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In this paper, by use of the holographic principle together with the equipartition law of energy and the

Unruh temperature, we derive the Friedmann equations of a Friedmann-Robertson-Walker universe.
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It is a long-held idea that gravity is not regarded as a
fundamental interaction in Nature. The earliest idea on this
was proposed by Sakharov in 1967 [1]. In this so-called
induced gravity, spacetime background emerges as a mean
field approximation of underlying microscopic degrees of
freedom, similar to hydrodynamics or the continuum elas-
ticity theory from molecular physics [2]. This idea has
been further developed since the discovery of the thermo-
dynamic properties of black holes in the 1970s. Black hole
thermodynamics tells us that a black hole has an entropy
proportional to its horizon area and a temperature propor-
tional to its surface gravity at the black hole horizon, and
the entropy and temperature together with the mass of the
black hole satisfy the first law of thermodynamics [3–5].

The geometric feature of thermodynamic quantities of a
black hole leads Jacobson to ask an interesting question
about whether it is possible to derive Einstein’s equations
of gravitational fields from a point of view of thermody-
namics [6]. It turns out that it is indeed possible. Jacobson
derived Einstein’s equations by employing the fundamen-
tal Clausius relation �Q ¼ TdS together with the equiva-
lence principle. Here the key idea is to demand that this
relation hold for all the local Rindler causal horizons
through each spacetime point, with �Q and T interpreted
as the energy flux and Unruh temperature seen by an
accelerated observer just inside the horizon. In this way,
Einstein’s equation is nothing but an equation of state of
spacetime.

Further, assuming the apparent horizon of a Friedmann-
Robertson-Walker (FRW) universe has temperature T and
entropy S satisfying T ¼ 1=2�~rA and S ¼ A=4G, where
~rA is the radius of the apparent horizon and A is the area of
the apparent horizon, one is able to derive Friedmann
equations of the FRW universe with any spatial curvature
by applying the Clausius relation to apparent horizon [7].
This works not only in Einstein’s gravitational theory, but
also in Gauss-Bonnet and Lovelock gravity theories. Here
a key ingredient is to replace the entropy area formula in
Einstein’s theory by using entropy expressions of a black

hole horizon in those higher order curvature theories.
Recently the Hawking temperature associated with the
apparent horizon of a FRW universe has been shown [8].
There exist a lot of papers investigating the relation be-
tween the first law of thermodynamics and the Friedmann
equations of FRW universe in various gravity theories. For
more references see, for example, [9,10] and references
therein.
Another hint appears on the relation between thermody-

namics and gravitational dynamics by investigating the
relation between the first law of thermodynamics and
gravitational field equation in the setup of black hole
spacetime. Padmanabhan [11] first noticed that the gravi-
tational field equation in a static, spherically symmetric
spacetime can be rewritten as a form of the ordinary first
law of thermodynamics at a black hole horizon. This
indicates that Einstein’s equation is nothing but a thermo-
dynamic identity. This observation was then extended to
the cases of stationary axisymmetric horizons and evolving
spherically symmetric horizons in Einstein’s gravity [12],
static spherically symmetric horizons [13], and dynamical
apparent horizons [14] in Lovelock gravity, and three
dimensional Banados-Teitelboim-Zanelli black hole hori-
zons [15]. Very recently it has been shown that it also holds
in Horava-Lifshitz gravity [16]. For a recent review on this
topic and some relevant issues, see [17].
In a very recent paper by Verlinde [18], the viewpoint of

gravity being not a fundamental interaction has been fur-
ther advocated. Gravity is explained as an entropic force
caused by changes in the information associated with the
positions of material bodies. Among various interesting
observations made by Verlinde, here we mention two of
them. One is that with the assumption of the entropic force
together with the Unruh temperature [19], Verlinde is able
to derive the second law of Newton. The other is that the
assumption of the entropic force together with the holo-
graphic principle and the equipartition law of energy leads
to Newton’s law of gravitation. Similar observations are
also made by Padmanabhan [20]. He observed that the
equipartition law of energy for the horizon degrees of
freedom combing with the thermodynamic relation S ¼
E=2T, also leads to Newton’s law of gravity, here S and T
are thermodynamic entropy and temperature associated
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with the horizon and E is the active gravitational mass
producing the gravitational acceleration in the spacetime
[21]. Finally, we mention that there exist some earlier
attempts to build microscopic models of spacetime, for
example, see [22–24].

In this short paper we are going to derive the Friedmann
equations governing the dynamical evolution of the FRW
universe from the viewpoint of entropic force together with
the equipartition law of energy and the Unruh temperature
by generalizing some arguments of Verlinde to dynamical
spacetimes.

Consider the FRW universe with metric

ds2 ¼ �dt2 þ a2ðtÞðdr2 þ r2d�2Þ; (1)

where aðtÞ is the scale factor of the universe. Following
[18], consider a compact spatial region V with a compact
boundary @V , which is a sphere with physical radius ~r ¼
ar. The compact boundary @V acts as the holographic
screen. The number of bits on the screen is assumed as

N ¼ Ac3

G@
; (2)

where A is the area of the screen (note that there is a factor
difference 1=4 from the Bekenstein-Hawking area entropy
formula of black hole). Assuming the temperature on the
screen is T, and then according to the equipartition law of
energy, the total energy on the screen is

E ¼ 1
2NkBT: (3)

Further, just as in [18], we need the relation

E ¼ Mc2; (4)

where M represents the mass that would emerge in the
compact spatial regionV enclosed by the boundary screen
@V .

Suppose the matter source in the FRW universe is a
perfect fluid with stress-energy tensor

T�� ¼ ð�þ pÞu�u� þ pg��: (5)

Because of the pressure, the total mass M ¼ �V in the
region enclosed by the boundary @V is no longer con-
served, the change in the total mass is equal to the work
made by the pressure dM ¼ �pdV, which leads to the
well-known continuity equation

_�þ 3Hð�þ pÞ ¼ 0; (6)

where H ¼ _a=a is the Hubble parameter.
The total mass in the spatial region V can be expressed

as

M ¼
Z
V
dVðT��u

�u�Þ; (7)

where T��u
�u� is the energy density measured by a co-

moving observer. On the other hand, the acceleration for a
radial comoving observer at r, namely, at the place of the

screen, is

ar ¼ �d2~r=dt2 ¼ � €ar; (8)

where the negative sign arises because we consider the
acceleration is caused by the matter in the spatial region
enclosed by the boundary @V . Note that the proper accel-
eration vanishes for a comoving observer. However, the
acceleration (8) is crucial in the following discussions.
According to the Unruh formula, we assume that the
acceleration corresponds to a temperature

T ¼ 1

2�kBc
@ar: (9)

Now it is straightforward to derive the following equation
from Eqs. (2)–(4), (7), and (9):

€a ¼ � 4�G

3
�a: (10)

This is nothing but the dynamical equation for Newtonian
cosmology (page 10 in [25]). Note that Ref. [25] derives
(10) from the Newtonian gravity law, while we obtain (10)
by using the holographic principle and the equipartition
law of energy in statistical physics. To produce the
Friedmann equations of the FRW universe in general rela-
tivity, let us notice that producing the acceleration is the so-
called active gravitational mass M [21], rather than the
total mass M in the spatial region V . The active gravita-
tional mass is also called Tolman-Komar mass, defined as

M ¼ 2
Z
V
dV

�
T�� � 1

2
Tg��

�
u�u�: (11)

Replacing M by M, we have in this case

€a

a
¼ � 4�G

3
ð�þ 3pÞ: (12)

This is just the acceleration equation for the dynamical
evolution of the FRW universe. Multiplying _aa on both
sides of Eq. (12), and using the continuity equation (6), we
integrate the resulting equation and obtain

H2 þ k

a2
¼ 8�G

3
�: (13)

Note that k appears in (13) as an integration constant, but it
is clear that the constant k has the interpretation as the
spatial curvature of the region V in the Einstein theory of
gravity. k ¼ 1, 0 and �1 correspond to a closed, flat, and
open FRW universe, respectively.
The above discussion can be extended to any spacetime

dimension d � 4. In that case, the number of bits on the
screen is changed to [18]

N ¼ 1

2

d� 2

d� 3

Ac3

G@
; (14)

the continuity equation becomes _�þ ðd� 1ÞHð�þ pÞ ¼
0, and the active mass M is defined as
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M ¼ d� 2

d� 3

Z
V
dV

�
T�� � 1

d� 2
Tg��

�
u�u�: (15)

The acceleration equation (12) is changed to

€a

a
¼ � 8�G

ðd� 1Þðd� 2Þ ððd� 3Þ�þ ðd� 1ÞpÞ: (16)

Integrating (16) we then have

H2 þ k

a2
¼ 16�G

ðd� 1Þðd� 2Þ�: (17)

This is just the Friedmann equation of the FRWuniverse in
d dimensions.

Thus we have derived the Friedmann equations of a
FRW universe starting from the holographic principle
and the equipartition law of energy by using Verlinde’s
argument that gravity appears as an entropic force. Before
we close this paper, however, some remarks are in order.
First, it is claimed that Verlinde’s arguments are applicable
to any spacetime, but Verlinde mainly discusses the cases
of static and/or stationary spacetimes. In particular, when
he derives Einstein’s equation, a timelike Killing vector is
employed. The timelike Killing vector exists for static or
stationary spacetimes, and it does not for a dynamical
spacetime. Here we have applied his arguments to the
FRW universe, a special dynamical spacetime, and ob-
tained the dynamical equations governing the evolution
of the FRW universe. Second, in deriving Newton’s law
of gravity, Verlinde considers a spherical surface with a
fixed radius as the holographic screen, and does not take
into account the evolution of the background spacetime
itself. This is right since in Newton’s gravity, the back-
ground spacetime is a fixed one. In our case, the holo-
graphic screen is a dynamical one, in some sense, so it can
be viewed as a surface of the spherical symmetric dust
matter [25]. The surface evolves due to the self-gravity.
Thus, an observer (or a test particle) on the screen will feel
a force which leads to an acceleration (8). The final com-
ment is concerned with the assumed relation (9).
According to Unruh, the acceleration could correspond to

a local Unruh temperature on the screen (9). Note that the
acceleration (8) is not a proper acceleration; the proper
acceleration vanishes for a comoving observer in the FRW
universe. In fact, ar is just the acceleration of geodesic
deviation vector [26]. Let us recall that Verlinde arrives at
the second law of Newton starting from entropic force
together with the Unruh relation (Eq. (3.8) in [18]), which
relates the temperature on the screen to an acceleration.
Note that the second law of Newton is a nonrelativistic
form, where the acceleration has a form €x. The situation is
the same as the case of the discussions in the present paper.
Indeed Eq. (10) has a nonrelativistic origin. It is argued by
Verlinde that here the Unruh relation should be read as a
formula for the temperature on the screen that is required to
cause the acceleration, not as usual, as the temperature
caused by an acceleration. Therefore, the relation (9) may
be regarded as a working ansatz here. Thus it is a very
interesting issue to see whether there exists such a relation
between the Unruh temperature and the acceleration. To
this aim, some useful references are already available [27]:
It is known that Hawking temperature in de Sitter space
and in some black hole spacetimes can be viewed as an
Unruh temperature for a Rindler observer in higher-
dimensional flat spacetimes in which the de Sitter space-
time and black holes spacetime can be embedded.
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paper appeared [26,28] in the preprint archive, .
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