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A bosonic field impinging on a rotating black hole can be amplified as it scatters off the hole, a

phenomenon known as superradiant scattering. If in addition the field has a nonzero rest mass �, the mass

term effectively works as a mirror, reflecting the scattered wave back towards the black hole. In this

physical system, known as a black-hole bomb, the wave may bounce back and forth between the black

hole and some turning point, amplifying itself each time. Consequently, the field grows exponentially over

time and is unstable. In this paper we study analytically for the first time the phenomenon of superradiant

instability (the black-hole bomb mechanism) in the regime M� ¼ Oð1Þ of greatest instability. We find a

maximal instability growth rate of ��1 ¼ 1:7� 10�3M�1. This instability is 4 orders of magnitude

stronger than has been previously estimated.

DOI: 10.1103/PhysRevD.81.061502 PACS numbers: 04.70.Bw

Black holes are the fundamental ‘‘atoms’’ of general
relativity. They also play a central role in high energy
physics, astrophysics, and even in condensed matter phys-
ics. The fundamental role of black holes makes it highly
important to study the nature of their stability: If a black
hole is perturbed in some small way, will the perturbation
die away over time? Or will it grow exponentially until it
can no longer be considered a perturbation and hence
demonstrate the instability of the black hole?

The issue of black-hole stability was first addressed by
Regge and Wheeler [1] who demonstrated the stability of
the spherically symmetric Schwarzschild black hole. If a
Schwarzschild black hole is perturbed, then the perturba-
tion will oscillate and damp out over time [2]. This implies
that perturbation fields would either be radiated away to
infinity or swallowed by the black hole.

The stability question of rotating Kerr black holes is a bit
more involved. Press and Teukolsky [3,4] have shown that
rotating black holes are stable under free gravitational
perturbations (see also [5] and references therein).
However, the superradiance effect may change this con-
clusion. Superradiant scattering is a well-known phenome-
non in quantum systems [6,7] as well as in classical ones
[8,9]. Considering a wave of the form eim�e�i!t incident
upon a rotating object whose angular velocity is �, one
finds that if the frequency ! of the incident wave satisfies
the relation

!<m�; (1)

then the scattered wave is amplified.
A bosonic field impinging upon a rotating Kerr black

hole can be amplified if the superradiance condition (1) is
satisfied, where in this case � ¼ a

r2þþa2
is the angular

velocity of the black-hole horizon. Here rþ and a are the
horizon radius and the angular momentum per unit mass of
the black hole, respectively. The energy radiated away to

infinity may actually exceed the energy present in the
initial perturbation. Feeding back the amplified scattered
wave, one can gradually extract the rotational energy
of the black hole. Press and Teukolsky suggested to use
this mechanism to build a black-hole bomb [10]: If one
surrounds the black hole by a reflecting mirror, the
wave will bounce back and forth between the black hole
and the mirror, amplifying itself each time. Thus, the
total energy extracted from the black hole will gradually
grow.
Remarkably, nature sometimes provides its own mirror

[9]: If one considers a massive scalar field with mass M
scattered off a rotating black hole, then for !<� �
MG=@c the mass term effectively works as a mirror
[11–15]. The physical idea is to consider a wave packet
of the massive field in a bound orbit around the black hole
[12,13]. The gravitational force binds the field and keeps it
from escaping to infinity. At the event horizon some of the
field goes down the black hole, and if the frequency of the
wave is in the superradiance regime (1), then the field is
amplified. In this way the field is amplified at the horizon
while being bound away from infinity. Consequently,
the massive field grows exponentially over time and is
unstable [13].
The nature of the superradiant instability (the black-hole

bomb) depends on two parameters:
(i) The rotation rate a of the black hole.
(ii) The dimensionless product of the black-hole mass

M and the field mass�. The productM� is actually
the ratio of the black-hole size to the Compton
wavelength associated with the rest mass of the
field. (We shall henceforth use natural units in
which G ¼ c ¼ @ ¼ 1. In these units � has the
dimensions of 1/length.)

Former analytical estimates of the instability time scale
associated with the dynamics of a massive scalar field in
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the rotating Kerr spacetime were restricted to the regimes
M� � 1 [12] and M� � 1 [13,14]. In these two limits
the growth rate of the field (the imaginary part !I of
the mode’s frequency) was found to be very weak, scaling
like M�1e�1:84M� � 1 for M� � 1 [12] and like
M�1ðM�Þ9 � 1 for the M� � 1 case [13,14]. We note,
however, that the former analytical approximations [12–
14] fail in the regime M� ¼ Oð1Þ. Thus, direct numerical
integration of the perturbation equations seemed necessary
to find the actual growth rate of the perturbations in this
regime [12,14,15]. These numerical investigations have
indicated that the superradiant instability is in fact greatest
in the regime M� ¼ Oð1Þ [12,14–16]. A new analytical
study of the superradiant instability in the regime M� ¼
Oð1Þ is therefore physically desirable.

It is worth noting that previous numerical investigations
[12,14,15] of the black-hole bomb have indicated that the
instability is most effective under the following conditions:

(i) The black hole is maximally rotating with a ’ M.
(ii) The dimensionless productM� satisfies the relation

M�� 1
2 .

(iii) The frequency of the unstable mode satisfies the
relations ! ’ m� and ! ’ �. (Of course, for the
mode to be in the superradiant regime one should
have !<m�. In addition, for the mode to be in a
bound state it should satisfy !<�.)

As we shall show below, the black-hole bomb and the
associated instability time scale can be studied analytically
in the above-mentioned regime of physical interest (the
regime of the greatest instability). The physical system we
consider consists of a massive scalar field coupled to a
rotating Kerr black hole. The dynamics of a scalar field �
of mass � in the Kerr spacetime [17] is governed by the
Klein-Gordon equation

ðrara ��2Þ� ¼ 0: (2)

One may decompose the field as

�lmðt; r; �;�Þ ¼ eim�Slmð�; a!ÞRlmðr; a!Þe�i!t; (3)

where ðt; r; �;�Þ are the Boyer-Lindquist coordinates [17],
! is the (conserved) frequency of the mode, l is the
spheroidal harmonic index, and m is the azimuthal har-
monic index with �l � m � l. (We shall henceforth
omit the indices l and m for brevity.) With the decompo-
sition (3), R and S obey radial and angular equations, both
of confluent Heun type, coupled by a separation constant
Aða!Þ [18,19]. The sign of !I determines whether the
solution is decaying ð!I < 0Þ or growing ð!I > 0Þ in time.

The angular functions Sð�; a!Þ are the spheroidal har-
monics which are solutions of the angular equation [4,19]

1

sin�

@

@�

�
sin�

@S

@�

�
þ

�
a2ð!2 ��2Þcos2�� m2

sin2�
þ A

�
S

¼ 0: (4)

The angular functions are required to be regular at the

poles � ¼ 0 and � ¼ �. These boundary conditions pick
out a discrete set of eigenvalues fAlg labeled by an integer l.
For ! ’ � one can treat a2ð!2 ��2Þcos2� in Eq. (4) as a
perturbation term on the generalized Legendre equation.
We can then expand the separation constants in powers of
a2ð�2 �!2Þ to find [20]

A ¼ lðlþ 1Þ þ X1
k¼1

cka
2kð�2 �!2Þk: (5)

The expansion coefficients fckg are given in [20]. [For
example, for l ¼ m ¼ 1, the case of physical interest
(see below), we find c1 ¼ 1=5, c2 ¼ �4=875, c3 ¼
8=65 625; . . . .]
The radial Teukolsky equation is given by [21–23]

�
d

dr

�
�
dR

dr

�
þ ½K2 ��ða2!2 � 2ma!þ�2r2 þ AÞ�R

¼ 0; (6)

where � � r2 � 2Mrþ a2 and K � ðr2 þ a2Þ!� am.

The zeroes of �, r	 ¼ M	 ðM2 � a2Þ1=2, are the black-
hole (event and inner) horizons.
We are interested in solutions of the radial equation (6)

with the physical boundary conditions of purely ingoing
waves at the black-hole horizon (as measured by a comov-
ing observer) and a decaying (bounded) solution at spatial
infinity [12,15]. That is,

R�
�
1
r e

�
ffiffiffiffiffiffiffiffiffiffiffiffi
�2�!2

p
y as r ! 1ðy ! 1Þ

e�ið!�m�Þy as r ! rþðy ! �1Þ; (7)

where the ‘‘tortoise’’ radial coordinate y is defined by dy ¼
½ðr2 þ a2Þ=��dr. These boundary conditions single out a
discrete set of resonances f!ng which correspond to bound
states of the massive field [12,15].
It is convenient to define new dimensionless variables

x � r� rþ
rþ

; � � 8�MTBH ¼ rþ � r�
rþ

;

$ � !�m�

2�TBH

; k � 2!rþ;
(8)

in terms of which the radial equation becomes

xðxþ �Þ d
2R

dx2
þ ð2xþ �Þ dR

dx
þ VR ¼ 0; (9)

where V � K2=r2þxðxþ �Þ � ½a2!2 � 2ma!þ
�2r2þðxþ 1Þ2 þ A� and K ¼ r2þ!x2 þ rþkxþ rþ$�=2.
As discussed above, previous numerical investigations

[12,14,15] have indicated that the black-hole instability is
most pronounced in the regime � � 1 with Mðm��
!Þ � 1. As we shall now show, the radial equation is
amenable to an analytic treatment in this regime of physi-
cal interest.
We first consider the radial equation (9) in the far region

x � maxf�;Mðm��!Þg. Then Eq. (9) is well approxi-
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mated by

x2
d2R

dx2
þ 2x

dR

dx
þ VfarR ¼ 0; (10)

where Vfar ¼ ð!2 ��2Þr2þx2 þ 2ð!k��2rþÞrþx�
ða2!2 � 2ma!þ�2r2þ þ A� k2Þ. A solution of
Eq. (10) that satisfies the boundary condition (7) can be
expressed in terms of the confluent hypergeometric func-
tions Mða; b; zÞ [20,24],

R ¼ C1ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

q
rþÞð1=2Þþ�x�ð1=2Þþ�e�

ffiffiffiffiffiffiffiffiffiffiffiffi
�2�!2

p
rþx

�M

�
1

2
þ �� �; 1þ 2�; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

q
rþx

�

þ C2ð� ! ��Þ; (11)

where C1 and C2 are constants and

�2 � a2!2 � 2ma!þ�2r2þ þ A� k2 þ 1

4
;

� � !k��2rþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

p :
(12)

The notation ð� ! ��Þ means ‘‘replace � by �� in the
preceding term.’’

We next consider the near horizon region x � 1. The
radial equation is given by Eq. (9) with V ! Vnear �
�ða2!2 � 2ma!þ�2r2þ þAÞþ ðkxþ$�=2Þ2=xðxþ �Þ.
The physical solution obeying the ingoing boundary con-
ditions at the horizon is given by [20,24]

R ¼ x�ði=2Þ$
�
x

�
þ 1

�
iðð1=2Þ$�kÞ

2

� F1

�
1

2
þ �� ik;

1

2
� �� ik; 1� i$;�x=�

�
; (13)

where 2F1ða; b; c; zÞ is the hypergeometric function.
The solutions (11) and (13) can be matched in the over-

lap region maxf�;Mðm��!Þg � x � 1. The x � 1
limit of Eq. (11) yields [20,24]

R ! C1ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

q
rþÞð1=2Þþ�x�ð1=2Þþ� þ C2ð� ! ��Þ:

(14)

The x � � limit of Eq. (13) yields [20,24]

R ! �ð1=2Þ���i$=2 �ð2�Þ�ð1� i$Þ
�ð12 þ �� ikÞ�ð12 þ �� i$þ ikÞ

� x�ð1=2Þþ� þ ð� ! ��Þ: (15)

By matching the two solutions in the overlap region one
finds

C1 ¼ �ð1=2Þ���i$=2 �ð2�Þ�ð1� i$Þ
�ð12 þ �� ikÞ�ð12 þ �� i$þ ikÞ

� ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

q
rþÞ�ð1=2Þ��; (16)

C2 ¼ �ð1=2Þþ��i$=2 �ð�2�Þ�ð1� i$Þ
�ð12 � �� ikÞ�ð12 � �� i$þ ikÞ

� ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

q
rþÞ�ð1=2Þþ�: (17)

Approximating Eq. (11) for x ! 1, one gets [20,24]

R !
�
C1ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

q
rþÞ�� �ð1þ 2�Þ

�ð12 þ �� �Þ x
�1��

þ C2ð� ! ��Þ
�
e

ffiffiffiffiffiffiffiffiffiffiffiffi
�2�!2

p
rþx

þ
�
C1ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

q
rþÞ� �ð1þ 2�Þ

�ð12 þ �þ �Þ
� x�1þ�ð�1Þ�ð1=2Þ��þ� þ C2ð� ! ��Þ

�

� e�
ffiffiffiffiffiffiffiffiffiffiffiffi
�2�!2

p
rþx: (18)

A bound state is characterized by a decaying field at spatial
infinity. The coefficient of the growing exponent

e
ffiffiffiffiffiffiffiffiffiffiffiffi
�2�!2

p
rþx in Eq. (18) should therefore vanish. Taking

cognizance of Eqs. (16)–(18) for $ � 1 [here we use
Stirling’s formula [20] for �ð12 	 �� i$þ ikÞ], one finds
the resonance condition for the bound states of the field,

1

�ð12 þ �� �Þ ¼ ð8iÞ2�
�
�ð�2�Þ
�ð2�Þ

�
2

� �ð12 þ �� ikÞ
�ð12 � �� ikÞ�ð12 � �� �Þ

�
�
Mrþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

q
ðm��!Þ

�
2�
:

(19)

The growing resonances of the field can be estimated
analytically in the regime of physical interest ! ’ � ’
m�: We first note that in this regime the right-hand side

of Eq. (19) is small [due to the factors rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

p
and

Mðm��!Þ]. One may therefore write a zeroth-order
approximation for the resonance condition: LHS �
1=�ð12 þ �� �Þ ’ 0. Using the well-known pole structure

of the Gamma functions [20], one finds the approximated
resonance condition

1
2 þ �� � ¼ �n; (20)

where n 
 0 is a non-negative integer. Taking cognizance
of Eqs. (5) and (12), one realizes that Eq. (20) is a simple
polynomial equation for the variableM2ð�2 �!2Þ, whose
solutions we denote by!ð0Þ

R . [Note that for the zeroth-order

approximation one has !ð0Þ
I ¼ 0.] One can then use !ð0Þ

R in

the equation ImLHSð!ð0Þ
R ;!ð1Þ

I Þ ¼ ImRHSð!ð0Þ
R ;!ð1Þ

I Þ to
obtain a simple polynomial equation for the first-order

solution !ð1Þ
I .
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In Fig. 1 we depict results for the most unstable (fastest
growing) mode with l ¼ m ¼ 1. We present results of the
direct solutions of both the exact resonance condition (19)
and the polynomial approximation (20). One finds a good
qualitative agreement between the two. The maximum
growth rate we find is ��1 � !I ¼ 1:7� 10�3M�1, where
� is the e-folding time. We would like to emphasize that
this growth rate is 4 orders of magnitude stronger than has
been previously found.

What are the observable consequences of this instabil-
ity? Let us consider, for example, the neutral spinless pion
�0 whose mass is � ’ 134:97 MeV=c2. The superradiant
instability is most pronounced for M� ’ 0:469, which
corresponds to a primordial black hole of mass M ’ 9:3�
1011 Kg [15]. For the superradiant instability to be effec-
tive, the lifetime of the neutral pion, �1=2 ’ 8:2�
10�17 sec, should be significantly longer than the time
scale associated with the instability, � ¼ ð1:7�
10�3Þ�1GM=c3 ’ 1:3� 10�21 sec. This condition is in-
deed satisfied by more than 4 orders of magnitude. One
therefore concludes that the superradiant instability in the
neutral pion channel may indeed manifest itself for pri-
mordial black holes.

In summary, we have studied analytically the instability
of rotating black holes to perturbations of massive scalar
fields. Former analytical estimations [12–14] of the time
scale associated with the instability were restricted to the
regimes M� � 1 and M� � 1. In these two limits the
growth rate of the field was found to be extremely weak.
However, subsequent numerical investigations [12,14,15]
have indicated that the instability is actually greatest in the
regime M� ¼ Oð1Þ, where unfortunately the previous
analytical approximations are not suitable to describe the
dynamics of this instability. Motivated by these numerical
studies, we have provided here, for the first time, an
analytic treatment of the superradiant instability (the

black-hole bomb mechanism) in the physically most inter-
esting regime M�� 1

2 , where the instability is most pro-

nounced. We find an instability growth rate of
��1 � !I ¼ 1:7� 10�3M�1 for the fastest growing
mode—4 orders of magnitude stronger than has been
previously estimated.
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