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Cross section evaluation by spinor integration. II. The massive case in 4D

Bo Feng' and Honghui Wang**

' Center of Mathematical Science, Zhejiang University, Hangzhou 310027, China

2Zhejiang Institute of Modern Physics, Physics Department, Zhejiang University, Hangzhou 310027, China
(Received 6 February 2010; published 31 March 2010)

In this paper, we continue our study of calculating the cross section by the spinor method, i.e.,
performing the phase space integration using the spinor method. We have focused on the case where the
physical momenta are massive and in pure four dimensions. We established the framework of such a new
method and presented several examples, including two real progresses: Z° — 1~ H and qg — ffH".
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I. INTRODUCTION

In the Tevatron collider and the LHC, multiple final
states are observed frequently. In order to check the stan-
dard model and looking forward to finding new physics
beyond the standard model [1-4], we need to explore the
problem of how to calculate the cross section efficiently
and conveniently. In the past, the cross section was eval-
uated in the three-dimensional momentum space [5,6] and
people have developed quite mature numerical techniques.
For the applications of programs MADGRAPH, PYTHIA,
ALPGEN, and SHERPA, the reader can check the references,
for example, [7].

On the other hand, enormous progress has been made in
the evaluation of one-loop amplitudes [2]. One such
progress is the unitarity cut method originally proposed
in [8,9]. With the twistor program initiated by Witten [10],
the double cut phase space integration has been reduced to
algebraic manipulation through the holomorphic anomaly
[11-14]. Inspired by this simplification, in our first paper
[15], we have explored how to apply the spinor integration
method to the evaluation of the cross section for the mass-
less case. There are some obvious advantages compared
with the momentum integration method. First, the three-
dimensional momentum space integration can be
reduced to just one-dimensional integration and further-
more for the massless case, the integration region is just [0,
11."' Secondly, in the calculation, every step is manifestly
Lorentz-invariant, thus we obtain compact analytic
expressions.

Continuing our study for the massless case, in this paper
we focus on the massive case. We will see that if all the
mass is set to zero, the massless case will be reproduced.
Different from the massless case, the integration variable L
is no longer a null momentum. So we cannot apply the
spinor method directly. However this problem has been
solved in the unitarity cut method [16,17]. More accu-
rately, we can write
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L =¢+ zK,
(1.1)

[d‘*L - fdz[d4€5+(€2)(2€~1{);

where K is a fixed vector and z is a real number. Through
this decomposition, we establish the general framework for
the massive case by the spinor method.

In our first paper, we have emphasized the advantages of
using the spinor method [15]. In the massive case, the
constrained three-dimensional momentum space integra-
tion still can be reduced to a one-dimensional integration,
plus possible Feynman integrations. In every step, we get a
scalar type of integration, which is Lorentz-invariant.
Furthermore, the integration region can be written directly.
Though it is not simply [0, 1] like the massless case, it is
only the simple functions of mass and energy.

The outline of this paper is as follows. In Sec. II, we first
briefly review the four-dimensional unitarity cut method.
Then we take the Faddeev-Popov trick to establish the
general framework.

In Sec. 111, we apply our method to the pure phase space
integration for two, three, and four outgoing particles as
well as some simple examples to demonstrate the main
idea and features. These are the basis for practical and
more complicated applications.

In Sec. IV, we calculate two practical examples
and summarize some experience of performing the
integrations.

A summary of our results with some comments is given
in Sec. V.

II. FRAMEWORK TO USE SPINOR METHOD

In this section, we will set up the spinor integration
method for massive particles in four dimensions. Then
we apply this method to the phase space integration where
the integration region (i.e., the [ dx) of one dimensionless
parameter is determined by the kinematical discussion.
This region corresponds to the boundary of the whole
phase space of outgoing momenta. One important differ-
ence, compared to the massless case, is that the integration
region will be functions of masses of outgoing particles.
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A. The spinor integration method for massive cuts

Here, we briefly review the spinor integration method
for massive cuts (or sometimes called the ‘“‘unitarity cut
method”) [16-18]. The Lorentz-invariant phase space
(LIPS) of a massive double cut is defined by inserting
two & functions representing the cut conditions:

I = f d* 6+ (0* — m3)S((K — €)* — md), 2.1)

where € is the internal loop momentum and K the total
momentum through the unitarity cut. Because ¢ is a mas-
sive momentum, to use the spinor integration method we
need decompose it as

{=¢+ 7K, €2 =0:
) 2.2)
f &7 = f dzd* 06+ ()2 - K),

where ¢ is a null four-momentum, and can be expressed
with spinor variables as

{=1P,;,
f dHSH(2) = j ONAA] [ (dt.

Under this decomposition Eq. (2.1) becomes

P)\X == /\X;
(2.3)

1= [dzd4€5+(€2)(2€ “K)0T(2K* + 2zK - € — m3)
X 8T((1 = 22)K* = 2K - € + m? — m3)
= fdz((l —27)K* + m? — m3)

X 8% (z(1 — 2)K? + z(m% - m%) - m%)

<« (1 =22)K* + m3 — mj3
x f VAT,
_ (- 22)K? +m? —m)
t ONKIAT . (2.4)

The first line of the result it depends only on the variable z,
so we can use the & function to eliminate z as follows:

_ (K* + m} — m3) = ALK, my, my]

. , 2.5
o 2K? (2.5)
where we have defined

A[K, my, my] = (K> — m} — m3)? — dmim3.  (2.6)

Between the two solutions of z, only one should be taken.
To see that, we make a kinematical analysis. Choose a
center-of-mass frame such that

¢=1(ab0,0),
K—4¢=(E—a —b,0,0).

K=(E>0,000),

The mass-shell conditions require a*> — b> = m? and (E —
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a)* — b* =m3, so a = (E*> + m} —m3)/2E. In the de-
composition £ = € + zK, because the positive light cone
with 8 (€) has been chosen, we can write

¢ =(|bl, b,0,0), €= (|b| + zE, b, 0, 0).

Then |b| + zE = a. This means that only z_ is retained.’
In the remainder of this paper, we always refer to z as z_, if
it is not explicitly illustrated.

Then Eq. (2.4) becomes

_ < = (1 =22)K* + m} — m3
1= [oarin T
_ (= 22)K? + m? — m3
(AlK1A]

’

2.7)

Equation (2.7) is our final form for the spinor integration
with massive double cuts. For convenience we define

a[K, ml;mz] - 5[K§m1, mz]

K =
K, my, my] 3
KZ
t= LN, (2.8)
(AK[A]
where
K2+ m2 — m2
alK, my;my] = —2é =,
Al ] 2.9)
VALK, my, m
BLK;my, my] = %

Notice that when m; = m, = 0 we have « = = 1, thus
reproducing the massless case. Finally the original € can be
parametrized as

__K K- Pii K- P)x
_</\|K|X]|:'8(PM_ 2 K)—i—a e K].

(2.10)

B. Spinor integration method for the physical phase
space integration

Now, we explore how to apply the spinor integration
method for massive cuts to the phase space integration. Just
like the massless case, when there are only two outgoing
particles, the spinor integration method can be applied
directly without any modification. To see this explicitly,
just write the phase space of the cross section:

AfE < 0, we need z., .
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— d*L; F(12 — 2 454l K —
I fl=—l[,2 G )36 (L} — m})(2m)*s (K fzszf)
- [d4L16+(L2 — M) (K — L))? — md),

(2.11)

which is exactly the same (namely the showing up of two &
functions) as the spinor integration method given in
Eq. 2.1).

Things will be different when n = 3, where the physical
phase space is given by

[ dL; .,
I; = ]:! [(277)3 SH(L? — m%)(zqr)‘*a‘*(l( - ZL,)

X f(Ly, Ly, L)

d*L d*L

a2 ) [ i =
X 87 ((K — Ly — Ly)* — m})f(L, L3)

f d'Ly 8T (L3 — md)F(Ly). (2.12)

@m)
The problem we meet here is just the same as the massless
case. The integration over L, with two 6 functions can be
performed by the spinor integration method. However,
there is only one 6 function in the integration over Ls. In
order to apply the spinor method recursively and continu-
ously, we need insert one more O function like the
Faddeev-Popov method.
Similarly to the massless case [15], we consider the
following integration:

I, = fdxﬁ((xK — Ly)? — ms)
= fdxé(x2K2 —x(2K - Ly) + L3 — m3),

where the 6 function has two solutions,

(2K - Ly) * 4K - Ly)* — 4K*(L3 — m3)

X, = K2 (2.13)
Using the on-shell condition L} = mj3, it reduces to
2K * L3
x_ =0, X, = 2 (2.14)
We find that x_ = 0 is always a root. However, when x =
0, we have 8(L3 — m3) which does not give an independent
S function. So x_ = 0 should be excluded from our con-

sideration. For another root x, from (K — L;)*> = K> +
m3 — 2K - Ly = (m; + m,)?, we have
2K - Ly = K> + m3 — (m; + my)?, (2.15)

which gives the upper bound of x. . For the lower bound,
considering the center-of-mass frame where K =
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(E,0,0,0), Ly=(E;3 p,0,0) with E}— p?>=m3, we
have 2K - L3 = 2Ems, i.e., 2K - L3)? = 4K’m3.
Putting all consideration together we have

I, = f dxS((xK — Ls)? — m?)
] S(x — xy)
= dx ]
12x, K* — (2K - L3)|
1
= , (2.16)
WK - Ly — 4K (L3 — m3)|
where
4m%
Xo[K, m3] = F’
KZ + m2 _ m2
LK) =
xolK, m3* + A[K;ms3, m P, (2.17)

where  A[K;ms, m,] = ALK, m3, m,]/K> with m, =
m, + m,. Using K> = (m, + m, + m3)?, it is easy to see
that A[K; ms, m,J* = 0 and thus x; = x,.

Now Eq. (2.12) can be written as

I — 1
)

X Q@K - Ly — 4KX(L3 — m))|

% f " dxS((K — Ly)? — md)F(Ls).

f P Ly8* (L2 — m?)

Decomposing Ly = € + zK with €2 = 0, then

L= f dzd€6" (C)2L - K)
X 8% (°K? + 2zK - € — m3)(2L3 - K)

X f " dxst (2K — 20K - Ly)F(€)
X0

1 X
= o [xo dxszfdz(x —272)
X K28 (z(x — 2)K* — m3)

x f A8+ (628 (x(x — 20)K? — 24K - O)F(€).
(2.18)
One by-product of the above procedure is
2K - Ly = xK>. (2.19)

By solving the & function 8" (z(x — z)K? — m3) and the
similar kinematical discussion as in Sec. IT A, we get
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xK? — K*(x*K?* — 4m3)

B _x_w/xz—x%
¢ 2K? 2 2
x—2z=qx* = x.

(2.20)
Continue the evaluation as

C X1 ~ ~
L= o f s [ OdA[AIdA]

x f 118" (x(x — 22)K? — xtAKIADFA, A, )

) (x — 22)K?
- o [ deek? [AAAN" SR
X f(A A1),
(x—2z)K2
AT~ @ )., R
- fOL A D)
X f VATl
S 221
SNCTPI o

where ¢ = 7/2 is related to the Jacobi of changing inte-
gration variables and the way we have taken the residues.
Finally we arrive

4
éL; mF(Ly)

m [ dx(K*Px* = xj f (AldMYAldA]

f()t A1)
<)~|K|A]2

K2 x2 _ x2
f=— V0 (2.22)

(AKIA]

13 = 5+(L%_

bl

This is our key setup in this paper. Notice that when m; =
my, = mz = 0, xg = 0, so Eq. (2.22) reduces to

4
I - (‘; ;; 5 (LDF(Ly)
2\2 f()l )‘ )
et [ axtiys [lantiian g el
Kx (2.23)

~ KA

which is the familiar massless case presented in [15].

In the end, let us give a remark. The integration region of
X € [xg, x;] depends on the dynamical momentum K as
well as mass parameters m3 and m,,. Because of this, the
roles of ms and m,y, are not obviously symmetric. If we
define
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x= \/x% + A%?,

the integration region of u will be u € [0, 1] which does
not depend on external momenta and masses anymore.
Under this transformation we have

(2.24)

(AIK|AT
K2Au
~ Ok 225
(AK|A] (2.25)

and

3 2 2

2 L X AR
_ KAy (07 A”)K. (2.26)

(AIKIA] -

This transformation will become even simpler when m; =
0 where we get just a linear transformation x = Au.
Although Eq. (2.25) may look simpler, for some calcula-
tions we find that Eq. (2.25) is, in general, not better than
Eq. (2.22) and readers may use whichever one they like. In
the later part of this paper, we will use the form of
Eq. (2.22).

II1. SIMPLE EXAMPLES

In this section, we present some very simple examples to
demonstrate our method, especially the integration region
of x. We denote the physical phase space integration of n
outgoing particles as I3°"™(f; K), where s stands for the
spinor method and m the momentum method. The K is the
sum of momenta of these n particles and f is a general
function.

A. The pure phase space integration with two outgoing
particles

This integral can be performed directly by the spinor
method as we have analyzed in last section.
Spinor integration method: The integration is given by

&L, 'L,
B(;K) = —(277)23 ar? )135 (L3 — m))
X 6(L2 — m)2m)* o K —L, — L) (3.1)
e [ dL (L2 — m)8 (K — L)) — md).

(3.2)

According to Eq. (2.7), one gets
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K2 2 2
BiK) =57 | ani ! Z<)A|K|+x3?1 2
1 =
~2ap 2”
_ 1 \/(Kz—m - mj3 —4m%m%, 33)
2(2m)? K?

which is obviously symmetric between m, m,.
Momentum integration method: It is given by

dL3 dL3

I7(1;K) = 2m)*6*(K — L, — Ly).
(1K) m)2E, (27)32]52( m)*8*( »—Ly)

(3.4)
Taking the center-of-mass frame, where K = (E, 0,0, 0)

and L, = (E|, k;, 0,0), yields
. 1 [Kdk,
(1, K) = o / 25, dQ8*(E*> — 2EE, + m} — m3)
1 =
“ G2 P (3.5)

B. The pure phase space integration with three
outgoing particles

Spinor integration method: From Eq. (2.12) with the
result 75(1; K) in the previous subsection we have

4
L0, K) = fé L)33 §T(L3 —m)Is(1;K — Ly)  (3.6)
2(2 2007 [ dx(K?)*yfx* = x5 f (AldMA]dA]
L(1;K — Ly)
(AKIAP (3.7)

where I5(1; K — L3) depends on (K — L3)?* only. But using
L3 —m3 = 0and (xK — L3)*> — m3 = 0, we can find
(K —Ly)? = (1 — 0K+ m2, (3.8)

which does not depend on A, A at all. Thus

o X1
L(1L,K) = e [ dxK?yx* — x3I5(1; K — L3),
Xo

(3.9)

where x, x; is given by (2.17). This expression is obviously
symmetric between m,, m,, but not for ms. However, it is
easy to check numerically that the final result is indeed
symmetric among all the mass parameters.
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Momentum integration method: The integration is

(1K) = L, d#L,  dPLs
3N (27)32E, (2m)32E, (2)32E;
X Qm)*é*(K—L, — L, — L3) (3.10)
= &Im(l-K—L) (3.11)
Qm)32E; 2 3 '

In the center-of-mass frame, K = (F,0,0,0), L; =
(E3, p,0,0) with E3 — p> = m3, thus (E — E;)* — p*> =
(my; +my)?,  ie., E;=(E*>+ m}— (m + my?*/2E).
Namely, the integration region of E3 is

E* +m3 — (m; + my)?
2F )

my = Ey = (3.12)

Using this we have
1 [—
(3.13)

In order to show this is identical to Eq. (3.9), we can make a
transformation 2E;/E — x. Then

EZ + 2 _ + 2
my = E;y < "5 zéml ma) — Xy =x=ux,
2E\/E% — m% — K2\/)c2 - x(z).
(3.14)

It is obvious that I§'(1; K) = I5(1, K).

C. The pure phase space integration with four outgoing
particles

Here we will only present the expression using the
spinor method. The pure phase space is

B K) = f(d;TL)‘g 8T(L2 — m)I(1;K — Ly). (3.15)
Using the recursive method we get
K = oo [ oy — (P
64(2m)° J. 0
X T(‘)) dx®(K — LQ%/W
Xo
X IB(1;K — Ly — Ly), (3.16)

where naively we have following boundary values:
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O | 4m
0 (K — Ly)*

(3.17)
B = (K = Ly)? + m} — (m; + m,)?
: (K — Ly)?
However, similarly to Eq. (3.8), we can find that
(K= Ly)? = (1 —x*K? + m}
(K—Ly— L3> = (1 —x9)(K — Ly)*> + m3
= (1 — x®)(1 — x¥)K2
+ (1 = x®)ym? + m3. (3.18)

Thus we have
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@ _ [4mg
xO - KZ’

@ K? + mj — (my + my + ms)?
I

K2

¢ _ 4m3 (3.19)

(1 — x")K2 + mi

x(3) _ (1 - X(4))K2 + m2 + m3
(1 —x"K2 + m

(m1 + m2)2

Putting (3.18) and (3.19) into (3.16), we get the analytic
expression for the pure phase space of four arbitrary mas-
sive particles

L(1;K) =

1 A
6427 [ @

(4)\/K2((x(4))21(2 4m2)[ dx®

[((1 = xM)K? + m)((D)((1 = xD)K? + m3) — 4m3)]'/

(1 —xNA = xNK2 + (1 — xD)m3 + m3

X[((1 =21 = xNK2 + (1 = xO)ymd + m3 — m? — m3)> — 4mm3]'/>.

The expression is not obviously symmetric among
(m,, m,, ms, my) by our choice of the order of integrations.
However, it is easy to check by the numerical method that
the final result is indeed symmetric among all masses.

D. The phase space integration of three outgoing
particles with f = (2L, - L,)(2L, - L3)
Here we calculate a relatively complicated example with
= (2L, - Ly)(2L, - Ly).
Spinor integration method: The integration can be di-
rectly written as

d*L
K =K — L3,

where using the momentum conservation, f can be written
as

f=Q@L,-K' —2m})QL, - (K — K')). (3.22)

Using the Eq. (2.10) with K replaced by K', we can
simplify f further as

£ = (ak™ —2m?)

AIK|A
(3 K" <</\||K/|I/\]] (= PR K= aKlz)’ 29
where
o= KO mizmy g VAWK ]

Kl2 KIZ

(3.20)

Now we calculate I5(f; K') using the simplified version
f. It is given by

L(f:K') = 5 (2 207 aB(K? —mi —m3)(K' - K — K?).

(3.25)

When we put it back into I5(f; K), we need to know that
K”? = (1 —x)K> + m}
K'-K=K?— zK? — %t(AIKIX] =K? — %xl(z,
(x—22)K?
(AIKIA] ~

I5(f; K') does not contain explicitly A and A for the spinor
integration over L3. So we get immediately

s 1 X1
L(f;K) = 62y f dez\/xz —x3
X aB((1 — x)K* + mi — m} — m3)
1
X (Esz - m%)
where x, x; and «, B are given by (2.17) and (3.24)

respectively.
Momentum integration method: The integration is

This means

where we have used the relation ¢ =

(3.26)

&Ly

I"(f:K) = f ST (f; K'). (3.27)
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I(f; K') can be calculated as follows:

1 d’L
I(f;K') = G —HS*((K/ —L))? — md)
X (2L, - K' = 2m») (2L, - (K — K')). (3.28)

1 Kdk, 1
I(f;K') = L1 f
2 K) Qm)? ) 2E, Joi

PHYSICAL REVIEW D 81, 056007 (2010)

Choose a center-of-mass frame, such that K' =
(E',0,0,0), L =(E;,0,0,k;) with Ef — k% = m% and
K = (E, p). The angle between p and L, is #. Then

21
dy f do8* (E? — 2E'E, + m? — m2) X (2E\E' — 2m?)(AEE, — ypky) — 2E,E)
0

1
- f k\dE\ 8% (E — 2E'E, + m? — md)(QE,E' — 2m?)2EE, — 2E,E")

:LE/Z +m] — m2 A[E m]ymz](E/Z _
. E/ E/2

m? — m3)(E — E').

(3.29)

This is identical to I3(f; K’) in the center-of-mass frame. To calculate I5'(f; K) simply, we need to choose the center-of-
mass frame of K which is not the one we have used for I3'(f; K'), thus we need to write I5'(f; K') as the Lorentz-invariant

form, which is not so straightforward sometimes.

Here we use the Lorentz-invariant form I5(f; K’) given by the spinor method to go further. Taking the center-of-mass

frame where K = (E, 0, 0, 0), then

1 E?
I7(f: K) = 22 f dEs\[E3 — m}

It is equal to I5(f; K), which can be easily checked by
making a transform 2E;/E — x as in Sec. 11 B.

IV. PRACTICAL APPLICATIONS

In our previous section we have done some simple
examples. However, these examples do not involve the
real amplitudes. In this section we will discuss the phase
space integration of two simple real physics processes with
three outgoing particles. These two examples are presented
in the following two references: [19,20].

A. Z" decays into lepton pairs and spin-0 bosons

This example discusses the decay reaction

70— "I H, .1

where [ stands for the electron or muon with m; = 0 and H
for the Higgs boson with my # 0. The invariant matrix
element squared is given by Eq. 2.10a in [19]. According to
the Glashow-Weinberg-Salam model (Eq. 3.1 and Eq. 3.2
in [19]), the matrix element squared can be written as

Simp =Mz

2
(QCW[QzM% + Ak 1)k 12)]
pol z

= g(zﬁ + b?)B?, 4.2)

where k is the total momentum of Z°, M, the mass of Z°,
and

—2EE;+mi+m}—m} [
> 3 T m3 T 5 m; A[E', m, mz]
E* — 2EE; + m3)

X (E* — 2EE3 + m3 — m? — m3)(EEy — m3).

(3.30)
I
a=—28 (l—sin20W>, p=——_%
cosOy \4 4 cosfy
8
B =—0—, =, +1_.
: M cosOy Q *

We evaluate this by first evaluating the phase space inte-
gration over [, and [y. From Eq. (3.3), we can easily get

1;<Z;k ~1

pol

2 - M

] <AdA)[AdA]W

)= 5
« M
(KAl |A] — M2)?
X (A AIME + 2(k - 1) (A |k| A])

i foni
(=1 = MR,
AP IAPGipy A MR @
where
=k—-1)- k= L) = My 11&22 M%’z_ Py=k—1_
R=1_+ 2k 1 ) k.

M2

Introducing one Feynman parameter we can continue to
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To continue, we exchange the integration order of [ dy and
12(2 k= ) 2(2 )2 / dy ,[<)ldA>[AdA] fd*l_. Using 2k -1 = KAlk|A] = K*x and performing

ol
b - the spinor integration, we finally arrive at
W (k= 12 — pzyp 2AIRIA]
O (AIPIAT
dy((k —1-)* — M%)? ( = ) c [<k2—M;,>/k2
2007)? f Y LY k)=—— dx(k2x)?
2(2 ) 3 Zl 6@ ). x(k%x)

y2P - R P

SV (44) 1

(P ) X/ dy(k2 — K2y — M121)2
0
where y(l + #(sy +u+ kz))
2k l ) X (Z — ) (4.6)
sy +u
2P-R=2k-I_+ (sy + u + k) Y
Z
P2 =5sy+u,
where
s = 7((2k 1) = (k= Mp)(2k - 1)),
u=k>—2k-1_.

k2
, s= 21 —x) - M%),  u=Fk(1-x)
Now we put (4.4) into M,

1;(2;1():](‘;;3 5+(1%)15<Z;k—1,). 4.5)

pol pol We can perform the integral over y to yield
J

= ¢ (KR —M3)/K x(K2(1 — x) — M%) (1 — x)M2(K> + M2)
LY k)=—— dM2<k2+M21<1— H)— Z z
3(% ) 1627} fo XM\ (e + MZ)In (1 — 0)M2 (1 — 0)(Kx — M) — M,

k2 K(x—1)+ M?
x(k*(x — 1) ) — - M%), 4.7
M

which can be integrated further to get analytic expression if one wants. Notice that k> = M2, Eq. (4.7) can be simplified
further as

M2
= 2 1-(M2,/M2) 1+ x>+ xGE—2) 2(1 —
B(SK) = st 4 1) o | ax((+ o v, —, 2y
Dol 384( ) M7zcos 0y Jo 1—x 1+ 2+ x(% —2)
M2
+x% + x<—’§ - 1) - 2). (4.8)
My

Taking the normalization factor (2M,) ™! in the calculation s N . Aot 12 0 ATt (D2 2
of the cross section into account, we find that the integrand BH Q) = ¢ f d*k6™ (k mf) f d*kd™ (k mf)
of Eq. (4.8) is just Eq. 3.4 in [19] by verifying x = x_ and

8 = My /M in the center-of-mass frame. X fd4h5+(h2 — mp)

X 840 — k — k — h)H* g*¥
B. The production of Higgs bosons in pp collisions ek iin /
= — nv ,uv
For the second real example, we consider the quark- ¢ f d'ko™ (k "y PLH! g Q)
antiquark-annihilation mechanism g — ffH® in [20]. I—
: : . 0'=0-k (4.9)
The corresponding cross section and the matrix element )
squared are, respectively, given by Eq. 2.2 and Eq. 2.3 in ~ where k(k) and h are, respectively, the momentum of
[20]. We write the cross section as the heavy quark (antiquark) f(f) and the Higgs. Q is the
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total momentum. We have absorbed all the common constant factors including the 7 factor into ¢. H*”g*" is given by

H-Pghv =

32 . (4m} — my)Q
(2h -k + m%)(2h - k + m%) {QZ(Q h)2[1 " (2h -k + m%)2h -k + m}{):l
20 - h(4m} — m%,)i“:Q2 ]

i ¥ o2 — k- gk
Qh-k+my) L2 q

+ I:(Q2 + m%i — 4m]%) +

S]]

20 - h(4m% — m$) 1 02 _
2 2 _ 2 f HX 2 . .
+ [(Q + my, 4mf) + @h -k +m)) ][ 5 My 2k - gk q]
—(Q* + my — 4m})[2k - gk -G+ 2k Gk-qg — Q*k- zz]}. (4.10)

Notice that
2hk+my=0>-20-k 2h-k+my=0>—20k 20-h=(Q>—-20 k) +(Q>—20Q k)
2k -k = (Q* + mf —2m}) — (Q* — 20 - k) — (0> — 20 - k).
To simplify the calculation, we rearrange H*"g*" as

Q2—2Q-k+2+Q2—2Q-k]

VAV — 1 2
A q” 32{4Q[Q2—2Q-1€ 07— 20k

l 2 _ 2\(02)2 1 2 1
R [(Q2 —20° 07 (Q*-20 H@*-20-0 (@7 -20- k)z]
Q? 4m7 — my N B

I:(Q2 —20-k)(0*—20 k) + Q20" E)Z][Q m7 — 2k - q2k - §]

B 0%+ m%_, — 4mJ2f
(Q* =20 k)(Q* 20 k)
(@ + mjy — 4Am}) @
2(Q* =20 k) }

- 1
(2K 0283 5.02(Q" + miy — 20) — (@ ~20-0) |

@.11)

where we have used the symmetry between k and k. B
Now we can start the calculation. First we will perform the phase space integration over k and 4. Then we perform the
left k integration.

1. The integration I5(H*" g*”; Q')
First we simplify the input according to Eq. (2.10), i.e.,

-0 Q' Py Q- Py o 2° 0
k= _ - / @ -20-k= _ . @12
[6(Pii - S5200) v o] 0220 GomAmiil @

with

Pi= 50~ Q;}ZQ 0)- (a% - S—Z)Q’ = —BO, + a0

By checking Eq. (4.11), we find that there are four nontrivial integrations that should be attacked. We do them one by one.

Type I f, = 1/(Q* = 2Q - k).
The integration is

056007-9
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S(F.- ) — Nd )\ B — [ AdA ba,
110 = [Oaniia) B = [May [Ganian) P

_ [ 4Ba; Q"
- ,[0 dy V2875 + 4a2(Q7) (4.13)

where
= (2Q . Q/)Z _ 4Q2Q/2.

Type II: f, = Q> — 20 - k.
The integral is

le Q/z ! ”n
GIQTIE (g MFilAl = Q- Py = pen 0 @.14)

15(f2: Q') = f (AN AdA]

Type II: 5 = 1/(Q> — 20 - k)>.

Q/2 1

B(f5:0) = [(AdN{AdA] O 15T “.15)
_ - B/Q"
= [aaniran LS o 4.16)
_ 4B
TS+ 4al 0N @17
Type IV: f, = 2 4/(Q* — 20 - ).
Using
k-a :Q—/z Y - __0'q Qg /
2k-q <A|Q'|X]<)‘|P2m’ P, B(q 07 Q) =5 0, (4.18)
we get
L(f30) = f<)td/\>[AdA] BO% AP (4.19)
AIQ'TXP (AP, 1A]
! _ L 2Ba30R(1 — y)AIPIA]
= d AdA)[AdA = 4.20
Jy o Jaanan O A (420
[1 BatQ”(1 = Y=y (1 = GO + )20 - g = OB* %P + )2k - 4]
— [ a : (4.21)
0 ( y Bz 4Q/2 + a2Q/2)2

Now substituting above four types of integrations into I5(H*"¢*"; Q') and with some algebraic manipulation, we can get
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m2 my 0%k q2k- g
—20 -k Q2 —20 -k

1 1
g 0) = [ 100~ 200 + 50 300" + iy — 4

(Q* +m2 —4m )(Q2 + m2, — 2m?) 4Ba, Q"

2 f H / 1

30 0" - 20k |, &=+ e
B (Q2 + my — 4m7)(2k - q)

1
(OB -G+ 1020 ) — 6B GE + aa)2k- )]
(=¥’ B35 + a30?)?

+— ﬁﬁz(;nf; Z(lg)’z)z [(0*)?* + 4(Q*m} — 2k - g2k - )] + (4:522_ T%B(,CQ)?Z
Lol ;(;gz_ﬁg Z)mH ~ 4 %BQ? 4.22)
2. The integration I5(f; Q')
Now we do the left k integration using (2.22) with
X = VZQ’;} X = 0"+ mj —Q(:z s+ ma)” (4.23)
and the following relations:
0 k=200 QK =(-n@em  2keg— ET2AANG L

2 (AlQIA]

x — 2z){Alg|A]Q? B
(=22l
(AlQ[A]
From I5(H*"g*"; Q'), the terms containing Q - k and (Q — k)* do not depend on k, and thus can be done easily just as in
the example of the pure phase space integration with three outgoing particles. Then we need only perform the following
two types of nontrivial integrations:

2% -G =

— (x = 221 (Alg|A]
B2G-k Q) = f dx(Q?)*y/x* — x§ f<A|d/\>[)l|d)l]< |Q|)t]2< AOIA]

=[ldx(Qz)Z\/xz—x%I:(x—Zzl) qu 200 q] [ dezwfx —x3x0 - g (4.24)

((x — 2z))%(AlglAXAlg|A]
(A IQI)m]2 (AlQIAT

Q2+2Z1Q'6?)

(0%)?

Bk 2% §; Q) = f dx(02 2 — 2 [ AN A1dA]

(= 22)(AlglA] &~ 2l 0 -
#2010 N0 4 2010 N 02 4 2010 2210 q)
X 2 - q)(2 . - 2 - g ©q
= [ dx(Q2)2\/x2 — x(z)((x — 2z1)2( Q- a) Q352 Qg9 + 22,0 - g(x — 2z;) Qqu
2 c g2 .
+2Z1Q Q(X_2Z1)Q q ZIQ quZIQ q)
- [ dezJﬁ(—(ZQ 20D (202 - i) - 40 (202 — 4m). @29
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3. The final result

Substituting I5(H*"g*";

1 S(HEY g Q) =

Q"), I5(2k - q2k - g; Q), and I5(2G - k; Q) into Eq. (4.9) yields

3¢ /dex x0{2(1—x)[

where

2

B2 —2a + ax) _ (Q* + m}, — 4m12r)
—y 2 3% (x% —x)—i—(2—2a+ax)2 0%*(1 — x)
1 4B8(1 — y)(2 = 2a + ax)? Bdm; — my)/ 0
% f d (=y?B*(x* = x3) + (2 — 2a + ax)?)? 2 —B*x? = x3) + (2 —2a + ax)? T+ T4}’
(4.26)
= (Q*x + m% — 4mj2£)2 +(Q* + m% — 4m]2()2 + 4(Q% + m3, — 4mj2£)m12( + 2Q2(6m12£ - m3)
4 _ . m2
#3400 —amd) - 20~ 120 ) - Q—g‘))
. = (s82(x - Zﬂ) a2 =2a + a)l(Q PO + (OB~ 1)+ al - 2a+ ax)
m?
< (q- 2020 — 4m) - 20- 920 )" - @)) @27

= (0)? +4Q%m; +

T, = ,8(4mf 1-1)

S0 a0 —am) - 20- 920~ ¥ - 3)),
,3(2 2a + ax)(Q?)? —

2

MO mjy —4mpOB 1 B0

4(1 — x)?

The corresponding parameters are
(1= x)Q* +2m; — mj
(1= x)0* + m;
(1= )0 — m}y)* — 4mimy]'2
(1-x0*+ m?-

o =

s

(4.28)

lg =

In Fig. 1, we display ﬁ[g versus the c.m. energy /s of
the pp by the numerical method. Notice that the displayed
5= 13 is not the real cross section since the dynamical factor
¢ given in the original reference has not been included and
the real cross section is I3 (so the decay behavior of I3 at
high energy cannot be observed from this figure). Here, we
emphasize two points. First, by our spinor method, almost
all calculations have been reduced to reading out the
residues of poles and making some algebraic manipula-
tions. Thus although the analytic expression looks long, the
calculation is kindly trivial.

Second, we can take an appropriate integration order to
simplify the process according to the structure of the
integrand. Usually we should first perform the integrations
over those variables, with respect to which the structure of
the integrand is relatively simple. In this example, we have
leave k as the last integration variable.® This is because the
integrand Eq. (4.11) does not contain 4 explicitly.

_ “Because of the symmetry of k and , it is the same if we leave
k as the last integration variable.

8(1 — x)

[

Notice that different integration ordering, i.e., integrat-
ing over p; first and then p, or integrating over p, first and
then p,, will in general give different-looking expressions.
For example, in the expression of (3.20), we have fixed
arbitrarily the ordering m, m,, ms, my. Different ordering
will end up with different integration regions although the
final result should be the same. Furthermore, if we have left
one particle unintegrated while others have been inte-
grated, then we will get the corresponding differential cross
section for this particle. Thus different integration ordering

5°/(32c) ([GeV]*Y)

F //

L /
2.0x10" /

r /

r /
15% 10 | by

: /

L /
1.0x10" | /

[ 7

//

F 7
50x 107 //
T ‘ 000 V¥ GV

" 1 " " " 1 "
1000 1500

FIG. 1 (color online). 32513 as a function of /s for the pp
collision. The dashed and continuous curves, respectively, rep-
resent two sets of parameters: my = 10 GeV, my = 4.5 GeV
and my = 30 GeV, my = 35 GeV.
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will give different differential cross sections for different
particles.

V. CONCLUSION

Originating from the application of the spinor method to
the massless case, in this paper, we have established the
framework to process the massive case. From the examples
presented in the paper, the advantages of our method is
further manifested.

First, the manifestly Lorentz-invariant form of the result
in each step is gotten naturally. This ensures that the
recursive method can be applied conveniently especially
when the number of outgoing particles is large. In this
process, we do not need take any specified reference frame
as when using the momentum integration method.

Second, the integration regions can be written straight-
forwardly according to Eq. (2.17), while with the momen-
tum integration method, one has to pursue exhaustively the
specifying of many variables (for example, angles and
module variables). Note that in our method, for the massive
case the region is not so simple as the massless case; it is
only the functions of mass and energy.

Finally, the salient point is that the constrained three-
dimensional momentum space integration is reduced to a
one-dimensional integration, plus possible Feynman inte-
grations. However, in this large simplification, we just pay

PHYSICAL REVIEW D 81, 056007 (2010)

a little extra price, namely, the integration over A and A
which can be obtained by reading out residues of corre-
sponding poles.

In this paper, our new method has shown the value of
practical calculations. As we have mentioned in the intro-
duction, our method provides compact analytic expres-
sions for the cross section. Thus we can investigate the
analytic structure using these expressions. We think it is an
interesting direction. Also, in this paper we have just
touched the tree-level result. It is our goal to combine these
analytic expressions with one-loop results to see if we can
improve the current numerical next-to-leading order algo-
rithm, especially the infrared singularity subtraction. A
regularization scheme is mandatory and we need consider
the general D-dimensional case. All these questions will be
our future projects.
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