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Dimension-5 corrections to the gauge kinetic term of grand unified theories may capture effects of

quantum gravity or string compactification. Such operators modify the usual gauge coupling unification

prediction in a calculable manner. Here we examine SUð5Þ, SOð10Þ, and Eð6Þ grand unified theories in the
light of all such permitted operators and calculate the impact on the intermediate scales and the unification

program. We show that in many cases at least one intermediate scale can be lowered to even 1–10 TeV,

where a neutral Z0 and possibly other states are expected.
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I. INTRODUCTION

Grand unified theories (GUTs) [1] relate the strong and
electroweak interactions of the standard model (SM) at a
high energy, MX, and embody quark-lepton unification,
leading to testable predictions such as proton decay and
n� �n oscillations. The characteristic energy of the SM,
which is based on the gauge group GSM � SUð2ÞL �
Uð1ÞY � SUð3Þc, is the electroweak scale MZ. The vast
difference between MX and MZ introduces a hierarchy
problem in GUTs which is often addressed through the
introduction of supersymmetry (SUSY). The rich predic-
tions of these theories—of both the nonsupersymmetric
and supersymmetric varieties—have received much atten-
tion. At the moment a clear experimental confirmation of
the GUT paradigm is keenly awaited.

The fourth fundamental interaction, namely, gravity, is
not a part of GUTs. It is widely expected that grand unified
theories will have a setting in some larger framework, e.g.,
string theory, effective at higher energies close to the
Planck scale, MPl, which will encompass gravitational
interactions within its fold. Without going into the details
of such a theory one can hope to probe some of its impli-
cations through effective operators at the GUT scale, sup-
pressed by inverse powers ofMPl, which may emerge from
it and alter the grand unified theory predictions.

The particular higher dimensional operator which we
consider here impacts the gauge kinetic term:

L kin ¼ � 1

4c
TrðF��F

��Þ; (1)

where F�� ¼ �i�iF
��
i is the gauge field strength tensor

with �i being the matrix representations of the generators
normalized to Trð�i�jÞ ¼ c�ij. For SUðnÞ groups the �i

are conventionally chosen in the fundamental representa-
tion with c ¼ 1=2.

The dimension-5 (dim-5) interaction which we include
is [2,3]

L dim -5 ¼ � �

MPl

�
1

4c
TrðF���DF

��Þ
�
; (2)

where�D denotes theD-component Higgs multiplet and�
parametrizes the strength of this interaction. In order for it
to be possible to form a gauge invariant of the form in
Eq. (2), �D can be in any representation included in the
symmetric product of two adjoint representations of the
group. When �D develops a vacuum expectation value
(VEV) vD, which breaks the GUT symmetry and sets the
scale of grand unification MX, an effective gauge kinetic
term is generated from Eq. (2). Depending on the structure
of the VEV, this additional contribution usually will not be
the same for the different subgroups to which the GUT
group is broken, leading, after a scaling of the gauge fields,
to a modification of the unification condition to

g2i ðMXÞð1þ ��iÞ ¼ g2U; (3)

wherein gU is the unified gauge coupling, � ¼
�vD=2MPl �OðMX=MPlÞ, and the group-theoretic factors
�i arise from Eq. (2). The �i were available in the literature
for some selected choices of�D and GUT groups [2]. They
were exhaustively evaluated for the first time for all pos-
sible �D for SUð5Þ, SOð10Þ, and Eð6Þ GUTs1 in [3]
While normally in GUTs the gauge couplings are ex-

pected to reach a common value atMX [6], in the presence
of dim-5 terms, as in Eq. (2), the modified boundary
conditions of Eq. (3) must be satisfied. It is indeed possible
that this tweaking will be just enough to entail the uni-
fication program to succeed with the current low energy
values of the coupling constants as a boundary condition.
To check this for SUð5Þ, SOð10Þ, and Eð6Þ-based GUT
models is the main goal of this work. We discuss both the
nonsupersymmetric and supersymmetric alternatives.
For SUð5Þ this analysis has appeared in our earlier short

note [3] and it is briefly recapitulated here. GUTs based on
SOð10Þ and Eð6Þ provide several routes of descent to the

*joydeep@hri.res.in

1In SUSY the �i also have a direct application in the non-
universality of gaugino masses [3–5].
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SM, with different levels of symmetry being active at the
intermediate stages. This richer structure often bears new
testable features. One of these is the possibility of n� �n
oscillations which in SOð10Þ can be mediated via scalar
fields that are not superheavy. Also, the right-handed neu-
trino, �R, which is present in both SOð10Þ and Eð6Þ GUTs,
can lead to light neutrinos through the seesaw mechanism.
If the neutrino Yukawa couplings are not unnaturally small,
the seesawmechanism posits a large Majorana mass for the
�R. This mass is fixed by the scale of (B� L) symmetry
breaking which is determined in our analyses below.

For SOð10Þ we examine the breaking through the inter-
mediate Pati-Salam [G224 � SUð2ÞL � SUð2ÞR � SUð4Þc]
symmetry. G224 itself can break directly to the SM or via
another intermediate group G2131 � SUð2ÞL �Uð1ÞR �
SUð3Þc �Uð1ÞðB�LÞ. We explore both routes. Eð6Þ allows
an intermediate SOð10Þ symmetry and in this case the
results are to a great extent similar to that of SOð10Þ
GUTs. Here we look at Eð6Þ breaking via the intermediate
gauge groupG333 � SUð3ÞL � SUð3ÞR � SUð3Þc with pos-
sibly also an intervening G21213 � SUð2ÞL �Uð1ÞY0

L
�

SUð2ÞR �Uð1ÞY0
R
� SUð3Þc symmetry before descending

to the SM.
When there are intermediate scales in the GUT-

symmetry breaking the scalar masses have been fixed using
the ‘‘extended survival hypothesis’’ (ESH) [7] which is
motivated along the following lines. Normally, the lack
of any protection mechanism will tend to move all scalar
masses to the GUT scale. The necessity of light scalars is
dictated by the requirement to trigger spontaneous sym-
metry breaking at lower energies and this entails a fine-
tuning in the scalar sector. The extended survival hypothe-
sis, which can also be termed ‘‘minimal fine-tuning,’’
simply requires that all scalars acquire mass at the GUT
scale barring those that are essential for symmetry break-
ing at lower scales. The latter carry masses of the order of
the scales of the symmetry breakings for which they are
responsible. For any such scalar, at intermediate stages of
symmetry above its mass scale, out of the full GUT scalar
multiplet only the submultiplet containing this scalar re-
mains at that scale, the remainder being at MX. As an
illustrative example consider the decay chain

SOð10Þ!MX
SUð2ÞL � SUð2ÞR � SUð4Þc

!MR
SUð2ÞL �Uð1ÞY � SUð3Þc!MZ

Uð1Þem � SUð3Þc:
(4)

The electroweak symmetry breaking is through the GSM

doublets, ð2;�1; 1Þ, which emerge from a G224 submultip-
let (2,2,1) which is a part of the SOð10Þmultiplet 10. Under
G224, 10 � ð1; 1; 6Þ þ ð2; 2; 1Þ. According to the ESH, out
of the 10 of SOð10Þ the scalars forming the (1,1,6) sub-
multiplet acquire a mass MX, while the (2,2,1) under G224

are at the electroweak scale MZ. The scalar masses deter-

mine from which energy their effect on gauge coupling
evolution has to be included. Whenever earlier work in-
cluding the ESH contribution to gauge coupling evolution
is available with which our results can be compared, we
do so.
The generic renormalization group (RG) equations gov-

erning gauge coupling evolution are

�
dgi
d�

¼ �iðgi; gjÞ; ði; j ¼ 1; . . . ; nÞ; (5)

where n is the number of couplings in the theory and at
two-loop order

�iðgi; gjÞ ¼ ð16�2Þ�1big
3
i þ ð16�2Þ�2

Xn
j¼1

bijg
2
jg

3
i : (6)

When using this two-loop formula, the matching of the
coupling constant 	k below an intermediate scale MI

which goes over to 	l thereafter follows the relation [8,9]

1

	kðMIÞ �
Ck

12�
¼ 1

	lðMIÞ �
Cl

12�
; (7)

where Ck is the quadratic Casimir for the kth subgroup. At
the unification scale,MX, this has to be supplemented with
the contributions from the dim-5 operators in Eq. (3).
A subtle feature [10,11], considered most recently

within the context of SOð10Þ in [12], has to do with the
dynamical mixing of two Uð1Þ subgroups of an intermedi-
ate gauge symmetry even at the one-loop level. The Uð1Þ
gauge currents and the Uð1Þ gauge boson fields are by
themselves gauge invariant and so cross couplings between
them are not forbidden by gauge symmetry. Even if the
mixing is set to zero at some scale it emerges again through
the RG flow. The origin of this mixing in the RG equations
lies in the following fact: while the trace of the product of
two differentUð1Þ generators vanishes over an entire gauge
multiplet, when only a submultiplet is light [e.g., some
scalars of a multiplet remaining light due to the extended
survival hypothesis in SOð10Þ or Eð6Þ, or incomplete light
fermion multiplets in Eð6Þ] this is no longer so. This
requires a more sophisticated analysis leading to a cou-
pling of g1m and g1n in the one- and two-loop RG equations
where m and n identify two Uð1Þ groups. These terms, not
made explicit in Eq. (6), arise in the two-step breaking
options for SOð10Þ and Eð6Þ and are detailed in the dis-
cussions in the respective sections.
We consider both nonsupersymmetric as well as super-

symmetric versions of the theory. In the latter case the
contributions of the superpartners to the beta functions are
included. (We assume that the SUSY scale is at MSUSY ¼
1 TeV.) As is well known [13], unification of coupling
constants is compatible with TeV-scale supersymmetry.
We find that the addition of the dim-5 contributions does
not spoil this.
This paper is structured as follows. In the next section

we recapitulate the case of SUð5Þ GUTs to set the modus
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operandi for the program. In the two subsequent sections
we consider SOð10Þ- and Eð6Þ-based theories where we
also explore the possibility of one or more intermediate
mass scales. We require that the unification scale be above
the lower bound from proton decay2 and below the Planck
scale and that all couplings should remain perturbative
throughout the energy range. We find that in most cases
there is one intermediate scale which can be as low as 1–
10 TeVat which one expects a Z0 neutral gauge boson and
possibly other new particles. These provide a testable
prediction within striking range of the LHC. The other
scale(s) populating the GUT desert are usually high and
n� �n oscillations may not be observable.3 In the final
section we summarize the results.

II. SUð5Þ
The group SUð5Þ supports the leanest grand unified

theory. It incorporates the quarks and leptons of one gen-
eration in two irreducible representations: �5 and 10. Unlike
SOð10Þ and Eð6Þ, which are groups of rank 5 and 6,
respectively, SUð5Þ being a group of rank 4, only permits
a direct breaking to the SM with no intermediate step
possible. Though one of our aims in this work is to look
for intermediate scales in GUT-symmetry breaking, for the
sake of completeness we give a brief account of the results
for SUð5Þ [2,3]. The symmetry breaking is

SUð5Þ!MX
SUð2ÞL �Uð1ÞY � SUð3Þc: (8)

The adjoint representation of SUð5Þ is 24 dimensional.
Since ð24 � 24Þsym ¼ 1 � 24 � 75 � 200, nontrivial con-

tributions in Eq. (2) can arise if �D transforms as the 24,
75, or 200 representation. The deviations from gauge uni-
fication due to these representations, parametrized by the
�i in Eq. (3), are listed in Table I. The evolution of the
gauge couplings4 are governed by the one- and two-loop
beta-function coefficients:

b1 ¼ 4þ 1
10nH; b2 ¼ �10=3þ 1

6nH; b3 ¼ �7;

(9)

and

bij ¼
19=5 9=5 44=5

3=5 11=3 12

11=10 9=2 �26

0
BB@

1
CCAþ nH

9=50 9=10 0

3=10 13=6 0

0 0 0

0
BB@

1
CCA:

(10)

nH ( ¼ 1 for the SM) is the number of Higgs doublets.
These are for the nonsupersymmetric case.
For SUSYone must also include the contributions from

the superpartners to the beta-function coefficients. With
three generations and two Higgs doublets one has

b1 ¼ 33

5
; b2 ¼ 1; b3 ¼ �3;

bij ¼
199=25 27=5 88=5
9=5 25 24
11=5 9 14

0
@

1
A:

(11)

BelowMSUSY, Eqs. (9) and (10) are operative with nH ¼ 2
while beyond MSUSY Eq. (11) is employed.
The results of a two-loop RG analysis are shown in

Table II. We find that for both the non-SUSY as well as
the SUSY alternatives unification is possible in the SUð5Þ
GUTwhen additional effective interactions of dimension-5
are in play.MX, the unification scale, and �, the strength of
the dim-5 interaction, are shown in Table II for the different
choices of �D. It is seen that for the non-SUSY case,
unification, though achievable with the dim-5 interactions,
is not satisfactory. For �24 and �75 the unification scale
MX is too low to be consistent with the current limits on the
proton decay lifetime while for�200, � is larger than unity.
The solutions for the SUSY case are satisfactory on every
count.

III. SOð10Þ
SOð10Þ [15] is the smallest GUT which accommodates

all the fermions of a generation in one irreducible
multiplet, the spinorial 16. The group admits a left-right
symmetric subgroup [16]—the Pati-Salam SUð2ÞL �
SUð2ÞR � SUð4Þc which we denote by G224—with inter-

TABLE I. Effective contributions (�i) to gauge kinetic terms
from different Higgs representations in Eq. (2) for SUð5Þ [see
Eq. (3)].

SUð5Þ
representations �1 �2 �3

24 1=
ffiffiffiffiffiffi
15

p
3=

ffiffiffiffiffiffi
15

p �2=
ffiffiffiffiffiffi
15

p
75 4=

ffiffiffi
3

p �12=5
ffiffiffi
3

p �4=5
ffiffiffi
3

p
200 1=

ffiffiffiffiffiffi
21

p
1=5

ffiffiffiffiffiffi
21

p
1=10

ffiffiffiffiffiffi
21

p

TABLE II. SUð5Þ dimension-5 interaction strength, �, and the
gauge unification scale, MX, for different �D representations
using the two-loop RG equations.

Non-SUSY SUSY

SUð5Þ
representations �

MX

(GeV) �
MX

(GeV)

24 0.077 4:78� 1013 �0:009 1:64� 1016

75 �0:039 2:37� 1015 0.004 1:22� 1016

200 �1:27 2:59� 1017 0.146 9:35� 1015

2The current bound [14] 
pðp ! eþ�0Þ> 1:6� 1033 yr
translates to MX > 1015:4 GeV. Conservatively, we use a lower
limit of 1016 GeV for MX.

3For one exceptional case, see Sec. III B 1.
4g1;2;3 correspond to the Uð1ÞY , SUð2ÞL, and SUð3Þc sub-

groups, respectively.
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esting new phenomenology including quark-lepton unifi-
cation within the SUð4Þc. The chain of symmetry breaking
that we discuss here is

SOð10Þ!MX
SUð2ÞL � SUð2ÞR � SUð4Þc

!MC
SUð2ÞL �Uð1ÞR � SUð3Þc �Uð1ÞðB�LÞ!MR

SM:

(12)

Some subcases which we also look at are when
(i) MX ¼ MC ¼ MR which corresponds to a breaking of
SOð10Þ to the SM with no intervening steps, and
(ii) MC ¼ MR which is a situation where SOð10Þ reduces
to the SM through one intermediate step. We consider these
cases one by one. All results presented below are based on
two-loop RG analyses.

The adjoint representation of SOð10Þ is 45 dimensional.
Since ð45 � 45Þsym ¼ 1 � 54 � 210 � 770, �D in Eq. (2)

transforms as the 54, 210, or 770 representation. The
deviations from gauge unification due to these representa-
tions, parametrized by the �i in Eq. (3), are listed in
Table III.

A. No-step breaking in SOð10Þ
This is the most straightforward symmetry breaking for

SOð10Þ and is much like the SUð5Þ case discussed in
Sec. II.

SOð10Þ!MX
SUð2ÞL �Uð1ÞY � SUð3Þc: (13)

When there are no intermediate scales the gauge coupling
evolutions are governed by Eqs. (9) and (10) for the non-
supersymmetric case and Eq. (11) for the SUSY version.

The results are shown in Table IV. As for SUð5Þ, we find
that the nonsupersymmetric solutions are untenable. For
all three choices of �D the unification scale is
Oð1013–1014Þ GeV, which is excluded by the current ob-
servational bounds on the proton decay lifetime.

B. One-step breaking in SOð10Þ
Here we have to consider the following breaking chain

of SOð10Þ:
SOð10Þ!MX

SUð2ÞL � SUð2ÞR � SUð4Þc!MC
SM: (14)

The G224 intermediate group offers a new discrete symme-
try—D parity [9,17]. This symmetry relates the gauged
SUð2ÞL and SUð2ÞR subgroups of SOð10Þ much the same
way that ordinary parity relates the SUð2ÞL and SUð2ÞR
subgroups of the Lorentz group SOð3; 1Þ. Alternative
routes of SOð10Þ symmetry breaking are admissible which
either preserve or violate D parity at the intermediate
stages. We will consider both in the following. The first
step of symmetry breaking from SOð10Þ to G224 is accom-
plished by assigning an appropriate VEV to a 54, 210, or
770-dimensional Higgs. h�54i or h�770i ensure that
D parity is conserved while h�210i breaks D parity. This
is reflected in Table III in that �2L ¼ ��2R in this case
whereas in the other cases they are equal.
The next step breaking of G224 to the SM is achieved

through the VEV of a 126-dimensional Higgs. The sub-
multiplet of 126H that develops a VEV for this purpose at

the scaleMC transforms as ð1; 3; 10Þ underG224. According
to the extended survival hypothesis the entire submultiplet
acquires a mass OðMCÞ while the other members of 126H
are at MX. This is true if D parity is not conserved. When

D parity remains unbroken then it relates the ð1; 3; 10Þ
submultiplet to the (3,1,10) � 126H and it too has a mass
of OðMCÞ.
One must also consider the Higgs scalars �SM respon-

sible for the breaking of SM at�MZ. They transform under
GSM, G224, and SOð10Þ as fð2; 1; 1Þ þ ð2;�1; 1Þg, (2,2,1),
and 10, respectively. Notice that the extended survival
hypothesis mandates that the (1,1,6) under G224 contained
in the SOð10Þ 10-dimensional representation has a mass at
MX while the (2,2,1) is at MZ.
The scalars contributing to the RG evolution in different

stages are summarized in Table V.
When the couplings are evolved from their low energy

inputs the key matching formula at MC is5

1

	1YðMCÞ ¼ 3

5

�
1

	2RðMCÞ �
1

6�

�
þ 2

5

�
1

	4cðMCÞ �
1

3�

�
:

(15)

This is a consequence of the relation Y=2 ¼ T3R þ ðB�
LÞ=2. On the right-hand side (rhs) T3 resides within the

TABLE III. Effective contributions (�i) to gauge kinetic terms
from different Higgs representations in Eq. (2) for SOð10Þ [3]
[see Eq. (3)].

SOð10Þ
representations �2L �2R �4c

54 3=2
ffiffiffiffiffiffi
15

p
3=2

ffiffiffiffiffiffi
15

p �1=
ffiffiffiffiffiffi
15

p
210 1=

ffiffiffi
2

p �1=
ffiffiffi
2

p
0

770 5=3
ffiffiffi
5

p
5=3

ffiffiffi
5

p
2=3

ffiffiffi
5

p

TABLE IV. Dimension-5 interaction strength, �, and the gauge
unification scale, MX, for different �D representations using
two-loop RG equations when SOð10Þ descends directly to the
SM.

Non-SUSY SUSY

SOð10Þ
representations �

MX

(GeV) �
MX

(GeV)

54 0.170 3:99� 1013 �0:013 1:54� 1016

210 0.088 4:39� 1014 �0:008 1:35� 1016

770 0.274 4:10� 1013 �0:018 1:54� 1016
5	1Y is the GUT-normalized Uð1ÞY coupling.
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SUð2ÞR while (B� L) is included in SUð4Þc and Eq. (7)
has been used. Similarly, 	4cðMCÞ ¼ 	3cðMCÞ þ 1=12�
and is fixed from the RG evolution of 	3c from MZ. The
two cases that we discuss here are as follows:

(a) If D parity is not conserved then for every choice of
MC, Eq. (15) determines 	2RðMCÞ. The three couplings
have to be further evolved to determine MX and �.

(b) If D parity is conserved at MC then in Eq. (15) we
must further impose 	2RðMCÞ ¼ 	2LðMCÞ, with the latter
fixed by the RG evolution of	2L from its low energy value.
This identifies a uniqueMC.MX can then be determined in
terms of �.
We discuss these options in detail below.
From MZ to MC: For the RG running of the coupling

constants in this range Eqs. (9)–(11) are applicable irre-
spective of whether D parity is conserved or not.

1. D parity not conserved

This is the case when�210 is responsible for the SOð10Þ
GUT-symmetry breaking.
From MC to MX: The beta-function coefficients receive

contributions from ð1; 3; 10Þ � 126H along with the
ð2; 2; 1Þ � 10H scalars and the three generations of fermi-
ons: ð2; 1; 4Þ þ ð1; 2; �4Þ ¼ 16F. These are

non -SUSY: b2L ¼ �3; b2R ¼ 11=3; b4c ¼ �23=3; bij ¼
8 3 45=2
3 584=3 765=2
9=2 153=2 643=6

0
@

1
A: (16)

SUSY : b2L ¼ 1; b2R ¼ 21; b4c ¼ 3; bij ¼
25 3 45
3 265 405
9 81 231

0
@

1
A: (17)

The one- and two-loop beta-function coefficients we have
calculated are in agreement6 with those obtained in [9,18].
Both papers deal only with the non-SUSY case.

Results: For this chain, the low energy measured gauge
couplings allow a range of values for MC. The results for
this case are shown in the left (non-SUSY) and middle
(SUSY) panels of Fig. 1. As shown, for every allowed MC

one can determine MX (dark solid, red curve) and � (pale
broken, green curve) from the unification of coupling con-
stants satisfying Eq. (3). As a general observation, lower
values of MC correspond to increased MX and larger �.
Notice that in the non-SUSY case, MC can be as low as
103 GeV and therefore within the range of detectability for

the Large Hadron Collider. Further, the ð1; 3; 10Þ scalars
which have mass �MC can mediate n� �n oscillations7

and it is known that current experimental limits place a
lower bound onMC around 10 TeV depending on hadronic
factors not precisely known [19]. The mass of the �R is also

OðMCÞ. While a low MC is desirable for detectability of
n� �n oscillations it is not the preferred choice for a seesaw
mechanism for generating light neutrino masses. In the
SUSY case MX and MC are restricted to a very limited
range, a reflection of the large beta functions beyond MC.
HereMC (1014–1016 GeV) is too high for observable n� �n
oscillations but quite appropriate for light neutrino seesaw
masses.

2. D parity conserved

This is the situation which arises when either �54 or
�770 is responsible for the SOð10Þ breaking.
From MC to MX: According to the extended survival

hypothesis the only change from the previous section is

that one must include contributions from both ð1; 3; 10Þ and
(3,1,10) within the 126H. This gives

non -SUSY: b2L ¼ b2R ¼ 11=3; b4c ¼ �14=3; bij ¼
584=3 3 765=2

3 584=3 765=2
153=2 153=2 1759=6

0
@

1
A: (18)

TABLE V. Higgs scalars for the one-step symmetry breaking
of SOð10Þ and the submultiplets contributing to RG evolution
according to the ESH. The submultiplet in the braces also
contributes if D parity is conserved.

Scalars contributing to RG

SOð10Þ
representation

Symmetry

breaking

MZ ! MC

under GSM

MC ! MX

under G224

10 GSM ! EM ð2;�1; 1Þ (2,2,1)

126 G224 ! GSM 	 	 	 ð1; 3; 10Þ
{(3,1,10)}

6There are minor differences in b2L2R and b2L4c between our results and those in [9].
7The oscillation period 
n� �n � ðMð1;3;10ÞÞ5.
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SUSY : b2L ¼ b2R ¼ 21; b4c ¼ 12; bij ¼
265 3 405
3 265 405
81 81 465

0
@

1
A: (19)

The beta-function coefficients for the non-SUSY case
agree with those in [18].

Results: In this case, the relationship between the
SUð2ÞL and SUð2ÞR couplings uniquely fixes the inter-
mediate scale MC. We find that for the non-SUSY case
MC ¼ 5:37� 1013 GeV, while in the SUSY case it is
higher and is around 1:9� 1016 GeV. This fixed inter-
mediate scale, MC, is the same for �54 and �770. The

ð1; 3; 10Þ and (3,1,10) scalars at �MC are thus too heavy
for observable n� �n oscillations. Depending on whether
the non-SUSYor the SUSY theory is under consideration,
a range of allowed MX can be obtained as a function of �
for either choice of �D. The results for the non-SUSY
(thick lines) and SUSY (thin lines) cases are shown in the
right panel of Fig. 1. The dark solid (red) lines correspond
to �54 while the pale broken (green) lines are for �770.

C. Two-step breaking in SOð10Þ
Here we consider the breaking of SOð10Þ to SM via two

intermediate steps:

SOð10Þ!MX
SUð2ÞL � SUð2ÞR � SUð4Þc

!MC
SUð2ÞL �Uð1ÞR � SUð3Þc �Uð1ÞðB�LÞ!MR

SM:

(20)

The symmetry breaking at different stages is arranged as
follows. The breaking of the Pati-Salam G224 to G2131 is
through the VEV of a (1,3,15) component of 210H. The
subsequent descent to the SM is through the VEV to a

ð1; 3; 1;�2Þ � ð1; 3; 10Þ � 126H. The Higgs scalars re-
sponsible for the SM symmetry breaking, �SM, transform
as ð2;�1; 1Þ under the SM group and as ð2;� 1

2 ; 1; 0Þ �ð2; 2; 1Þ � 10 under G2131, G224, and SOð10Þ, respectively.
The contributing scalars at different stages of RG evolu-
tion, as determined by the ESH, are summarized in
Table VI.
IfD parity is conserved, and it can be conserved only till

MC in this chain, then one must include the contribution
from a (3,1,10) and a (3,1,15) in the final stage of evolution
(see Table VI).

TABLE VI. Higgs scalars for the two-step symmetry breaking of SOð10Þ and the submultiplets
contributing to RG evolution according to the ESH. The submultiplets in the braces also
contribute if D parity is conserved.

Scalars contributing to RG

SOð10Þ
representation

Symmetry

breaking

MZ ! MR

under GSM

MR ! MC

under G2131

MC ! MX

under G224

10 GSM ! EM ð2;�1; 1Þ ð2;� 1
2 ; 1; 0Þ (2,2,1)

126 G2131 ! GSM 	 	 	 ð1; 3; 1;�2Þ ð1; 3; 10Þ
{(3,1,10)}

210 G224 ! G2131 	 	 	 	 	 	 (1,3,15)

{(3,1,15)}
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FIG. 1 (color online). SOð10Þ one-step breaking results: The unification scale,MX (dark solid, red lines) and the strength of the dim-
5 interaction, � (pale broken, green lines) as a function of MC for the D-parity nonconserving (�210) case for non-SUSY (left panel)
and SUSY (center panel).MX vs � for the D-parity conserving case (right panel). Thick (thin) lines correspond to non-SUSY (SUSY).
The results for both �54 (dark solid, red lines) and �770 (pale broken, green lines) are shown.
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A point worth noting in Table VI is that in the rangeMC

to MX there are contributions from (1,3,15) [and possibly
(3,1,15)] scalar fields over and above those in the one-step
breaking case (see Table V). Because of these large-
dimensional multiplets the RG evolutions are quite differ-
ent and the naı̈ve expectation of the two-step results going
over to the one-step one in the limit MR ¼ MC is invalid.

In the energy range MR toMC there are two Uð1Þ gauge
groups. As observed in [10,11] and stressed most recently
in [12], due to incomplete scalar multiplets remaining light
according to the extended survival hypothesis there is a
dynamical mixing between these two Uð1Þ subgroups
which is manifested in the RG evolution equations. In
particular, below the MR threshold there is one Uð1Þ cou-
pling corresponding to hypercharge, Y, while above one
must consider the possibility of a 2� 2 matrix of Uð1Þ
couplings, G:

G ¼ gRR gRX
gXR gXX

� �
; (21)

where X � ðB� LÞ. This is the most general form permit-
ted for the coupling of the gauge currents to gauge bosons
which for the Uð1Þ groups are both by themselves gauge
invariant. Here, gij is the strength of the coupling of the ith

current to the jth gauge boson. In the range MR to MC the
evolution of all elements of G will occur.8 The RG
equations for gRX and gXR at the one-loop level involve

one additional beta-function coefficient, ~bXR ¼ ~bRX /

P
iQ

i
RQ

i
X. At the two-loop level, besides the usual ones,

one requires the following independent coefficients:

(1) ~bRX;RR, ~bXR;XX;

(2) ~bRX;p, ~bXR;p;

(3) ~bp;RX.

The first beta coefficient in point 1 appears in, among
others, the evolution equation of gRX as the coefficient of
g4RRgXX while the second is readily obtainable from the
above through R $ X. For points 2 and 3, p represents a
non-Abelian subgroup of the gauge symmetry. The coeffi-
cient of g3RXg

2
p (g3XRg

2
p) in the RG equation of gRX (gXR) is

listed under point 2. Similarly, in point 3, ~bp;RX is the

coefficient of g3pðgRRgXR þ gXXgRXÞ. For the SOð10Þ
model we are considering, the entries in points 2 and 3
turn out to be zero.
At the boundary MR there is freedom to choose G to be

upper triangular. On RG evolution all elements will, how-
ever, become nonzero. The matching of the elements of G
with the coupling below MR and those above MC is made
through projection operators which relate the basis of
evolution with the Uð1Þ gauge basis defining the groups
at the boundary.
Taking all this into account, the gauge couplings evolve

as follows:
(i-a) From MC to MX (D parity not conserved):

non -SUSY: b2L ¼ �3; b2R ¼ 41=3; b4c ¼ �11=3; bij ¼
8 3 45=2
3 1424=3 1725=2
9=2 345=2 1987=6

0
@

1
A: (22)

SUSY : b2L ¼ 1; b2R ¼ 51; b4c ¼ 15; bij ¼
25 3 45
3 625 885
9 177 519

0
@

1
A: (23)

(i-b) From MC to MX (D parity conserved):

non -SUSY: b2L ¼ b2R ¼ 41=3; b4c ¼ 10=3; bij ¼
1424=3 3 1725=2

3 1424=3 1725=2
345=2 345=2 4447=6

0
@

1
A: (24)

SUSY : b2L ¼ b2R ¼ 51; b4c ¼ 36; bij ¼
625 3 885
3 625 885
177 177 1041

0
@

1
A: (25)

(ii) From MR to MC: Below MC, where the gauge group is SUð2ÞL �Uð1ÞR � SUð3Þc �Uð1ÞðB�LÞ, there is no L $ R
symmetry and hence there can be noD parity. Thus for the two cases just discussed the evolution will be identical. Here we
are giving the decompositions of the contributing fields under the gauge symmetry at this level:

8Because of the mixing of the two Uð1Þ groups, the RG equations will be somewhat more involved and are not presented. They can
be found in [11,12].
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16F ¼ ½2; 0; 3;�1=3
 þ ½2; 0; 1; 1
 þ ½1; 1=2; �3; 1=3
 þ þ½1; 1=2; 1;�1
 þ ½1;�1=2; �3; 1=3
 þ ½1;�1=2; 1;�1
;
10H � ½2; 1=2; 1; 0
 þ ½2;�1=2; 1; 0
; 126H � ½1;�1; 1; 2
; (26)

whence9 [X � ðB� LÞ]

non -SUSY: b2L ¼ �3; bRR ¼ 14=3; b3c ¼ �7; bXX ¼ 9=2; ~bRX ¼ ~bXR ¼ �1=
ffiffiffi
6

p
; (27)

bij ¼
8 1 12 3=2
3 8 12 15=2
9=2 3=2 �26 1=2
9=2 15=2 4 25=2

0
BBB@

1
CCCA; ~bXR;RR ¼ �2

ffiffiffi
6

p
; ~bRX;XX ¼ �3

ffiffiffi
6

p
; ~bRX;p ¼ ~bXR;p ¼ ~bp;RX ¼ 0:

(28)

SUSY : b2L ¼ 1; bRR ¼ 8; b3c ¼ �3; bXX ¼ 15=2; ~bRX ¼ ~bXR ¼ � ffiffiffi
6

p
=2; (29)

bij ¼
25 1 24 3
3 11 24 9
9 3 14 1
9 9 8 16

0
BBB@

1
CCCA; ~bXR;RR ¼ �2

ffiffiffi
6

p
; ~bRX;XX ¼ �3

ffiffiffi
6

p
; ~bRX;p ¼ ~bXR;p ¼ ~bp;RX ¼ 0: (30)

(iii) From MZ to MR: In this range Eqs. (9)–(11) are
applicable.

The one- and two-loop beta-function coefficients in the
D-parity conserving case agree with those obtained in
[12,18] with the proviso that in [18] only one Higgs
doublet is assumed to contribute in the range MZ to MR.
In addition, the Uð1Þ mixing contribution at the one-loop
level has been included only in [12].

Results: AtMR one must now use the matching relation:

1

	1YðMRÞ ¼ 4�PðGGTÞ�1PT; (31)

where P ¼ ð
ffiffi
3
5

q ffiffi
2
5

q
Þ. At the MC boundary, the Uð1ÞR and

Uð1ÞðB�LÞ couplings are obtained from the RG evolved G
using a similar formula while choosing P ¼ ð1 0Þ and
(0 1), respectively.

When D parity is not conserved, i.e., the first stage of
symmetry breaking is due to �210, Eq. (31) fixes the
couplings at MR. The meeting of the Uð1ÞðB�LÞ and

SUð3Þc couplings determines MC and at that scale 	1R

goes over to 	2R. At MR, the ratios gRR=gðB�LÞðB�LÞ and
gRðB�LÞ=gðB�LÞðB�LÞ can be varied to first determineMC via

Eq. (31) and subsequently MX. In Fig. 2 are shown the
ranges of MC and MX, consistent with all constraints, as a
function of MR for the non-SUSY (left panel) and SUSY

(right panel) cases. Notice that in both cases MR can be as
low as 10 TeV. This is the scale for a new neutral Z0 boson
which could be seen at the LHC. On the other hand, in both
cases, MR, which is also the (B� L)-violating scale rele-
vant for seesaw neutrino masses, can be 1014–16 GeV,
which is of the desirable size for Oð1Þ Yukawa couplings.
For the non-SUSY case,MC is around 1011:5 GeV or above
which is too high for the detectability of n� �n oscillations.
For SUSYMC is even higher,�1015 GeV or more. This is
also the mass scale for the right-handed charged gauge
bosons. For the solutions discussed above the parameter j�j
lies in the range (0.004–0.160) for non-SUSY and (0.04–
1.0) for SUSY.
When D parity is conserved, i.e., the GUT symmetry

breaking is due to �54 or �770, MR must be such that the
	1R and 	1ðB�LÞ matches with 	2L and 	3c, respectively

[as per Eq. (7)] at precisely the same energy scaleMC. This
is quite constraining. Though for both non-SUSY and
SUSY MR can range from 104–1016 GeV, MC and MX

are very close to each other10 and around 1016 GeV al-
ways. Thus, barring the Z0 neutral gauge boson there will
be no other observable signatures in this scenario. The high
values of MC preclude the possibility of detectable n� �n
oscillations. On the other hand, such a high M�R

will be

able to accommodate the light neutrino masses through a

9The coefficients superscribed with a tilde arise due to Uð1Þ
mixing.

10This is a consequence of the large beta functions due to the
contributions from big submultiplets introduced to maintain
D-parity symmetry (see Table VI).
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type I seesaw. For the strength of the dim-5 interaction, �, it
is found 0 � j�j � 0:18 for non-SUSYand 0 � j�j � 0:25
for SUSY. For both non-SUSYas well as SUSY, the results
for �54 and �770 are practically identical excepting for
small differences in the values of �.

IV. Eð6Þ
The exceptional group Eð6Þ has also been discussed in

the literature as a possible GUT symmetry [20]. The break-
ing scheme of Eð6Þ that we consider here is

Eð6Þ!MX
SUð3ÞL � SUð3ÞR � SUð3Þc

!MI
SUð2ÞL �Uð1ÞY0

L
� SUð2ÞR �Uð1ÞY0

R
� SUð3Þc

!MR
SM: (32)

In Eð6Þ the fermions of one generation are accommo-
dated in the 27-dimensional fundamental representation
which under G333 consists of ð�3; 3; 1Þ þ ð1; �3; 3Þ þ
ð3; 1; �3Þ. At the stage where the G333 symmetry is broken,
all fermions other than those in the SM become massive.

In contrast to the SOð10Þ cases discussed in the previous
section, here the quark-lepton symmetry is lost at MX and
n� �n oscillations will be highly suppressed in this class of
Eð6Þ models.

The adjoint representation of Eð6Þ is 78 dimensional.
Since ð78 � 78Þsym ¼ 1 � 650 � 2430, nontrivial contribu-

tions in Eq. (2) can arise if �D transforms as the 650 or
2430 representation. Of these, �650 has two distinct direc-
tions for the VEV which can accomplish the symmetry
breaking to G333, one of which protects D parity while the
other does not. We denote these by 650 and 6500, respec-
tively. In Table VII we collect the dimension-5 contribu-
tions for the different representations of Eð6Þ.

A. No-step breaking in Eð6Þ
This corresponds to the situation whenMX ¼ MI ¼ MR

and the symmetry breaking is simply

Eð6Þ!MX
SUð2ÞL �Uð1ÞY � SUð3Þc: (33)

Here, Eqs. (9)–(11) determine the gauge coupling evolu-
tion in the entire range. The results obtained including the
dimension-5 operators in Eq. (2) are shown in Table VIII.
As for the other GUT groups, though gauge unification

is possible in the non-SUSY case, the scale of unification is
too low and is ruled out by the proton decay limits. The
SUSY solutions are acceptable for �650. For �2430 the
scale MX is too low (note that all the �i are equal), but

TABLE VII. Effective contributions (�i) to gauge kinetic
terms from different Higgs representations in Eq. (2) for Eð6Þ
[3] [see Eq. (3)]. Note that there are two SUð3ÞL � SUð3ÞR �
SUð3Þc singlet directions in 650 of which the first conserves
D parity while the second does not.

Eð6Þ
representations �3L �3R �3c

650 1=2
ffiffiffi
2

p
1=2

ffiffiffi
2

p �1=
ffiffiffi
2

p
6500 3=2

ffiffiffi
6

p �3=2
ffiffiffi
6

p
0

2430 �3=
ffiffiffiffiffiffi
26

p �3=
ffiffiffiffiffiffi
26

p �3=
ffiffiffiffiffiffi
26

p

TABLE VIII. Dimension-5 interaction strength, �, and the
gauge unification scale, MX, for different �D representations
using two-loop RG equations when Eð6Þ descends directly to the
SM.

Non-SUSY SUSY

Eð6Þ
representations �

MX

(GeV) �
MX

(GeV)

650 0.126 8:04� 1012 �0:012 1:72� 1016

6500 0.101 4:15� 1014 �0:011 1:30� 1016

2430 0.000 3:76� 1012 0.000 1:25� 1015
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FIG. 2 (color online). The allowed ranges of MX (dark solid, red lines) and MC (pale broken, green lines) vs MR for the non- SUSY
(left panel) and SUSY (right panel) cases for SOð10Þ breaking through two intermediate steps when D parity is not conserved. Note
that the upper limits for MX and MC are almost identical for SUSY.
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this can be addressed easily by changing the SUSY scale,
MSUSY.

B. One-step breaking in Eð6Þ
This situation corresponds to MI ¼ MR in Eq. (32), i.e.,

Eð6Þ!MX
SUð3ÞL � SUð3ÞR � SUð3Þc!MR

SM: (34)

For this case, the symmetry breaking at MR and subse-
quently the one at MZ is through the VEVs to components
within the ð�3; 3; 1Þ submultiplet under SUð3ÞL � SUð3ÞR �

SUð3Þc � G333 which is present in a 27 of Eð6Þ. According
to the extended survival hypothesis this entire ð�3; 3; 1Þ
submultiplet, but for the �SM fields which are at MZ, has
a massMR. Since it is symmetric under SUð2ÞL $ SUð2ÞR,
the evolution of the couplings fromMR toMX is controlled
by the same RG equations for both the D-parity violating
and D-parity conserving cases (see Table IX). The beta-
function coefficients in this case are as follows:
From MR to MX:

non -SUSY: b3L ¼ b3R ¼ �9=2; b3c ¼ �5; bij ¼
23 20 12
20 23 12
12 12 12

0
@

1
A: (35)

SUSY : b3L ¼ b3R ¼ 3=2; b3c ¼ 0; bij ¼
65 32 24
32 65 24
24 24 48

0
@

1
A: (36)

From MZ to MR: For the RG running of the coupling
constants below MR Eqs. (9)–(11) are applicable irrespec-
tive of whether D parity is conserved or not.

Results: The chain of Eð6Þ breaking considered in this
section is rather constrained. The matching formula at MR

is now

1

	1YðMRÞ ¼ 4

5

�
1

	3RðMRÞ �
1

4�

�
þ 1

5

�
1

	3LðMRÞ �
1

4�

�
:

(37)

This is a consequence of the relation Y=2 ¼ T3R þ ðY0
L þ

Y0
RÞ=2. On the rhs T3R and Y0

R reside within the SUð3ÞR
while Y0

L is included in SUð3ÞL. The two cases are as
follows:

(a) If D parity is not conserved then for any chosen MR,
through Eq. (37) 	3RðMRÞ is fixed since 	2LðMRÞ is deter-
mined from its low energy value through RG evolution and
1=	3LðMRÞ ¼ 1=	2LðMRÞ þ 1=ð12�Þ. The three cou-
plings have to be further evolved to determine MX and �.

(b) If D parity is conserved at MR then in Eq. (37)
	3RðMRÞ ¼ 	3LðMRÞ, with the latter fixed by the RG
evolution of 	2L from its low energy value. This identifies
a unique MR. MX can then be determined in terms of �.

We discuss these options in detail next.
When D parity is not conserved, i.e., for �6500 , we find

that the intermediate scale atMR is rather tightly restricted
from the twin requirements that MX satisfies the proton
decay bound and is within the upper limit set by the Planck
mass as well as all couplings remain perturbative. It is in
the ballpark of 1014 (1016) GeV for the non-SUSY (SUSY)
case. The unification scale is 7:0� 1018 (3:5� 1016) GeV
for the respective cases with � almost fixed at ¼ �0:04
(0.02).

When D parity is conserved, which corresponds to �650

and �2430, the intermediate scale MR is uniquely fixed in
both cases at the value 1:5� 1013 (1:7� 1016) GeV for
non-SUSY (SUSY). A plot of the unification scaleMX vs �
is shown in the left panel of Fig. 3 for �650. For �2430 we
have �3L ¼ �3R ¼ �3c and so the dim-5 operator does not
affect the unification. We find that for non-SUSYas well as
SUSY with MSUSY ¼ 1 TeV the couplings unify at an
energy beyond the Planck scale.
For both�650 and�6500 the scaleMR is in the right range

for the mass of the right-handed neutrinos to drive a type I
seesaw.

C. Two-step breaking in Eð6Þ
The symmetry breaking steps are

Eð6Þ!MX
SUð3ÞL � SUð3ÞR � SUð3Þc

!MI
SUð2ÞL �Uð1ÞY0

L
� SUð2ÞR �Uð1ÞY0

R
� SUð3Þc

!MR
SM: (38)

Here, h�650i or h�2430i breaks Eð6Þ to G333 which
reduces to SUð2ÞL �Uð1ÞY0

L
� SUð2ÞR �Uð1ÞY0

R
�

SUð3Þc � G21213 when the (8,8,1) submultiplet of a 650H
acquires a VEV. The SM is reached by assigning a VEV to
the ð�3; 3; 1Þ component of 27H. The final step of SM
symmetry breaking is accomplished through a different
component of ð�3; 3; 1Þ (see Table X). It is seen that there
is room for D parity to be conserved or broken during the
running in theMR toMI range. But the Higgs submultiplets
which acquire masses at MI according to the extended
survival hypothesis, namely, ð�3; 3; 1Þ and (8,8,1), are
SUð2ÞL $ SUð2ÞR symmetric and so the running from
MI to MX will be identical in both cases.
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It is seen from Table X that in the range MI to MX there
are additional contributions from the (8,8,1) scalar fields
besides those in the one-step breaking case (Table IX). The
RG evolution in the two cases is therefore different and, as
in the case of SOð10Þ, the naı̈ve expectation of the two-step

results going over to the one-step one in the limitMR ¼ MI

does not hold.
Below we list the one- and two-loop beta-function co-

efficients for gauge coupling evolution in the different
stages. Notice that in the range MR to MI there are two
Uð1Þ components and the RG evolution here has to take
into account mixing and follows the same procedure as
discussed in detail for SOð10Þ in the previous section.
(i) From MI to MX: The fermion and scalar fields which

contribute in the RG equations are

27 F ¼ ½�3; 3; 1
 þ ½3; 1; 3
 þ ½1; �3; �3
;
650H � ½8; 8; 1
; 27H � ½�3; 3; 1
: (39)

Thus,

non -SUSY: b3L ¼ 7=2; b3R ¼ 7=2; b3c ¼ �5; bij ¼
359 308 12
308 359 12
12 12 12

0
@

1
A: (40)

SUSY : b3L ¼ 51=2; b3R ¼ 51=2; b3c ¼ 0; bij ¼
497 320 24
320 497 24
24 24 48

0
@

1
A: (41)

TABLE X. Higgs scalars for the two-step symmetry breaking of Eð6Þ and the submultiplets
contributing to RG evolution according to the ESH. The submultiplet in the braces also
contributes if D parity is conserved.

Scalars contributing to RG

Eð6Þ
representation

Symmetry

breaking

MZ ! MR

under GSM

MR ! MI

under G21213

MI ! MX

under G333

27 GSM ! EM ð2;�1; 1Þ (2, � 1
2
ffiffi
3

p , 2, 1
2
ffiffi
3

p ,1) ð�3; 3; 1Þ
27 G21213 ! GSM 	 	 	 (1, 1ffiffi

3
p , 2, 1

2
ffiffi
3

p ,1) ð�3; 3; 1Þ
	 	 	 {(2, 1

2
ffiffi
3

p , 1, 1ffiffi
3

p ,1)g
650 G333 ! G21213 	 	 	 	 	 	 (8,8,1)

TABLE IX. Higgs scalars for the one-step symmetry breaking
of Eð6Þ and the submultiplets contributing to RG evolution
according to the ESH.

Scalars contributing to RG

Eð6Þ
representation

Symmetry

breaking

MZ ! MR

under GSM

MR ! MX

under G333

27 GSM ! EM ð2;�1; 1Þ ð�3; 3; 1Þ
27 G333 ! GSM 	 	 	 ð�3; 3; 1Þ
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FIG. 3 (color online). Left panel: MX as a function of � for one-step breaking of Eð6Þ in the D-parity conserving case for �650. The
pale broken green (dark solid red) line corresponds to non-SUSY (SUSY). Center and right panels: The allowed ranges of MX (dark
solid, red line) and MI (pale broken, green line) vs MR for the non-SUSY (center panel) and SUSY (right panel) cases for Eð6Þ
breaking through two intermediate steps whenD parity is not conserved. Note that the upper limits forMX andMI are almost identical.
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(ii-a) From MR to MI (D parity not conserved): At this stage the non-SM fermions have acquired mass and decoupled.
Taking the extended survival hypothesis into consideration, the fields that contribute to the RG equations are

27F � ½2;�1=2
ffiffiffi
3

p
; 1;�1=

ffiffiffi
3

p
; 1
 þ ½2; 1=2 ffiffiffi

3
p

; 1; 0; 3
 þ ½1; 1= ffiffiffi
3

p
; 2; 1=2

ffiffiffi
3

p
; 1
 þ ½1; 0; 2;�1=2

ffiffiffi
3

p
; �3
;

27H � ½1; 1= ffiffiffi
3

p
; 2; 1=2

ffiffiffi
3

p
; 1
 þ ½2;�1=2

ffiffiffi
3

p
; 2; 1=2

ffiffiffi
3

p
; 1
: (42)

This gives11

non -SUSY: b2L ¼ �3; bLL ¼ 3; b2R ¼ �17=6; bRR ¼ 17=6; b3c ¼ �7; ~bLR ¼ ~bRL ¼ 4=3;

(43)

bij ¼

8 4=3 3 4=3 12

4 8=3 6 1 4

3 2 61=6 3=2 12

4 1 9=2 11=6 4

9=2 1=2 9=2 1=2 �26

0
BBBBBBBB@

1
CCCCCCCCA
;

~bLR;RR ¼ 5=6; ~bRL;LL ¼ 7=6; ~b2R;RL ¼ 1=2; ~b2L;RL ¼ 1=6; ~b3c;RL ¼ 0;

~bRL;2R ¼ 3=2; ~bRL;2L ¼ 1=2; ~bRL;3c ¼ 0; ~bRL;p ¼ ~bLR;p; ~bp;LR ¼ ~bp;RL: (44)

SUSY : b2L ¼ 1; bLL ¼ 5; b2R ¼ 3=2; bRR ¼ 9=2; b3c ¼ �3; ~bLR ¼ ~bRL ¼ 2; (45)

bij ¼

25 7=3 3 7=3 24

7 13=3 9 5=3 8

3 3 57=2 5=2 24

7 5=3 15=2 7=2 8

9 1 9 1 14

0
BBBBBBBB@

1
CCCCCCCCA
;

~bLR;RR ¼ 5=3; ~bRL;LL ¼ 2; ~b2R;RL ¼ 1; ~b2L;RL ¼ 2=3; ~b3c;RL ¼ 0;

~bRL;2R ¼ 3; ~bRL;2L ¼ 2; ~bRL;3c ¼ 0; ~bRL;p ¼ ~bLR;p; ~bp;LR ¼ ~bp;RL: (46)

(ii-b) From MR to MI (D parity conserved): Because of D-parity conservation the scalar sector is slightly enlarged and
the fields contributing to the RG equations are

27F � ½2;�1=2
ffiffiffi
3

p
; 1;�1=

ffiffiffi
3

p
; 1
 þ ½2; 1=2 ffiffiffi

3
p

; 1; 0; 3
 þ ½1; 1= ffiffiffi
3

p
; 2; 1=2

ffiffiffi
3

p
; 1
 þ ½1; 0; 2;�1=2

ffiffiffi
3

p
; �3
;

27H � ½1; 1= ffiffiffi
3

p
; 2; 1=2

ffiffiffi
3

p
; 1
 þ ½2; 1=2 ffiffiffi

3
p

; 1; 1=
ffiffiffi
3

p
; 1
 þ ½2;�1=2

ffiffiffi
3

p
; 2; 1=2

ffiffiffi
3

p
; 1
: (47)

We find

non-SUSY: b2L ¼ �17=6; bLL ¼ 55=18; b2R ¼ �17=6; bRR ¼ 55=18; b3c ¼ �7;

~bLR ¼ ~bRL ¼ 13=9; (48)

11The coefficients superscribed with a tilde arise due to Uð1Þ mixing.
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bij ¼

61=6 3=2 3 2 12

9=2 49=18 6 11=9 4

3 2 61=6 3=2 12

6 11=9 9=2 49=18 4

9=2 1=2 9=2 1=2 �26

0
BBBBBBBB@

1
CCCCCCCCA
;

~bLR;RR ¼ 23=18; ~bRL;LL ¼ 23=18; ~b2R;RL ¼ 1=2; ~b2L;LR ¼ 1=2; ~b3c;RL ¼ 0;

~bRL;2R ¼ 3=2; ~bRL;2L ¼ 3=2; ~bRL;3c ¼ 0; ~bRL;p ¼ ~bLR;p; ~bp;LR ¼ ~bp;RL: (49)

SUSY : b2L ¼ 3=2; bLL ¼ 31=6; b2R ¼ 3=2; bRR ¼ 31=6; b3c ¼ �3; ~bLR ¼ ~bRL ¼ 7=3; (50)

bij ¼

57=2 5=2 3 3 24

15=2 79=18 9 17=9 8

3 3 57=2 5=2 24

9 17=9 15=2 79=18 8

9 1 9 1 14

0
BBBBBBBB@

1
CCCCCCCCA
;

~bLR;RR ¼ 19=9; ~bRL;LL ¼ 19=9; ~b2R;RL ¼ 1; ~b2L;LR ¼ 1; ~b3c;RL ¼ 0;

~bRL;2R ¼ 3; ~bRL;2L ¼ 3; ~bRL;3c ¼ 0; ~bRL;p ¼ ~bLR;p; ~bp;LR ¼ ~bp;RL: (51)

From MZ to MR: For the RG running of the coupling
constants below MR Eqs. (9)–(11) are applicable irrespec-
tive of whether D parity is conserved or not.

Results: When Eð6Þ breaks to the SM through two
intermediate steps, at MR one must set

1

	1YðMRÞ ¼ 3

5

�
1

	2RðMRÞ �
1

6�

�
þ 4�PðGGTÞ�1PT;

(52)

where P ¼ ð
ffiffi
1
5

q ffiffi
1
5

q
Þ, which follows from Y=2 ¼

T3R þ ðY0
L þ Y0

RÞ=2.
When the initial symmetry breaking of Eð6Þ is through

the �6500 , D parity is not conserved. It might seem that
there is some flexibility here and at MR one can choose
gY0

RY
0
R
, gY0

RY
0
L
, and g2R independently, determining gY0

LY
0
L

from Eq. (52). In fact, there is a rather severe constraint
that 	Y0

R
and	2R must meet atMI and at precisely the same

scale 	Y0
L
must equal 	2L. In Fig. 3 we show the allowed

range of the intermediate scaleMI and the unification scale
MX as a function of MR. Note that for both cases these
scales are on the high side. The scale of the second stage of
symmetry breaking, MR, is permitted to be as low as
104 GeV for the non-SUSY as well as the SUSY case. It
determines the mass scale of a Z0 boson and may offer
room for experimental probing at the LHC. The right-
handed charged weak bosons are at MC and hence beyond
reach. � is bounded in the range 0 � j�j � 0:16.

When the first stage of symmetry breaking is driven
through the �650, D parity is preserved. This implies that
	2RðMRÞ ¼ 	2LðMRÞ and is fixed by the RG evolution of

g2L from MZ. Also at MR, gY0
LY

0
L
¼ gY0

RY
0
R
and one can

choose gY0
LY

0
R
¼ gY0

RY
0
L
¼ 0, so all couplings are determined

once MR is chosen. Requiring that the constraint on MX

from proton decay be satisfied along with perturbativity,
we find that there is a very limited range of allowed
solutions with 1011 GeV � MR � 1013 GeV (non-SUSY
case) and 1015 GeV � MR � 1016 GeV (SUSY case). MI

andMX are always close together around 1016–17 GeV. For
these solutions 0 � j�j � 0:14.
The case of �2430 is not distinguishable from the situ-

ation of no dim-5 operators at all since here �1 ¼ �2 ¼ �3.

V. SUMMARYAND DISCUSSIONS

In this paper we have examined the GUT-symmetry
breaking consequences of dim-5 operators which can arise
from quantum gravity or string compactification leading to
a correction to the gauge kinetic term. When the GUT
symmetry is broken their effect is to modify gauge cou-
pling unification to the relation g2i ðMXÞð1þ ��iÞ ¼ g2U
[Eq. (3)]. The relevant group-theoretic factors �i were
exhaustively calculated in [3]. Here we have focused on
the implications for grand unification and intermediate
energy scales, both for single and multistep breaking and
also for nonsupersymmetric as well as supersymmetric
theories. We have required all coupling constants to remain
perturbative in the entire energy range and that the bound
on the GUT scale from nonobservation of proton decay be
respected. We have remarked on n� �n oscillations and
seesaw light neutrino mass implications in passing.
For multistep symmetry breaking cases we have utilized

the extended survival hypothesis to decide which scalar
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submultiplet gets mass at which scale. When there are two
Uð1Þ factors at some intermediate stage, we consider the
effect of their mixing.

For SUð5Þ we show that even after the inclusion of the
effect of dim-5 operators the non-SUSY version cannot be
rescued from the proton decay limit impasse while the
SUSY version works fine not just when the initial GUT
breaking is through the usual�24 but also by�75 and�200.

For SOð10Þ we consider the direct breaking to the SM as
well as multistep breaking via the Pati-Salam G224 route.
For the former case, the conclusions are pretty much the
same as that for SUð5Þ. For the latter alternative, the
spontaneous symmetry breaking can be achieved through
�54,�210, and�770. We classify the solutions according to
whether (a) they conserve D parity (�54 and �770) or (b)
not (�210). (b) turns out to be phenomenologically more
interesting. If there is one intermediate scale then in (b) this
can be as low as 103 GeV with a plethora of observable
consequences including charged and neutral gauge bosons
and a possibility of observable n� �n oscillations. For (a)
this scale is very high: 1013 GeV or more. This is also the
energy at which �R develops a mass and so it could con-
veniently generate light neutrino masses with Oð1Þ
Yukawa couplings. In the case of two intermediate scales,
for both (a) and (b) one can have one of them as low as
1 TeV where a neutral gauge boson is expected. The other
scale can be 106:5 GeV or higher for (b) and 1013 GeV or
more for (a).

For Eð6Þ the GUT-symmetry breaking can be achieved
through two possible VEVs for the 650-dimensional Higgs
scalar multiplet, which we call �650 and �6500 as well as
through a �2430. For the direct breaking to the SM the
results are again as in the case of other GUT groups,
namely, the non-SUSY case is disfavored and the SUSY
option is consistent with all requirements. For multistep
breaking we consider the G333 route. Here the solutions
that we obtain with �650 and �6500 all have options with
one intermediate scale as low as 104 GeV or higher. For
�2430, �3L ¼ �3R ¼ �3c and the situation remains identi-
cal to the usual case but for a scaling of the unified
coupling.

A general remark about two-step and one-step breaking
is that the additional scalar fields which drive the symmetry
breaking atMC for SOð10Þ [MI for Eð6Þ] in the former case
contribute in the RG evolution in the stage MC ! MX

(MI ! MX) over and above whatever is present in the
one-step breaking case. Because of this, the simple-minded
expectation of the two-step case going over to the one-step

case in the limit ofMR ¼ MC for SOð10Þ andMR ¼ MI for
Eð6Þ is not valid.
Finally, we would like to compare our results with some

of the earlier analyses of GUT-symmetry breaking with
intermediate scales, albeit without dim-5 operators.
Multistep symmetry breaking of SOð10Þ has been looked
at, for example, in [9,12]. For the chain of Eq. (20), i.e., via
G224 and G2131 no acceptable solutions were found in the
non-SUSY case in [12] while in [9] solutions with MR in
the range 105–107 GeV were presented.12 Here we ob-
tained a wider span of 104–1016 GeV. For the one-step
symmetry breaking of non-SUSY SOð10Þ the scale MC

was found in [9] to be in the 105–107 GeV range whereas
with the inclusion of dim-5 operators we have shown that
this scale is in the phenomenologically attractive
103–1010 GeV region.
SUð5Þ GUT with the inclusion of the dim-5 operator

from �24 has been examined in [21]. The results for non-
SUSYas well as the SUSY cases are in agreement with the
ones in Sec. II. Our analysis also covers �75 and �200 of
SUð5Þ. For SOð10Þ the effect of �54 and �210 has been
considered in [22] using the one-loop RG equations. They
also noted, like us, that for �54, when D parity is con-
served, the scale MC is uniquely fixed by the measured
sin2�W and the MX they obtain is in agreement with our
results. For the D-parity nonconserving case of �210 they
find a range of MC and MX similar to what is depicted in
Fig. 1.
With regards to Eð6Þ, we could not trace any earlier

published analysis in the descent to the SM through the
G333 chain [23]. The attention has invariably focused on
Eð6Þ breaking through an intermediate SOð10Þ �Uð1Þ
[24].
It can be hoped that further refinement in the determi-

nation of the low energy gauge couplings, proton decay
tests, and explorations of n� �n oscillation will enable us to
extract signals of physics that lies beyond the grand uni-
fication scale.
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