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I. INTRODUCTION

According to the common belief, the Pomeron in QCD
corresponds to an infinite sum of gluon ladders with
Reggeized gluons, resulting [1–3] in the so-called super-

critical behavior �t � s�Pð0Þ�1, where �Pð0Þ> 1 is the
intercept of the Pomeron trajectory, as discussed in
Ref. [4]. In that approach, the main contribution to the
inelastic amplitude and to the absorptive part of the elastic
amplitude in the forward direction arises from the multi-
Regge kinematics in the limit s ! 1 and leading logarith-
mic approximation. In the next-to-leading logarithmic ap-
proximation, corrections require also the contribution from
the quasi-multi-Regge kinematics [5]. Hence, the subener-
gies between neighboring s-channel gluons must be large
enough to be in the Regge domain. At finite total energies,
this implies that the amplitude is represented by a finite
sum of N terms [6], where N increases like lns, rather than
by the solution of the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) integral equation [1–3]. The interest in the first
few terms of the series is related to the fact that the energies
reached by the present accelerators are not high enough to
accommodate a large number of s-channel gluons that
eventually hadronize and give rise to clusters of secondary
particles [7].

The lowest order diagram is that of two-gluon exchange,
first considered by Low and Nussinov [8]. The next order,
involving an s-channel gluon rung was studied, e.g. in
papers [2,9] and generalized in Ref. [1]. The problem of
calculating these diagrams is twofold. The first one is
connected with the nonperturbative contributions to the
scattering amplitude in the ’’soft’’ region. It may be ignored
by ’’freezing’’ the running coupling constant at some fixed
value of the momenta transferred and assuming that the

forward amplitude can be cast by a smooth interpolation to
t ¼ 0. More consistently, one introduces a nonperturbative
model [10] of the gluon propagator valid also in the for-
ward direction. The second problem is more technical: as
s ! 1 the number of Feynman diagrams that contribute to
the leading order rapidly increases and, in each of them,
only the leading contribution is usually evaluated. At any
order in the coupling, subleading terms coming both from
the neglected diagrams and from the calculated ones are
present. Although functionally the result is always the sum
of increasing powers of logarithms, the numerical values of
the coefficients entering the sum is lost unless all diagrams
are calculated.
Conversely, one can expand the ‘‘supercritical’’

Pomeron� s�pð0Þ in powers of lnðsÞ. Such an expansion
is legitimate within the range of active accelerators, i.e.
near and below the TeV energy region, where fits to total
cross sections by power or logarithms are known [11] to be
equivalent numerically. Moreover, forward scattering data
(total cross sections and the ratio of the real to the imagi-
nary part of the forward scattering amplitude) do not
discriminate even between a single and quadratic fit in
lnðsÞ to the data.
In Ref. [6] a model for the Pomeron at t ¼ 0 based on

the idea of a finite sum of ladder diagrams in QCD was
suggested. According to the idea of that paper, the number
of s-channel gluon rungs and correspondingly the powers
of logarithms in the forward scattering amplitude depends
on the phase space (energy) available, i.e. as energy in-
creases, progressively new prongs with additional gluon
rungs in the s-channel open. Explicit expressions for the
total cross section involving two and three rungs or, alter-
natively, three and four prongs (with ln2ðsÞ and ln3ðsÞ as
highest terms, respectively) were fitted to the proton-
proton and proton-antiproton total cross section data in
the accelerator region.
In a related paper [12] the Pomeron was considered as a

finite series of ladder diagrams, including one gluon rung
besides the Low-Nussinov ‘‘Born term’’ and resulting in a
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constant plus logarithmic term in the total cross section.
With a subleading Regge term added, good fits to pp and
p �p total as well as differential cross section were obtained
in [12]. There is however a substantial difference between
Ref. [6] and that of Ref. [12] or simple decomposition in
powers of lnðsÞ, namely, that we consider the opening
channels (in s) as threshold effects, the relevant prongs
being separated in rapidity by lns0, s0 being a parameter
related to the average subenergy in the ladder. Although
such an approach inevitably introduces new parameters,
we consider it more adequate in the framework of the
finite-ladder approach. We mention these attempts only
for the sake of completeness, although we stick to the
simplest case of t ¼ 0, where there are hopes to have
some connection with the QCD calculations.

Within the ‘‘finite gluon ladder approach’’ to the
Pomeron (see [6] and references therein), several options
are possible. In Ref. [6] a system of interconnected equa-
tions was solved with several free parameters, including
the value of si0. that determine the opening of each thresh-

old (prong). In that paper finite gluon ladders were calcu-
lated from QCD, where the important dynamical
information is contained in � of Eq. (7) of that paper,
including lns terms multiplied by the QCD running con-
stant �s constraining the interconnection between various
powers of the logarithms in the total cross section. If one
chooses �s ¼ 0:5–0:7, a typical ‘‘frozen’’ value of the
QCD coupling constant, the resulting total cross section
will rise too fast with respect to the data. Good fits within
this option can be achieved only if �s is an order of
magnitude smaller than the above ‘‘canonical’’ value.
Whether this is acceptable or not is an open question (see
below, Sec. IVand the conclusions in Sec. Vof this paper).

In the present paper we include the unitarization proce-
dure: we consider the QCD-inspired amplitude as a Born
term, subject to a subsequent unitarization procedure. We
use the eikonal formalism and treat the running constant as
a free parameter. The resulting eikonalized amplitude,
fitted to the data (Sec. IV), gives �s � 0:2. This can be
considered also as a way of deriving the QCD running
coupling in the soft region.

II. TOTAL CROSS SECTIONS FROM A FINITE
SUM OF GLUON LADDERS

The Pomeron contribution to the total cross section is
represented in the form

�ðPÞ
t ðsÞ ¼ XN

i¼0

fi�ðs� si0Þ�ðsiþ1
0 � sÞ; (1)

where

fi ¼
Xi
j¼0

aijL
j; (2)

s0 is the prong threshold, �ðxÞ is the step function and L �

lnðsÞ. Here, by s and s0, respectively, s=ð1 GeV2Þ and
s0=ð1 GeV2Þ are implied. The main assumption in Eq. (1)
is that the widths of the rapidity gaps lnðs0Þ are the same
along the ladder. The functions fi are polynomials in L of
degree i, corresponding to finite gluon ladder diagrams in
QCD, where each power of the logarithm collects all the
relevant diagrams. When s increases and reaches a new
threshold, a new prong opens adding a new power in L. In
the energy region between two neighboring thresholds, the
corresponding fi, given in Eq. (1), is supposed to represent
adequately the total cross section.
In Eq. (1) the sum over N is a finite one, since N is

proportional to lnðsÞ, where s is the present squared c.m.
energy. Hence, this model is quite different from the usual
approach where, in the limit s ! 1, the infinite sum of the
leading logarithmic contributions gives rise to an integral
equation for the amplitude.
To make the idea clearer, we describe the mechanism in

the case of three gaps (two rungs). To remedy the effect of
the first threshold and get a smooth behavior at low ener-
gies, we have included also a Pomeron daughter, going like
�1=s in the first two gaps with parameters b0 and b1,
respectively. Then

f0ðsÞ ¼ a00 þ b0=s for s � s0; (3)

f1ðsÞ ¼ a10 þ b1=sþ a11L for s0 � s � s20; (4)

f2ðsÞ ¼ a20 þ a21Lþ a22L
2 for s20 � s � s30: (5)

By imposing the requirement of continuity (of the cross
section and of its first derivative) one constrains the pa-
rameters. For example, from the conditions f1ðs0Þ ¼
f0ðs0Þ and f01ðs0Þ ¼ f00ðs0Þ the relations

b1 ¼ a11s0 þ b0; a10 ¼ a00 � a11 lnðs0Þ � a11

follow. Furthermore, from f2ðs20Þ ¼ f1ðs20Þ and f02ðs20Þ ¼
f01ðs20Þ one gets

a20 ¼ a22ln
2ðs20Þ þ a10 þ b1ð1þ lnðs20ÞÞ=s20;

a21 ¼ a11 � 2a22 lnðs20Þ � b1=s
2
0:

The same procedure can be repeated for any number of
gaps.
In fitting the model to the data, the authors of Ref. [6]

relied mainly on p �p data that extend to the highest (accel-
erator) energies, to which the Pomeron is particularly
sensitive. To increase the confidence level, pp data were
included in the fit as well. To keep the number of the free
parameters as small as possible and following the success-
ful phenomenological approach of Donnachie and
Landshoff [13], a single ’’effective’’ Reggeon trajectory
with intercept �ð0Þ will account for nonleading contribu-
tions, thus leading to the following form for the total cross
section:
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�tðsÞ ¼ �ðPÞ
t ðsÞ þ RðsÞ; (6)

where�ðPÞ
t ðsÞ is given by Eq. (1) and RðsÞ ¼ as�ð0Þ�1 (note

that a is different for p �p and pp and is considered as an
additional free parameter).

Ideally, one would let free the width of the gap s0 and
consequently the number of gluon rungs (highest power of
L). Although possible, technically this is very difficult.
Therefore we considered only the cases of two and three
rungs and, for each of them, we treated s0 as a free
parameter.

Notice that the values of the parameters depend on the
energy range of the fitting procedure. For example, the
values of the parameters in f0 if fitted in ‘‘its’’ range, i.e.
for s � s0, will get modified in f1 with the higher energy
data and correspondingly higher order diagrams included.

As a first attempt, only three rapidity gaps, that corre-
spond to two-gluon rungs in the ladder were considered.
Fits to the p �p and pp data were performed from

ffiffiffi
s

p ¼
4 GeV up to the highest energy Tevatron data [14].
Interestingly, the value of s0 turned out to be very close
to 144 GeV2, i.e. the value for which the energy range
considered is covered with equal rapidity gaps uniformly.

Next, the energy span available in the accelerator region
by four gaps, resulting in 3 gluon rungs and consequently
L3 as the maximal power were covered [6]. After the
matching procedure, ten free parameters remained: first
of all s0, then a00, b0, a11, a22, a32, a33, each determined
in its range, while the two a’s and �ð0Þ are fitted in the
whole range of the data. The final value for s0 turned out to
be s0 ’ 42:5 GeV2 resulting in a sequence of energy inter-
vals ending at

ffiffiffi
s

p ¼ 1800 GeV. Interestingly, search for
the phase space region where the production amplitude in
the multicluster configuration has a maximum resulted,
with the help of cosmic-ray data, to an average ‘‘sube-
nergy’’ hsii � 44 GeV2 [15], that is very near to the value
of s0 found in the fit.

III. EXPLICIT ITERATIONS OF BFKL

From the theoretical point of view, the phenomenologi-
cal model of Sec. II corresponds to the explicit evaluation
in QCD of gluonic ladders with an increasing number of
s-channel gluons. This correspondence is far from literal
since each term of the BFKL series takes into account only
the dominant logarithm in the limit s ! 1. In the follow-
ing we give concrete expressions for the forward high-
energy scattering amplitudes for hadrons in the form of
an expansion in powers of large logarithms in the leading
logarithmic approximation.

We start from known results obtained in paper [2] where
an explicit expression for the total cross section for hadron-
hadron scattering has been obtained. In the high-energy
limit, it is convenient to introduce the Mellin transform of
the amplitude

A ð!; tÞ ¼
Z 1

0
d~s~s�!�1 ImsAðs; tÞ

s
; ~s ¼ s

m2

and its inverse

ImsAðs; tÞ
s

¼ 1

2�i

Z �þi1

��i1
d!~s!Að!; tÞ:

The general expression of Að!; tÞ in the leading logarith-
mic approximation has the form:

A ð!; tÞ ¼
Z

d2k
�aðk; qÞFb

!ðk; qÞ
k2ðq� kÞ2 ;

where �aðk; qÞ and �bðk; qÞ (see next equation) are the
impact factors of the colliding hadrons a and b, obeying
the gauge conditions �jð0; qÞ ¼ �jðq; qÞ ¼ 0 (j ¼ a, b).
The quantity Fb

!ðk; qÞ obeys the BFKL equation:

!Fb
!ðk; qÞ ¼ �bðk; qÞ þ �

Z d2k0

2�

� Aðk; k0; qÞFb
!ðk0; qÞ � Bðk; k0; qÞFb

!ðk; qÞ
ðk� k0Þ2 ;

with

Aðk; k0; qÞ ¼ �q2ðk� k0Þ2 þ k2ðq� k0Þ2 þ k02ðq� kÞ2
k02ðq� k0Þ2 ;

Bðk; k0; qÞ ¼ k2

k02 þ ðk0 � kÞ2 þ
ðq� kÞ2

ðq� k0Þ2 þ ðk� k0Þ2 ;

and

� ¼ 3
�s

�
:

The strong coupling �s is assumed to be frozen at a
suitable scale set, for example, by the external particles.
The iteration procedure and the inverse Mellin transform
give (furthermore, we set q ¼ 0):

�tðsÞ ¼ ImsAðs; 0Þ
s

¼
Z

d2k
�aðk; 0Þ
ðk2Þ2

�
�b

0ðkÞ þ ��b
1ðkÞ þ

1

2!
�2�b

2

þ . . .

�
;

where

� ¼ 3�s

�
ln~s (7)

and the subsequent iterations begin from �b
0ðkÞ ¼

�bðk; 0Þ. In the previous integral and everywhere in the
following, all the momenta are two-dimensional Euclidean
vectors, living in the plane transverse to the one formed by
the momenta of the colliding particles.
To obtain the cross section of proton-proton scattering,

we use the ansatz of Ref. [16] for the impact factor of a

PREDICTIONS FOR HIGH-ENERGY ppAND �pp . . . PHYSICAL REVIEW D 81, 056001 (2010)

056001-3



hadron in terms of its form factor Fðq2Þ:

�pðk; qÞ ¼ Fp

�
q2

4

�
� Fp

��
k� q

2

�
2
�
;

�pð0; qÞ ¼ �ðq; qÞ ¼ 0:

Here the two-dimensional Euclidean vector q is related to
the four-dimensional transferred momentum Q by the re-
lation Q2 ¼ �q2 < 0. To get the input value for �0, we
use

F0ðkÞ ¼ ak2e�ck2 ; (8)

where a and c are in GeV�2. It is convenient to define

c nðk2Þ ¼ FnðkÞ
k2

;

then (for n � 1)

c nðk2Þ ¼
Z 1

0

dx

1� x
ðc n�1ðk2xÞ � c n�1ðk2ÞÞ þ

Z 1

1

dx

x� 1

�
�
c n�1ðk2xÞ � 1

x
c n�1ðk2Þ

�

and

�tðsÞ ¼ �
Z 1

0
dk2c 0ðk2Þ

X
n

c nðk2Þ�
n

n!
: (9)

Integrations can be performed analytically, due to the
simple choice of the impact factor in Eq. (8), and the final
result is

�tðsÞ ¼ �a2

2c

�
1þ 2ðln2Þ�þ

�
�2

12
þ 2ðln2Þ2

�
�2

þ 1

3

�
�2

2
ðln2Þ þ 4ðln2Þ3 � 3

4
�ð3Þ

�
�3 þ . . .

�
; (10)

where � is defined in Eq. (7), and �ð3Þ is the Riemann’s
Zeta function �ð3Þ � 1:202.

IV. UNITARIZED FIT

In Sec. II, we quoted the calculated cross sections of the
finite-ladder-Pomeron model with the parameters fitted to
the existing data, the threshold value (opening prong) of
the interconnected ladders playing there an important role.
In Sec. III, the parameters were calculated from QCD.
With these parameters the resulting cross sections over-
shoot the data, which is not surprising, since the calculated
Born term should be subjected to a unitarization procedure.
Below we perform such calculations in the framework of
the eikonal formalism and compare the results with the
experimental data.

We start from Eq. (10), Sec. III for the pp and �pp total
cross section. Supplying that expressing with an exponen-
tial t dependence we get the elastic scattering amplitude

FBornðs; tÞ ¼ Að�i~sÞ1þ�0t½a0 þ a1� lnð�i~sÞ
þ a2�

2ln2ð�i~sÞ þ a3�
3ln3ð�i~sÞ�eBt; (11)

where �0 and B are new fitting parameters, and

a0 ¼ 1þ �2

4

�
�2

12
þ 2ln22

�
�2;

a1 ¼ �2

4

�
�2

2
ln2þ 4ln32� 3

4
�ð3Þ

�
�2 þ 2 ln2;

a2 ¼ �2

12
þ 2ln22;

a3 ¼ 1

3

�
�2

2
ln2þ 4ln32� 3

4
�ð3Þ

�
; A ¼ � a2

8c
;

and is the Riemann � function, defined above.
Notice that we use a finite Pomeron slope�0, and remind

that, while in the leading order and without account for the
running of the coupling constant, the BFKL Pomeron
singularity is a fixed brunch point with vanishing slope,
�0 ¼ 0. The situation changes completely with the running
coupling, resulting in an infinite number of Regge poles
[3], whose trajectories for small jtj are not calculable from
perturbative QCD. The case of moving poles is more
relevant to high-energy phenomenology, the subject of
the present paper. Consequently, we treat �0 in Eq. (11)
as a free parameter.
We remind that in Eq. (11) ~s ¼ s=m2, m ¼ mp ¼

938 MeV, and, consequently, our approach can be trusted
when s is greater than m2. In fact, our fits shown in Figs. 1
and 2 extend in the range ð5< ffiffiffi

s
p

< 1800Þ GeV.
In the eikonalization procedure we follow Ref. [17],

according to which the Pomeron amplitude

FPðs; tÞ ¼ is
Z 1

0
bdbJ0ðb

ffiffiffiffiffiffi�t
p Þð1� ei	ðb;sÞÞ; (12)

FIG. 1 (color online). Total pp (lower, blue line) and �pp
(upper, red line) cross sections from the uniratized (eikonalized)
version of the model.
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where J0 is the Bessel function of zeroth order and the
eikonal 	 is

	ðs; bÞ ¼ 1

s

Z 1

0

ffiffiffiffiffiffi�t
p

d
ffiffiffiffiffiffi�t

p
I0ðb

ffiffiffiffiffiffi�t
p ÞFBornðs; tÞ: (13)

Inserting the expression for the Pomeron into Eq. (13)
and expanding the exponential in (12), one find for the
eikonalized Pomeron amplitude

FP ¼ 2is

X1
k¼1

1

kk!

�
� 


�

�
k�1

e�t=k: (14)

Respectively, the forward Pomeron amplitude is

FPðs; t ¼ 0Þ ¼ 2is�½Cþ lnð
=�Þ þ E1ð
=�Þ�; (15)

where

� ¼ Bþ �0 lnð�i~sÞ; (16)


 ¼ A
2m2 ð
0 þ 
1 þ 
2 þ 
3Þ, and


0 ¼ a0; 
1 ¼ a1� lnð�i~sÞ;

2 ¼ a2�

2ln2ð�i~sÞ; 
3 ¼ a3�
3ln3ð�i~sÞ;

C ¼ 0:577216 is the Euler constant and E1 is the asymp-
totic form of the first order exponential integral:

E1 ¼ expð
=�Þ

=�

�
1� 1


=�
þ 2

ð
=�Þ2 �
6

ð
=�Þ3 þ . . .

�
:

(17)

The obtained eikonalized Pomeron term is appended by
a contributions from secondary Reggeons, f and !:

F	
R ðs; t ¼ 0Þ ¼ gf~s

�fð0Þ 	 ig!~s
�!ð0Þ;

where theþð�Þ sign corresponds to �ppðppÞ scattering, the
resulting forward amplitude being

F �pp
ppðs; t ¼ 0Þ ¼ FPðs; t ¼ 0Þ þ FRðs; t ¼ 0Þ:

For the total cross section the norm

� ¼ 4�

s
ImF �pp

ppðs; t ¼ 0Þ

was used and �ðs; 0Þ ¼ ReF �pp
ppðs; t ¼ 0Þ=ImF �pp

ppðs; t ¼ 0Þ.
Fits of the total of 8 free parameters to 238 data points on

pp and �pp total cross sections as well as on the ratio � (see
Table I) were performed in the range 5 GeV � ffiffiffi

s
p �

1:8 TeV with the results shown in Figs. 1 and 2 and
Table II. Predictions for pp at the expected LHC energies
are quoted in Table III.
The quality of the fits (	2=dof) is good, comparable to

that in, e.g. Ref. [18] (for a recent review on the subject see
Ref. [19]).

V. CONCLUSIONS

Our main goal was an adequate picture of the Pomeron
exchange at t ¼ 0. In our opinion, it is neither an infinite
sum of gluon ladders as in the BFKL approach [1–3], nor
its power expansion. In fact, the finite series—call it
‘‘threshold approach’’—considered in Sec. II and in the
previous papers [6] realizes a nontrivial dynamical balance
between the total reaction energy and the subenergies
equally partitioned between the multiperipheral ladders.

FIG. 2 (color online). The ratio �ðsÞ ¼ ReAðs; 0Þ=ImAðs; 0Þ
from the same model.

TABLE I. Number of used data points and 	2 per degree of
freedom (	2=dof) for 5 GeV � ffiffiffi

s
p � 1:8 TeV (same as in [18]).

�pp 104

� �pp 59

�pp 64

� �pp 11

Total number of points 238

Number of free parameters 8

	2=dof 1.11

TABLE II. Values of the fitted parameters.

Parameter Value Error

A 0.526 0.198

�s 0.190 0.033

B 0.116 0.121

�0 0.134 0.004

gf �4:56 0.35

�fð0Þ 0.858 0.086

g! 3.73 0.16

�!ð0Þ 0.451 0.013

TABLE III. Prediction of the model for the LHC energies.

Energy (TeV) 6 12

�ðpp= �ppÞðmbÞ 91.3 101

�ðpp= �ppÞ 0.121 0.115
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The role and the value of the width of the gap, s0, is an
important physical parameter per se, independent of the
model presented above. We have fitted it and compared
successfully with the prediction from cosmic-ray data.
However, its value may be estimated, e.g. as the lowest
energy where the Pomeron exchange is manifest, although
the latter is also a matter of debate.

The case of two terms (logarithmic rise in s) is particu-
larly interesting as it corresponds to a dipole Pomeron with
a number of attractive features [20] such as self-
reproducibility with respect of unitarity corrections. In
the case of a ln2ðsÞ rise (three terms), we still should not
worry about the Froissart bound, so ultimately the
Pomeron as viewed in this paper does not need to be
unitarized. This conclusion is an important by-product of
our paper. For the dipole Pomeron, relevant calculations
for t � 0 are interesting and important but difficult. In the
case of a single gluon rung they were performed in
Ref. [12] and, with a nonperturbative gluon propagator,
in the last reference of [10]. It is significant that the
obtained in this paper value of the �s as fitted parameter
corresponds to one calculated with describing F2 through

of finite sum of gluon ladders [21], which is typical of this
kinematical region.
As mentioned in the Introduction, acceptable high-

energy asymptotics with the QCD Pomeron of Sec. III,
without unitarization, can be achieved only at the expense
of substantially lowering the canonical, ‘‘frozen’’ QCD
running constant. The unitarization procedure and the sub-
sequent fit to the data, presented in Sec. IV give indepen-
dently the value �s ¼ 0:19, thus providing one more
means for the determination of this fundamental constant
of QCD.
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