0:5ð0:3Þ mpc for M? ¼ 10ð100ÞM�.

Figure 6 shows the results of a comprehensive set of
integrations using different models for the stellar cluster
(Table I). Especially when the SBH spin is low (� ¼ 0:1),
stellar perturbations can dominate the signal due to frame-
dragging down to very small distances from the SBH, e.g.,
�0:2 mpc for ~M? ¼ 100, corresponding to orbital periods
of �0:1 yr.

We define the ‘‘astrometric precessions’’ �� 	
ða=DÞ�� where D ¼ 8:0 kpc is the distance to the
Galactic center [23]. �� is roughly the angular displace-
ment of the orbital axes, as seen from the Earth (ignoring
projection effects).

In the following section we discuss how measurements
of J andQmight be feasible even in cases where the stellar
perturbations are significant. Here, we assume that, in
order to be useful for tests of GR, a star must satisfy two
minimum conditions:
(1) Its astrometric precession must exceed some mini-

mum threshold set by the detector.
(2) Its precession must be dominated by GR effects.

We call MS stars that satisfy both conditions
‘‘detectable.’’

We base our assumptions about the minimum observable
angular changes on the specifications for the planned in-
strument GRAVITY [24]. GRAVITY will observe the
Galactic center 3 times a year (in April, July, and
September) and the error in each astrometric data point
will be �� � 10 �as [69]. Since the precession is linear
with respect to time, the uncertainty in the measured
astrometric precession after n observations is

��� � 2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
 1

nðnþ 1Þ

s
�� � 35 �as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
 1

nðnþ 1Þ

s
: (36)

For an elapsed time of 1(3)10 yr, ��� ¼ 14ð10Þ6:2 �as.
Figure 7 plots the distribution of �� values after

10 years due to star-star perturbations in one model,
ð�;�; ~M?Þ ¼ ð2; 0; 30Þ. Also plotted are the distributions
that would arise from frame-dragging and quadrupole
torques alone, ��J;Q ¼ ða=DÞ��J;Q sini [cf. Eq. (20)],

for the same stars. Figure 7 suggests that a clean separation
of frame-dragging and Newtonian precessions for most
stars in this model requires a & 0:5 mpc for � ¼ 1 and

FIG. 5 (color online). Similar to Fig. 4 except that average values have been computed in bins of semimajor axis. Three different
N-body models are shown, differing in the distributed mass: M? ¼ ð10; 30; 100ÞM�. All models have � ¼ 2, � ¼ 0, R ¼ 1 as in
Fig. 4. Open circles: � ¼ 1; squares: � ¼ 0:1; crosses: � ¼ 0. The predicted angular changes for � ¼ 1 due to frame-dragging are
shown as the dashed lines in the upper histograms and as the yellow band in the lower histograms. The cross-hatched regions indicate
the range of precession amplitudes expected from the SBH quadrupole moment alone. Dotted lines in the lower frames are the
approximate model for stellar perturbations, Eq. (27).
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a & 0:2 mpc for � ¼ 0:1. For these values of a the ampli-
tude of ��J is greater than 10 �as for most stars, making
them accessible to astrometric monitoring. High eccentric-
ities, e * 0:9, allow these requirements to be relaxed:
eccentric orbits with a as large as �1ð0:5Þ mpc can pro-
duce measurable displacements that are significantly
greater than those due to stellar perturbations.

Detecting the effects of the quadrupole moment in this
model would be considerably harder. For � ¼ 1, the quad-
rupole precessions separate cleanly from the stellar pertur-
bations only for a & 0:1 mpc, or a & 0:3 for the most
eccentric stars.

Regardless of the number of stars that satisfy conditions
1 and 2, an additional requirement is that
(3) the stars satisfying these conditions must constitute a

large fraction of all stars in the region being observed since
otherwise there is a large probability that the precession of
a randomly chosen star will be dominated by non-GR
effects.
We calculated the average number of detectable stars,

hNdetecti, in each of our models after expressing conditions
1 and 2 in the forms
(1) ��>���

(2) ��J;Q >��95

FIG. 6. Changes over 10 years in the orientation of stellar orbital angular momentum vectors, in N-body integrations of various
models (Table I). The three columns correspond to three values R ¼ ð0; 0:1; 1Þ of the ratio of BHs to MS stars; the values of �, � and
~M? that characterize the stellar distribution are given in the lower left of each panel. Circles are for integrations with � ¼ 1 and squares
are for � ¼ 0:1. Dashed lines show the expected, rms contribution to �� from frame dragging for both values of �.
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where ��95 is the upper edge of the 95% confidence
interval of the distribution of stellar perturbations.
Observational intervals of �t ¼ ð1; 3; 10Þ yr were
considered.

The results are shown in Figs. 8 and 9 for four models of
the stellar cluster, and in four bins of semimajor axis. The
figures also show f, the ratio of hNdetecti to the total number
of stars in each bin, and h��i, the average value of the
‘‘astrometric precession’’ for the detectable stars.
hNdetecti * 1means that at least one star would be expected
to be present that satisfies the two detectability criteria; if
in addition f is large, such stars constitute a large fraction
of all stars in the same radial bin.

The figures illustrate the trade-off that occurs between
the number of detectable stars at a given radius, and the
certainty that a single star at that radius is responding to GR
effects rather than to stellar perturbations. For example,
going across the second row in Fig. 8 (i.e., � ¼ 1, � ¼ 0,
~M? ¼ 30), hNi increases steadily with increasing a, but f
behaves oppositely, dropping below 10% in most cases for
a * 1 mpc.

With regard to frame dragging, Fig. 8 suggests the
following.

(i) In models with low central densities, � ¼ ð0; 1Þ,
detection of frame-dragging precession may be fea-
sible after �t * 3 yr for orbits with 0:2 & a=mpc &
1. At smaller radii the number of stars is too small; at
larger radii the noise from stellar perturbations is too
great.

TABLE I. Parameters of the N-body models.

� � ~M? R ~amax NMS NBH Nrand

0 
1 10 0 4.0 159 0 6

0 
1 10 0.1 4.0 79 8 12

0 
1 10 1 4.0 14 15 70

1 
1 10 0 4.0 119 0 8

1 
1 10 0.1 4.0 59 6 16

1 
1 10 1 4.0 10 11 90

1 0 30 0 3.5 183 0 6

1 0 30 0.1 4.0 119 12 8

1 0 30 1 4.0 21 22 45

2 
1 30 0 4.0 119 0 8

2 
1 30 0.1 4.0 59 6 15

2 
1 30 1 4.0 10 11 100

2 0 10 1 4.0 4 3 300

2 0 30 0 4.0 119 0 8

2 0 30 0.1 4.0 59 6 15

2 0 30 1 4.0 10 11 100

2 0 100 0 1.75 174 0 6

2 0 100 0.1 4.0 179 19 6

2 0 100 1 4.0 36 36 30

2 0.5 100 0 1.75 174 0 6

2 0.5 100 0.1 4.0 179 19 6

2 0.5 100 1 4.0 36 36 30

FIG. 7 (color online). ‘‘Astrometric’’ precessions of orbital
planes over 10 years, based on integrations of the model with
ð�;�; ~M?Þ ¼ ð2; 0; 30Þ. Black histograms are from integrations
in which the SBH spin was set to zero (although nonspin PN
terms were included) and show the effects of stellar perturba-
tions. Blue histograms are the predicted precessions due to
frame-dragging alone for the same stars; filled bars are stars
with e � 0:9. Green histograms show the predicted precessions
due to the SBH quadrupole moment alone, again with high-e
orbits indicated. The assumed value of the SBH spin is � ¼ 1 in
the top frames and � ¼ 0:1 in the bottom frames.
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(ii) In models with a steep density profile, � ¼ 2, de-
tection of frame dragging is feasible at a � 0:2 mpc
after �t ¼ 1 yr in most of the models; at a �
0:5 mpc after �t ¼ 3 yr; and at a � 1 mpc after
�t ¼ 10 yr. The exceptions are models with a large
fraction of stellar BHs (R ¼ 1) in which the stellar
perturbations always dominate.

With regard to quadrupole precession, Fig. 9 suggests
that hNdetecti> 1 occurs in tandem with large ( * 50%) f
only for rather narrow sets of parameters, e.g., � � 2, ~M �

30, a & 0:2 mpc, R & 0:1, �t * 10 yr. Detecting the
effects of the quadrupole torque above noise from the
stellar perturbations is apparently only feasible if the stellar
cluster is rather finely tuned: there must be a substantial
number of stars very close to the SBH, r & 0:2 mpc, but at
the same time a small number of stellar remnants so that
the stellar perturbations do not dominate.
In practice, the quadrupole-induced precession may be

large compared with that due to stellar perturbations, but
still small compared with precession due to frame drag-

FIG. 8 (color online). Detectability of frame dragging in four models for the stellar cluster. Results are displayed in four bins of
semimajor axis a (in mpc). In each panel, circles denote hNdetecti, the average number of stars with detectable precessions, as defined in
the text;þ symbols denote the percentage of stars that are detectable in that bin; andh symbols denote the average precession angle of
the detectable stars in the bin, expressed in units of 10
4 arc min . In each group of similar symbols, the left (red), middle (blue), and
right (black) symbols are for models with R ¼ ð1; 0:1; 0Þ, respectively, while the integration time is indicated by the size of the
symbol: 1 yr (smallest), 3 yr, and 10 yr (biggest). The tick marks indicate hNdetecti ¼ 1, f ¼ 50%, and h��i ¼ 10 �as. Empty panels
are cases where all data values lie below the plotted range.
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ging, making it difficult to see in the data. As shown in
Fig. 1, tQ < tJ only holds at very small radii, r &
0:05 mpc, unless eccentricities are large.

IV. DISCUSSION

A. Compensating for stellar perturbations

The numerical experiments described above were de-
signed to elucidate the extent to which noise from stellar
perturbations can mask the signal from GR spin effects at
the Galactic center. In situations where the stellar pertur-
bations are present but not dominant, one would like to be
able to detect the perturbations and remove their effects
from the data. Here, we outline one approach to that
problem.

Suppose that one observes a set of stars at the discrete
times tj, j ¼ 1; . . . ; Nobs. Denoting the stars by index k ¼
1; . . . ; Norb, the Norb orbital solutions are required to satisfy
the equations

dLk

dt
¼ !k �LkðtjÞ þ rkðtjÞ � FNðtj; rkÞ; (37a)

!k ¼ P
1
k ðAJ;k 
 AQ;k cosikÞĴ: (37b)

Here, FNðt; rÞ is the perturbing force field due to all the
stars and stellar remnants, and rkðtÞ is the position of the
kth star at time t. FN depends explicitly on the time, to the
extent that the orbits of the stars that produce the perturb-
ing force are changing.

FIG. 9 (color online). Detectability of quadrupole precession. All symbols are defined as in Fig. 8.
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We first consider the orbital solutions for each observed
star separately. In their most general form, Eqs. (37) are
under determined (3Nobs equations with 3þ 3Nobs un-
knowns). To make progress, it is necessary to introduce
approximations. On the short time scales of relevance, the
contribution to the total gravitational potential from the
stars can be considered (1) fixed in time and (2) not
strongly varying in space. For instance, a spatially uniform
F is the lowest-order term in a multipole expansion, and
one could add, if necessary, dipole and quadrupole terms,
etc.

As an example, we consider a stellar perturbation that is
modeled as

�?ðx; y; zÞ ¼ 2�G	tðAxx
2 þ Ayy

2 þ Azz
2Þ: (38)

This is the potential due to a homogeneous triaxial cluster
centered on the SBH and aligned with the coordinate axes;
the dimensionless quantities ðAx; Ay; AzÞ are determined by

the axis ratios of the ellipsoid [69]. Proceeding as in the
derivation of Eq. (8), one can derive the (Newtonian) orbit-
averaged effect of this perturbing potential on the orienta-
tions of orbital planes. For instance, in the case of low-
eccentricity orbits, one finds [70]

dL

dt
¼ TN; (39a)

TN ¼ 4�G	ta
2

L2

ðAz 
 AxÞLyLz

ðAy 
 AzÞLxLz

ðAx 
 AyÞLxLy

0BB@
1CCA (39b)

with L constant. Similar expressions can be derived for
orbits of arbitrary eccentricity [70].

In practice, one would simultaneously fit all the parame-
ters appearing in Eq. (37) to the observed positions and/or
velocities. In the case of the model potential just assumed,
this would amount to introducing 9 additional parameters
to the 6 required for a Keplerian solution, i.e., !k; the
perturbing density 	t and its two axis ratios; and the three
direction cosines that define the orientation of the ellipsoid.
A data set with Nobs � 5 is then formally well determined.
Note however that Nobs � 5 is required to obtain a full
solution with a reasonable goodness of fit. Repeating this
fitting procedure for the Norb orbits will then allow one to
estimate the orbit-to-orbit variation in the parameters that
define the perturbation. If the latter is large, the model can
be made more general by the addition of extra parameters.

This fitting procedure will yield an estimate of!k for the
Norb orbits that is independent of any assumptions about
the underlying physics of the GR precession, apart from the
assumption that the precession rate is constant. Given
enough orbits, the empirically determined values !k can
be correlated with the orbital properties to test in an almost
assumption-free way nonstandard theories of gravity. The
no-hair conjecture can be tested explicitly by substituting
into Eq. (37b) the GR expressions (14):

AJ;k ¼ 4��%
3=2
k ; AQ;k ¼ 3��2%
2

k (40)

with % the penetration parameter defined above. The torque
Eq. (37) can then be written as

dLk

dt
¼ 4�ð%
3=2

k =PkÞ
�
1þ 3

4
%
1=2
k �  ðLk=LkÞ

�
ð� �LkÞ

þ TN;k: (41)

The second (small) term in the square brackets (%k � 1)
reflects the relative contribution of the quadrupole moment
to the precession. The same fitting procedure outlined
above for the general case can be carried out here, with
the difference that the vector �, which replaces !k, is
common to all the orbits, and therefore a simultaneous
fitting of the entire set of Norb orbits will improve the
power of the orbital solutions. The comparison of the
best-fit values of � from individual orbits to the one from
the simultaneous global fit can help assess the robustness
of the result.
An initial test of the no-hair conjecture could be ob-

tained by repeating the fit once with, and once without the
quadrupole term, to check whether the quadrupole term
indeed improves the fit. A slightly more discriminating test
would be to introduce an extra free prefactor fQ to the

quadrupole term, and see whether the best fit yields fQ �
1. More sophisticated tests would require assuming spe-
cific alternative functional forms for the quadrupole term.

B. Independent constraints on the spin

The foregoing assumes that the mass M� of the
Milky Way SBH is a known quantity, i.e., that it need not
be treated as a free parameter when fitting the astrometric
data to Eq. (37). Determinations of M� are based on the
motion of stars on spatial scales of 101–103 mpc [8,9,66],
outside the region where GR spin effects are detectable.
In the same way, independent measurements of the

magnitude and direction of the SBH’s spin J could remove
as many as three additional parameters from Eq. (37),
reducing the uncertainty on estimates of the quadrupole
moment.
A number of approaches to the determination of J are

being pursued. SgrA�, the compact source of radio, infra-
red and X-radiation at the center of theMilkyWay, exhibits
variability at IR and X-ray wavelengths on time scales as
short as 20–30 minutes that can be interpreted as emission
from ‘‘hot spots’’ in orbits just outside the SBH event
horizon [71–74]. If this interpretation is correct, � *
0:3–0:5 is required in order that the orbital period at the
innermost stable orbit be as short as the observed rise times
for the flaring events [71,75,76]. Very long baseline inter-
ferometry at sub-mm wavelengths has the capacity to
resolve the structure of the plasma surrounding the SBH
on angular scales of 10–100 �as, comparable to rg
[77,78]. Such observations can constrain the spin via com-
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parison with theoretical accretion disk models, or by de-
tection of variability on spatial scales of�rg [79–81]. The

properties of the X-ray polarization from the inner accre-
tion disk are also predicted to be spin dependent [82].

Constraints on J derived from observations like these
will be highly model dependent, requiring assumptions
about the nature of the emission, the geometry and physical
state of the emitting gas (accretion vs outflow or jets), etc.
It is not clear at present whether the systematic uncertain-
ties of these independent spin measurements will be larger
or smaller than the uncertainties associated with astromet-
ric estimates of the spin; the latter are due both to the stellar
perturbations modeled here, and also to the difficulties
associated with measurement of proper motions of faint
stars in crowded fields [28]. Additional, if uncertain, infor-
mation on the SBH spin can be used to improve the global
orbital solutions by including it as prior probabilities in
Bayesian best-fit methods for large-dimensional parameter
spaces, such as the Markov chain Monte Carlo method
[83,84].

VII. CONCLUSIONS

(1) The spin and quadrupole moment of the Galactic
center SBH can in principle be measured by observ-
ing the precession of the orbital planes of stars in the
inner mpc [23]. However, gravitational interactions
between stars in this region are likely to induce
orbital precession of the same approximate ampli-
tude as the precession due to frame dragging. The
stellar perturbations manifest themselves as coher-
ent torques over short time scales, mimicking GR
precession.

(2) The number of stars and stellar remnants (e.g.
stellar-mass black holes, BHs) in this region is un-
certain, but small enough (� 100–103) that full
N-body simulations are feasible. A regularized
post-Newtonian N-body algorithm is presented

that includes the lowest-order spin-orbit and
quadrupole-orbit terms.

(3) Assuming near-maximal spin for the Milky Way
SBH, detection of frame-dragging precession may
be feasible after a few years’ monitoring with an
instrument like GRAVITY [24] for orbits in the
radial range between �0:2 mpc and �1 mpc. At
smaller radii the number of stars is too small, while
at larger radii the star-star and star-remnant pertur-
bations dominate GR effects. In models where the
number of stellar BHs is comparable to the number
of observable stars, GR effects are almost always
swamped by perturbations from the remnants.

(4) Quadrupole-induced precession stands out clearly
from stellar perturbations only in a narrow class of
models for the nuclear star cluster, having moderate
to high central densities and a small BH fraction,
and only at radii r & 0:2 mpc.

(5) Because the orbit-averaged torques from stars are
approximately constant in magnitude over year-long
time scales, it is possible in principle to disentangle
the effects of stellar perturbations from those due to
GR, allowing tests of gravity even in the presence of
stellar perturbations.
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