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We find model-independent upper limits on rates of dark matter annihilation in galactic halos. The Born

approximation generally fails, while exotic threshold enhancements akin to ‘‘Sommerfeld factors’’ also

turn out to be baseless. The most efficient annihilation mechanism involves perturbatively small decay

widths that have largely been ignored. Widths that are very small compared to TeV mass scales suffice to

cause large enhancements in the velocity averaged cross sections. Bound state formation in weakly

coupled theories produces small effects due to wave function normalizations. Unitarity shows the

Sommerfeld factor cannot produce large enhancements of cross sections, and serves to identify where

those approximations break down.
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I. THRESHOLD ENHANCEMENTS

There is great interest in recent data from the PAMELA
[1], FERMI [2] and PPB-BETS [3] experiments. The ob-
servations suggest a significant signal in excess positron
production in galactic halos, as long suggested by the
HEAT [4] and ATIC [5] experiments. Possible explana-
tions range from exotic mechanisms [6], uncertain features
of pulsars [7], to dark matter decays [8] and dark matter
annihilation [9].

In considering annihilation there are puzzles from com-
paring predictions of relic densities with rates of particle
production in the current era. This has led to invoking more
or less exotic threshold enhancements under the catch-
phrase of ‘‘Sommerfeld factors’’ [10,11].

One reason to appeal to a Sommerfeld factor is to boost
cross sections of TeV-scale particles well above Born-level
estimates. We find the starting point of Born-level cross
sections is not a good approximation for much different
reasons. Basic facts of finite width particle physics sub-
stantially revise estimates of annihilation rates in galactic
halos. We find that annihilation of TeV-scale dark matter
with typical electroweak couplings can actually saturate
unitarity limits over the observable range. We also obtain
upper limits to halo annihilation rates that do not depend on
fine details of the dark matter velocity distribution.

Nonrelativistic scattering amplitudes can be classified
by their analytic properties in the complex momentum
plane. Stable bound states are described by poles on the
positive imaginary axis. It follows that stable bound states
produce no remarkable enhancement of annihilation rates
in the physical region of real momentum k. Metastable
particles or resonances, described by poles of finite width,
are in no way comparable with stable bound states, because
everything observable (and potentially large) is a strong
function of the width.

Unless one is considering an absolutely stable inter-
mediate state, all intermediate states in particle physics
have a finite lifetime. Pursuing the consequences of finite

lifetimes with galactic halo kinematics redirects attention
from exotic mechanisms to ordinary physics. There are two
salient cases. If the width of an intermediate annihilation
state is limited by the initial state velocity v, then the peak
of the cross section goes like 1=v2. This case produces the
largest reaction rates in halos, and most conservative
bounds. If the width of the intermediate state is constant,
the peak of the cross section goes like 1=v. In these and
intermediate cases the peak cross section actually domi-
nates the entire halo velocity distribution for a surprisingly
broad range of dark matter parameters. As a result, our
more conservative bounds merge smoothly with reasonable
estimates predicting surprisingly large rates.

II. BREIT-WIGNER FORMULAS

Relic particles trapped in galactic halos will be non-
relativistic, with velocities v� 10�3. There are several
distinctly different nonrelativistic ‘‘Breit-Wigner ’’ formu-
las. Most Breit-Wigner cross sections �res can be cast into
the form

�res ¼ 4�vN

k2
ð�=2Þ2BiBf

ðE� EresÞ2 þ ð�=2Þ2 ¼
4�vN

k2
BWð�; EresÞ:

(1)

Here Bi and Bf are the branching fractions to the initial and

final state, and k is the momentum of an initial state particle
in the center of mass frame. Different values of the pa-
rameter N ¼ 0, 1 distinguish two classic limits:
Phase Space Limited Case, N ¼ 0: It is common for

2 ! 2 nonrelativistic physics to be quasielastic. In particu-
lar, the final state phase space may be severely limited by
the initial state velocity v. Ignoring spin and matrix ele-
ments, the Lorentz-invariant phase space integral (LIPS)
for two particles of momentum pf, pf and mass mf: is
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LIPS ¼
Z d3pf

2p0
f

d3pf

2p0
f

�4ðQ� pf � pfÞ

¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

f=Q
2

q
¼ 2�vf: (2)

Here vf is the final state velocity of either particle in the

CM frame. When initial and final state masses are compa-
rable, and the 2-body states dominate, the total width ��
�vf � �v, where � absorbs coupling constants and matrix

elements. Incorporating the explicit velocity dependence
with an s-channel propagator leads to Eq. (1) with N ¼ 0.
Note that the peak of the cross section scales like
1=ðm2v2Þ, making this case potentially capable of saturat-
ing elastic unitarity bounds.

Relativistic Phase Space Case,N ¼ 1:Anihillation may
also proceed to final states which are ultrarelativistic. Then
the square root in Eq. (2) approaches 1, and the partial
width �f � constant in this limit. Any other kinematic

situation where Q2=m2
f goes to a finite constant as v ! 0

will produce the same outcome. This includes the ‘‘exoer-
gic’’ resonances long known in low-energy nuclear phys-
ics, and associated with the ‘‘1=v law’’ of low-energy cross
sections. These cross sections do not increase as fast as
unitarity would allow as v ! 0.

The difference between 1=v and 1=v2 velocity depen-
dence is dramatic. Yet is only part of the story, because
resonances may produce large cross sections either way.
For example, neutron absorption cross sections on
Gadolinium-157 exceeding one hundred million barns
have been observed [12]. This comes in the seemingly
mild 1=v case not impinging on a unitarity limit. The
experimental stunt simply exploits neutrons with grossly
small velocities of order 3 meters per second. In much the
sameway, galactic halo velocities of order 10�3 are grossly
small on the scale of particle physics. The combination of
low speed halo kinematics and very ordinary widths pro-
duces surprisingly large enhancements.

III. GENERAL LIMITS ON THE VELOCITY
AVERAGED BREIT-WIGNER CROSS SECTION

The halo annihilation rate via a single s-wave resonance
is governed by the velocity-weighted cross section h�vires:

h�vires ¼
Z

dvv
4�vN

m2
Xv

2

� ð�=2Þ2BiBf

ðmXv
2=2�mXv

2
res=2Þ2 þ ð�=2Þ2 �haloðvÞ:

Here �haloðvÞ ¼ dN=dv3 is the normalized dark matter
relative velocity distribution, assumed from astrophysics to
be a smooth function on the scale of 100–500 km=s. In an
isothermal halo model the velocity distribution is in equi-
librium,

dN

d3kd3x
¼ constant

E0

e�E=2E0 ;

dN

dv
¼ 4�

v2

ð2�v2
0Þ3=2

e�v2=2v2
0 :

(3)

While the actual velocity distribution is uncertain the phase
space factors of v2 are general. The isothermal halo will
illustrate the method, but none of our upper bounds depend
on it.
The rate h�resvires is a function of E0, Eres, � and mX. If

other scales are expressed in units of mX � TeV the con-
junction of several rapidly varying functions makes analy-
sis troublesome, as noted by Griest and Seckel [13].
However in the present universe the halo energy
mXv

2
0=2� 10�6mX is rather small on particle physics

scales. It is natural to rescale variables in units of the
halo characteristic energy, defining

�0 ¼ �

2E0

; �0 ¼ Eres

E0

:

Assuming the equilibrium distribution, some algebra gives

h�vires ¼ 22�Nð2�ÞðNþ1Þ=2vN�1
0

m2
X

INð�0; �0Þ; (4)

where

INð�0; �0Þ ¼ 1

21�Nð2�ÞN=2

Z 1

0
dzzN=2 �2

0e
�z=2

ðz� �0Þ2 þ �2
0

:

(5)

Note that INð�0; �0Þ is analytic for all �0 > 0 and �0

regardless of the sign of �0. It can be computed exactly in
terms of Exponential Integral (Ei) functions. We found it
more useful to observe that INð�0; �0Þ has certain absolute
upper limits for all possible values of �0 > 0 and �.
Consider the derivative @I0ð�0; �0Þ=@�0:

@I0ð�0; �0Þ
@�0

¼
Z

dz
2�0ð�0 � zÞ2

ð�2
0 þ ð�0 � zÞ2Þ2 e

�z: (6)

Since the integrand above is positive definite, the integral
achieves its maximum at �0 ! 1. For �0 � 1 the inte-
gration becomes trivial, yielding INð�0; �0Þ � 1. A
stronger limit notes the integrand of Eq. (5) is cut off for
z & �0 when �0 & 1, �0 & 1, implying INð�0; �0Þ & 1�
e�C�0 , where C is a constant. Numerical work shows that
for all parameters

I0ð�0; �0Þ � 1� e�ð�=2Þ�0 ;

I1ð�0; �0Þ � 1� e�ð�=4Þ�0 :
(7)

These are close to equality for positive �0 � 1. Figure 1
shows a plot of INð�0; �0Þ for a wide range of �0, �0 and
how the integral approaches the upper bound.
The positivity property of Eq. (6) holds for all halo

distributions. The upper limit BW ! 1 produces a univer-
sal inequality:
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h�vires < 4�h1=v1�Ni
m2

X

: (8)

The expected value h1=vi is relative to the distribution
�haloðvÞ, not dN=dv. If the equilibrium distribution is
assumed, then

h�vires < 22�Nð2�ÞðNþ1Þ=2vN�1
0

m2
X

ð1� e���0=2
Nþ1Þ (9)

The result is a possible significant enhancement factor
(EF) (‘‘boost factor’’) for annihilation rates. The enhance-
ment factor is defined relative to a typical Born approxi-
mation �Born ¼ 4��2

X=m
2
Xv

2�N:

EF ¼ h�vires
h�viBorn &

1

�2
X

: (10)

Note that the upper limit does not depend on the position
of the resonance nor on any halo properties.

A. N ¼ 0 enhancement factors

For N ¼ 0, Eq. (10) leads to substantial enhancements
approaching the unitarity bound when the fundamental
width � is large enough. Obtaining a ‘‘large enough’’ width
from a weakly coupled theory might appear special. Yet
remember that halo annihilations are driven by the width in
units of the rather small scale E0 � 10�6mX. For TeV-scale
dark matter a width � * MeV is large enough to dominate
the halo width and make BWð�; EresÞ � 1. Recall that the
J=c has a width of order 0.1 MeV and is exceedingly
‘‘narrow’’. For an elementary particle on any mass scale
of GeV-TeV not to havewidths exceeding 10�6mX requires
special conspiracies or selection rules.

Figure 2 shows that even a tiny value of �=mX � 10�8

can produce rates much larger than the oft-cited value
h�vi � 3� 10�26 cm3=s. It is a new insight that merely
including physics of widths tends to saturate unitarity
bounds in halo annihilation.

B. N ¼ 1 enhancement factors

Equation (8) highlights a factor of h1=vi absent with a
relativistic phase space (N ¼ 1). To a first approximation
the ratio of the N ¼ 1 case relative to the N ¼ 0 case is of
Oðv0Þ. This is made more precise using Fig. 3, which
shows a plot of the calculated ratio of integrals I1=I0 that
remains. This ratio is of order unity for most of the pa-
rameter space, except the regions where �0 � 1. Once
again, only when widths are very tiny do resonance widths
not tend to swamp the halo distribution.
While representing stronger limits, the bottom panel of

Fig. 2 again shows significant enhancements over a broad
range of parameters of current interest. The difference
between I1 and I0 tends to disappear whenever �=mX is
not exceptionally small. In the next section we turn to the
metastable bound state case, which does happen to exhibit
exceptionally small widths on general grounds.

1. Metastable bound states, and narrow resonances

The case of annihilation passing through intermediate
metastable bound states has generated great interest. This
case is different and deserves a separate discussion.
Suppose dark matter interacts with a light messenger par-
ticle of mass �, with coupling-squared �X. If the interac-
tion is attractive, which is readily arranged for particular
spins, then nonrelativistic physics predicts there is always
a bound state for sufficiently large coupling. The condi-
tions are

�X * �
�

mX

;

where � is a constant of order one. The demonstration is an
easy variational calculation using a ground state
Hydrogenic wave function. A helpful discussion is also
given in Ref. [14]. For parameters mX � TeV and ��
GeV bound state formation needs �X * 10�3, which is
well within the electroweak-scale couplings of most
models.

FIG. 1 (color online). The integral INð�0; �0Þ (dark shaded) and upper limits cited in the text (transparent mesh). By Eq. (4) the rate
constant is related via h�vires � vN�1

0 IN=m
2
X.
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Yet just as above, everything about any significant en-
hancement depends strongly on the width, and will not
proceed without it. To estimate widths, first note that bound
states are spatially large for small coupling constant �X.
The size of a weakly coupled bound state is roughly
estimated by the ‘‘Bohr radius’’ a0, where

a0 � 1=mX�X:

Similarly, the binding energy is Eres �mX�
2
X. Next recall

that the Schrödinger wave function at the origin c ð0Þ
determines the width via �� jc ð0Þj2�c where �c is a
continuum cross section.

The wave function at the origin is set by the inverse of
the size of the bound state:

jc ð0Þj2 � a�3
0 � �3

X:

The continuum annihilation cross section �c � �1þA
X for

A > 0 depending on the model. For reference the annihi-
lation rates of ortho (para) positronium via three (two)
photons go like �6

emð�5
emÞ. Thus bound state widths follow

a general pattern

�� �4þA
X mX & 10�8mX:

The right hand side is a fair upper limit for �X � 10�2.
Restricted phase space factors and branching ratios can
only reduce this. Comparing E0 � 10�6mX, we find that
�0 � 1 is by far the generic case for annihilation from a
bound state. As a consistency check, consider the definite
case of spin-1=2 dark matter interacting with vector parti-
cles. Nature has already done this calculation with the J=c
decay via gluons, which has �J=c =mJ=c & 10�4. The J=c
is sufficiently heavy that the perturbative phase space
factors are driven by dimensional analysis, as expected
for TeV-scale physics. The raw J=c ratio needs to be
rescaled by ð�X=�sÞ4þA � 10�4, which gives satisfactory
agreement.
When �0 � 1 it is a good approximation to replace

BWð�; EresÞ � �ð�=2Þ�ðE� EresÞ. A short calculation
then gives

EF ð�0 � 1Þ ¼ ��=2

�2
XmXv

2�N
res

�haloðvresÞ
h 1
v1�Ni ; (11)

where Eres ¼ mXv
2
res=2. This formula has no singularity as

vres ! 0 because �haloðvresÞ � v2
res has compensating fac-

tors from phase space [Eq. (3)]. If a metastable bound state
FIG. 3 (color online). Ratio of I1=I0 (shaded area) compared to
the uniform value of 1 (mesh).
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FIG. 2 (color online). Upper limits (diagonal lines) of resonantly enhanced annihilation rate h�vires in the isothermal halo
distribution. Solid curves (black online) are computed with fixed �=mX. Gray triangle in upper right is the unitarity bound. The
thick dashed curve (blue online) is the maximum value for the cross section for N ¼ 1. Thin dashed curves (red online) show h�vires
computed for bound state processes using � ¼ �5

XmX=2 and Eres ¼ �mX�
2
X=4. Middle curve (orange online) is the neutrino-based

upper limit of Ref. [15]. Horizontal line (green online) is a conventional lower bound h�vi � 3� 10�26 cm3=s.
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resonance lies above threshold in an expected electroweak
range the effects are quite small. Taking Eres ¼ mX�

2
X=2�

10�4mX, and the equilibrium halo model with scale v0 ¼
10�3, the factor e�Eres=E0 � e�100 is too small to consider
further. When the resonance is below threshold it must
have width � * jEresj to intrude into the physical region.
Since � is proportional to several powers of �X compared
to Eres this case can also be set aside. If Eres ! 0 with � �
Eres is contemplated, it implies the decay time scale is
much less than a binding (orbital) time scale, which is
not consistent with bound states forming in the first place.

An exponentially small suppression can be avoided by
adjusting the binding into the range probed by the halo
velocity. For example choose �X � 10�3. This device
rapidly loses consistency because the bound state criterion
�X * �=mX needs couplings not too small. If a bound
state is tuned to the vicinity of the peak, then the halo
factors will be order unity. Meanwhile there remains in
Eq. (11) an overall factor of �=ðmX�

2
XÞ � 1. Figure 2

compares the upper limits from annihilation of continuum
processes (�0 * 1 generically) to processes proceeding via
the bound state (�0 & 106�5

X) using the isothermal halo

and conservative values BiBf ! 1. Viable enhancement

mechanisms should also respect the neutrino-based bounds
of Mack, Beacom, and Bell [15] included in the Figure. In
case of N ¼ 0, a bound state could cause large cross
section enhancements, but only for couplings �X � 0:1
which are beyond the stable perturbative regime. In case
of N ¼ 1 the limits for bound states are even tighter.

Figure 2 shows that a single bound state with perturba-
tive couplings has no chance of causing significant en-
hancements. Except for strong coupling, there is no
dynamical mechanism to generate large enhancement fac-
tors from nonrelativistic bound state resonances in the
current universe. The conclusion does not depend on the
spin or quantum numbers of new physics, and is too strong
to escape by adding up several resonances, unless they are
so numerous their numbers alone overcome small cou-
plings, as for KK modes.

Breit-Wigner effects on relic abundance.—Relic abun-
dance is a different topic than halo annihilation. Ibe,
Murayama, and Yanagida [16], and Guo and Wu [17]
have calculated thermal evolution for the case of a narrow
state close to threshold. Their model cross section is es-
sentially equivalent to our N ¼ 1. The resonance position
is close enough to threshold for its effects to overlap into
the physical region during relic evolution. They find that
even a tiny ratio of width to resonance invariant mass,
denoted by � ¼ �=Mres & 10�3, produces significant ef-
fects on relic densities compared to traditional constant
cross section approximations. The sense of this effect
causes a relative decrease in annihilation rates in the early
universe, which tends to leave too much relic. To keep the
relic density�X fixed, avoiding over-closure, Refs. [16,17]
introduce ‘‘boost factors’’ to correct the normalization

parameters of the cross section �0 � BiBf=m
2
X. When

those boost factors are applied directly to halo annihilation,
they develop much larger cross sections than the well-
known cosmological value �0 � 10�9 GeV�2, which
might be relevant to the PAMELA-ATIC observations.
However, in general it is not possible to go from the relic

calculation to the halo calculation directly in this manner.
The halo annihilation rate h�vi has a new and separate
sensitivity that is a priori disconnected from relic calcu-
lations. The halo estimates are driven by the new parameter
�0 ¼ �Mres=2E0. As long as �0 � 1, the upper bounds on
the halo annihilation cross section will be saturated. This
key feature is conceptually absent if the halo annihilation
cross section is simply rescaled by factors invoked for relic
evolution. Thus the reported ‘‘boost factors’’ of the relic
calculations do not take into account the Breit-Wigner
effects on halo annihilation we have found. This explains
why the suggestion [16,17] that very small �=Mres is
necessary or tends to enhance halo rates is not general,
and appears different from our conclusion. It is clearly
possible to find models and parameter regions where
both, or neither of the correct relic density and halo en-
hancement phenomena can be accommodated.
We note that relic densities are also subject to many

uncertainties of galaxy formation and the other boost fac-
tors representing ‘‘clumpiness’’. For purposes of confront-
ing experimental data, it seems best to separate the
problems of halo annihilation and relic evolution entirely,
despite mathematical similarities in how they are
calculated.

IV. SOMMERFELD FACTORS

We have shown that Breit-Wigner width effects of typi-
cal particle physics type can be surprisingly large, while
bound state effects have little chance to compete.
Sommerfeld factors have also been claimed as a mecha-
nism to produce large enhancements not involving particle
widths [11].
Given an s-wave cross section �0, which has been

computed in the plane-wave basis, the Sommerfeld-based
recipe to include Coulomb wave effects is to make a
replacement

�0 ! �0Sðv;�Þ; Sðv;�Þ ¼ �

v

2�

1� e�2��=v
:

Here � is the fine structure constant. Since cross sections
contain many other terms of different orders in �j=vk,
together with logarithmic type dependence, the recipe is
an approximation by resummation of selected contribu-
tions [18].

A. Motivation for resummation

Nonrelativistic QED has complicated logarithmic and
power-behaved infrared singularities. Singular terms must
be summed or controlled in some way to avoid upsetting
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perturbation theory. There are reasons to believe that the
leading singularities appear [19] order by order as a series
in �j=vj. Evidently such a series is summed in Sðv;�Þ ¼
Sð�=vÞ.

Subleading terms are dropped in any resummation—for
example, a term of order �j=vk with j > k is subleading as
v ! 0. The fact that infinitely many subleading terms exist
comes from the fact that it is always possible to add a
photon exchange loop to any diagram, and all loops have
some integration region not singular as v ! 0.

The purpose of resummation is to extend the reach of
perturbation theory into the difficult, nonperturbative re-
gime. Some examples illustrate typical limitations. Expand
Sðv;�Þ � 1þ �ð�=vÞ þ �2�2=3v2 þ . . . . For � ¼
10�2, and v ¼ 5� 10�2 the third term is �2=75� 0:13.
It happens to be larger than a typical nonsingular term of
order �; retaining it is well-motivated for these kinematics.
The series is also stable in this regime: a high order term
ð��=vÞ10 � 0:0096 is small. Yet at the smaller velocity
v ¼ 5=1000, the subleading correction �11ð�=vÞ10 !
958956:0 is not included, is hardly small, and the
leading-order resummation fails. It is the nature of such
resummation that self-consistency breaks down in the re-
gion �=v * 1, exactly where Sðv;�Þ * 1.

If one believes a resummation recipe might generate
corrections of order 30–50%, say, there is seldom any
reason to invoke it for factors of ‘‘10’’ or more. Yet recent
treatments of dark matter annihilation have imagined the
Sommerfeld factor to be very general. It has been held
responsible for extremely large enhancement factors of
S � 10, while also coming from any generic interaction
involving light Yukawa particles [21]. The perception
comes from a practice of citing continuum Coulomb nor-
malization factors jc Cj2ð0Þ. Since Coulomb normaliza-
tions are known exactly, the procedure has been thought
to be ‘‘exact.’’

We have traced early literature to find several logical and
historical contradictions. Guth and Mullin highlighted the
approximations in 1951 [22]. In lowest order approxima-
tion, but while using Coulomb wave functions c Ci for a
basis, one encounters matrix elements M of the form

M ¼
Z

d3xc �
C2Vc C1:

Insert complete sets of momentum eigenstates jki:

M ¼
Z

d3kd3k0c �
C2ðkÞVkk0c C1ðk0Þ:

The Coulomb wave functions are sharply peaked in the
vicinity of certain momenta k1, k2, identified by taking the
limit � ¼ 0. Assume the plane-wave matrix elements
Vk1;k2 ¼ hk1jVjk2i are relatively smooth functions of mo-

mentum transfer. Make a rough approximation moving
Vk1k

0
2
outside the integral:

M ! Vk1;k2

Z
d3kc �

C2ðkÞ
Z

d3k0c C1ðkÞ;
! Vk1;k2c

�
C2ðx ¼ 0Þc C1ðx ¼ 0Þ:

(12)

In the last line c Cðx ¼ 0Þ appears as the coordinate-space
wave function at the origin, ‘‘improving’’ the plane-wave
calculation. Inserting the analytically known normalization
of jc Cj2 then produces the factor Sðv;�Þ for the cross
section.
The operations of separating the collision and wave

function integration into products is one of leading power
factorization. It is used in QCD calculations separating
‘‘hard’’ and ‘‘soft’’ regions of perturbation theory, but in
that case while attempting to be systematic. Careful work
with positronium annihilation [23] does not use the factor-
ized approximation. Instead, reference to resummation is
made after the full calculations are carried out. An early
work [23] on one-loop corrections to positronium decay
states that ‘‘Coulomb effects are included by this (factored)
method to all orders in e2, though only, of course, approxi-
mately.’’ (Italics are ours.)
What did Sommerfeld actually do? We consulted his

1931 article, in German, to see it introduced exact
Coulomb wave functions to calculate bremsstrahlung,
while it never suggested factorization. It is a tour de force
of early quantum theory; consulting it for a renormaliza-
tion factor actually perpetuates a normalization mistake.
Cross sections are defined by ratios relative to a flux
computed with a given normalization. The overall normal-
ization of physical states cancels out in total cross sections:
and so Eq. (12) is not only approximate, it is incomplete.
Elwert’s 1939 dissertation [24] recognized this, as did

Guth in 1941 [25]. These papers abandoned Sommerfeld’s
calculation and used the ratio of two in- and out- Coulomb
factors as an approximate factorized ansatz. ‘‘Elwert fac-
tors’’ are used in atomic and molecular physics to cancel
spurious prefactors going like v from other approxima-
tions, but only when their effects are not too large.
Experimental confrontation of the Elwert factor finds er-
rors of relative order unity in the region the factors are of
order unity [24,26]. Elwert and collaborators find this kind
of breakdown reasonable [24]. In no event are very large
corrections ever credited.

B. Multiplicative factors must fail

In retrospect, we find the concept behind generating
singularities via multiplicative factors questionable on
general grounds.
A general scattering amplitude has the partial wave

expansion

fð�; kÞ ¼ 1

k

X
l

ð2lþ 1ÞflðkÞPlðcos�Þ:

For each partial wave cross section �l of angular momen-
tum l, elastic unitary gives the upper limit
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�l ¼ 4�ð2lþ 1ÞjflðkÞj2
k2

� 4�ð2lþ 1Þ
k2

:

This summarizes the unitarity bound of Ref. [27]. Since
each partial wave has a finite cross section, no partial wave
can possibly have a singularity. Improving the s-wave
cross section—or any particular partial wave cross sec-
tion—by singular terms of order �X=v then contradicts
unitarity for �X=v * 1. This is just the same region where
the claimed Sommerfeld factor Sðv;�Þ � 1.

Can one escape the contradiction by appealing to small
�X? It seems not: No small value for�X is used in the logic
of an exact normalization citing Sommerfeld. Small cou-
pling is also no protection from internal inconsistency.
Unitarity and analyticity in perturbation theory are exact
facts maintained in a systematic way, order by order,
regardless of the size of the coupling constant, small or
large. When violated, it shows the calculation was bad, just
as indicated by subleading terms [28].

This problem of consistency is different from the one
previously recognized. Dark matter interactions have finite
range, while the infrared singularities of resummation
come from infinite range. To account for this the authors
of Ref. [11] argued that for a finite-range potential, a
Sommerfeld enhancement would saturate when the
de Broigle wavelength of colliding particles would be
larger than the range of the force. A related statement
actually follows from a WKB approximation: when the
de Broglie wavelength is tiny compared to the range, and
one works with wave functions at short distance, the range
effects of a Yukawa potential e��r=r drop out. Note that
the range criteria do not depend on a coupling constant, and
also do not specify any particular angular momentum
channels. Yet the singularities of scattering amplitudes,
and particularly Coulomb singularities, do depend on the
couplings and angular momentum channels. Whatever the
scale where analogies between massless and massive mod-
els break down, the facts of partial wave unitarity are more
general, and take precedence. They preclude large en-
hancement in any particular channel of fixed angular
momentum.

This leads to another useful bound. Replace every partial
wave by the one with largest magnitude jfmaxj. Sum them
up: The result is

� &
4�

k2
Xlmax

ð2lþ 1Þjfmaxj2 ¼ 4�jfmaxj2ðlmax þ 1Þ2
k2

:

(13)

This is a strict upper limit. The Sommerfeld factor is not a
resonance, and in the absence of resonances jfmaxj2 for
every partial wave is small in weakly coupled theories,
making � small. The notion of canceling a perturbative
factor of �2

X with an enhancement of 104 (say) needs

lmax � 102 partial waves. This is difficult to conceive—
or at least a high burden of proof—for finite-range, pertur-
batively coupled Yukawa models. It is even more problem-
atic that the angular momentum involved in annihilation is
strictly limited by the quantum numbers of intermediate
states. When the intermediate state consists of a single
particle, the angular momentum is bounded by its spin,
closing the door on large spin sums.
Since each partial wave is finite, how do some Coulomb-

dominated processes, such as Rutherford scattering, ac-
tually become singular as v ! 0? As Wigner [29] and
many others have noted, the Coulomb singularity is very
special. On semiclassical grounds (actually the facts of
Legendre series), in Eq. (13) the upper limit lmax �
rmaxk, where rmax is the range of the potential. This gives

� & 4�r2maxjfmaxj2 & 4�r2max:

The Coulomb singularity occurs because (1) the effective
range rmax ! 1, and (2) an infinite number of partial
waves actually can contribute. Closely related is
Wigner’s classic theorem [29] that power-law potentials
VðrÞ * 1=r2 are needed to develop any kind of singularity.

V. CONCLUDING REMARKS

We have explored significant effects in halo annihilation
rates due to natural widths of intermediate states. The
problem is intricate due to subtle interplay of energy
scales. The Born approximation almost always fails, giving
gross underestimates of reaction rates. Tiny values of
galactic halo velocities reverse an assumption that propa-
gator widths might be ‘‘small corrections.’’ That percep-
tion comes from comparing widths to particle masses, and
does not capture the important features of halo
annihilation.
Given that TeV-scale particles with typical electroweak

type couplings may easily have �=E0 � 1, Breit-Wigner
factors of ordinary radiative corrections must generally be
taken into account. Consistency of rates, in particular,
channels, such as the apparent dominance of leptons, still
needs to be considered model by model. The fact that
merely including basic physics of widths may be quite
significant. It revises the basic picture of annihilation sce-
narios confronting the PAMELA-FERMI-PPB-BETS data
in a positive way that increases the possibilities to find new
physics.
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