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We study the region of the QCD phase transition using 2þ 1 flavors of domain wall fermions and a

163 � 8 lattice volume with a fifth dimension of Ls ¼ 32. The disconnected light quark chiral suscep-

tibility, quark number susceptibility, and the Polyakov loop suggest a chiral and deconfining crossover

transition lying between 155 and 185 MeV for our choice of quark mass and lattice spacing. In this region

the lattice scale deduced from the Sommer parameter r0 is a
�1 � 1:3 GeV, the pion mass is� 300 MeV,

and the kaon mass is approximately physical. The peak in the chiral susceptibility implies a pseudocritical

temperature Tc ¼ 171ð10Þð17Þ MeV where the first error is associated with determining the peak location

and the second with our unphysical light quark mass and nonzero lattice spacing. The effects of residual

chiral symmetry breaking on the chiral condensate and disconnected chiral susceptibility are studied using

several values of the valence Ls.
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I. INTRODUCTION

The properties of strongly interacting matter change
dramatically as the temperature is increased. At a suffi-
ciently high temperature, the basic constituents of matter
(quarks and gluons) are no longer confined inside hadronic
bound states, but exist as a strongly interacting quark-
gluon plasma (QGP). The properties of the QGP have
been subject to significant theoretical and experimental
study. The physics of the transition region controls the
initial formation of the QGP in a heavy-ion collision, as
well as the details of hadronic freeze-out as the QGP
expands and cools. Thus, the transition temperature and
the order of the transition are of fundamental importance in
their own right and of particular interest to both the theo-
retical and experimental heavy-ion community.

The location and nature of the QCD phase transition
have been extensively studied using lattice techniques with
several different fermion actions [1–6]. Recently, the most
detailed studies of the transition temperature have been

performed with different variants of the staggered fermion
action [1–4]. Although staggered fermions are computa-
tionally inexpensive, they suffer the disadvantage that they
do not preserve the full SUð2Þ � SUð2Þ chiral symmetry of
continuum QCD, but only a Uð1Þ subgroup. This lack of
chiral symmetry is immediately apparent in the pion spec-
trum for staggered quarks, where there is only a single
pseudo-Goldstone pion, while the other pions acquire addi-
tional mass from Oða2Þ flavor mixing terms in the action.
Thus, it is important to study the QCD phase transition

using a different fermion discretization scheme. The
Wilson fermion formulation is fundamentally different
from the staggered approach and would be an obvious
basis for an alternative approach. However, Wilson fermi-
ons may be a poor alternative because in that formulation
chiral symmetry is completely broken at the lattice scale
and only restored in the continuum limit, the same limit in
which the breaking of SUð2Þ � SUð2Þ chiral symmetry in
the staggered fermion formulation disappears.
A particularly attractive fermion formulation to employ

is that of domain wall fermions [7–9]. This is a variant of
Wilson fermions in which a fifth dimension is introduced
(the s direction). In this scheme, left- and right-handed
chiral states are bound to the four-dimensional boundaries
of the five-dimensional volume. The finite separation, Ls,
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between the left- and right-hand boundaries or walls allows
some mixing between these left- and right-handed modes
giving rise to a residual chiral symmetry breaking.
However, in contrast to Wilson fermions, this residual
chiral symmetry breaking can be strongly suppressed by
taking the fifth-dimensional extent (Ls) to be large.

To leading order in an expansion in lattice spacing, the
residual chiral symmetry breaking can be characterized by
a single parameter, the residual massmres, which acts as an
additive shift to the bare input quark mass. Thus, the full
continuum SUð2Þ � SUð2Þ chiral symmetry can be repro-
duced to arbitrary accuracy by choosing Ls sufficiently
large, even at finite lattice spacing. However, this good
control of chiral symmetry breaking comes with an ap-
proximate factor of Ls increase in computational cost.

For these reasons, one of the first applications of the
domain wall fermion approach was to the study of QCD
thermodynamics using lattices with a time extent of Nt ¼
4 and 6 [5]. These early results were quite encouraging,
showing a clear signal for a physical, finite temperature
transition. However, these were two-flavor calculations
limited to quarks with relatively heavy masses on the order
of that of the strange quark and with such large lattice
spacings that higher order residual chiral symmetry break-
ing effects, beyond mres � 0, may have been important.

Given the substantial increase in computer capability
and the deeper understanding of domain wall fermions
that has been achieved over the past decade, it is natural
to return to this approach. Now significantly smaller quark
masses and much finer lattices with Nt ¼ 8 can be studied
and important aspects of residual chiral symmetry breaking
can be recognized and explored.

This paper presents such a first study of the QCD finite
temperature transition region using domain wall fermions
at Nt ¼ 8 and is organized as follows. Section II gives the
details of our simulation, with regard to the choice of
actions, simulation parameters, and algorithms.
Section III presents our results for finite temperature ob-
servables such as the chiral condensate, chiral susceptibil-
ity, quark number susceptibility, Polyakov loop, and
Polyakov loop susceptibility. Section IV gives results for
the zero-temperature observables—the static quark poten-
tial and the hadron spectrum—that were calculated to
determine the lattice spacing and quark masses in physical
units. Section V discusses the effects of residual chiral

symmetry breaking on our calculation and consistency
checks of this finite temperature application of the domain
wall method. Section VI makes an estimate of the pseudo-
critical temperature Tc which characterizes the critical
region and its associated systematic errors. Finally,
Sec. VII presents our conclusions and outlook for the
future.

II. SIMULATION DETAILS

For our study we utilize the standard domain wall fer-
mion action and the Iwasaki gauge action. The properties
of this combination of actions have been extensively
studied at zero temperature by the RBC-UKQCD
Collaboration [10–13].
Using the data from Refs. [10,11,13,14], we extrapo-

lated to stronger coupling in order to estimate the bare
input parameters—the gauge coupling, input light quark
mass, and input strange quark mass ð�;ml; msÞ—appropri-
ate for the region of the finite temperature transition at
Nt ¼ 8. The value of the critical gauge coupling was
estimated to be �c � 2:00 and the corresponding residual
mass mres � 0:008 for Ls ¼ 32. As a result, we have used
ml ¼ 0:003 and ms ¼ 0:037 for the input light and strange
quark masses in all of our runs. This corresponds to ðml þ
mresÞ=ðms þmresÞ � 0:25.
For the finite temperature ensembles, we have used a

lattice volume of 163 � 8, with Ls ¼ 32. Table I shows the
different values of � that we chose, as well as the total
number of molecular dynamics trajectories generated for
each �. In the immediate vicinity of the transition, we have
approximately 2000–3000 trajectories, with fewer trajec-
tories as we move further away from the critical gauge
coupling, �c.
We use the rational hybrid Monte Carlo algorithm

[15,16] to generate the dynamical field configurations.
An Omelyan integrator [17,18] with � ¼ 0:22 was used
to numerically integrate the molecular dynamics trajectory.
A three-level integration scheme was used, where the force
from the gauge fields was integrated with the finest time-
step. The ratio of the determinant of three flavors of strange
quark to the determinant of three flavors of Pauli-Villars
bosons was included at the intermediate time step, while
the ratio of the determinant of the two light quarks and the
determinant of two strange pseudoquarks was integrated
with the largest step-size. The molecular dynamics trajec-

TABLE I. Values for �, numbers of trajectories accumulated, results for the rms shift in the rational hybrid Monte Carlo
Hamiltonian, and the average exponentiated Hamiltonian shift (which should be unity). All runs were carried out with a trajectory
length of 1 and an outer step size of 0.2 except for the case of � ¼ 2:08 where �� ¼ 0:167 was used.

� 1.95 1.975 2.00 2.0125 2.025 2.0375 2.05 2.0625 2.08 2.11 2.14

Trajectories 745 1100 1275 2150 2210 2690 3015 2105 1655 440 490

Acceptance rate 0.778 0.769 0.760 0.776 0.745 0.746 0.754 0.753 0.852 0.875 0.859ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�H 2ip
0.603 0.583 0.647 0.687 0.824 1.072 1.248 1.599 0.478 0.472 0.345

hexpð��H Þi 1.026 1.022 0.969 1.017 0.987 0.995 0.987 1.051 1.002 1.010 0.9979
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tories were of unit length (� ¼ 1), with a largest step size
of �� ¼ 0:2 or �� ¼ 0:167. This allowed us to achieve an
acceptance rate of approximately 75%. Table I summarizes
the parameters that we have used for the finite temperature
ensembles, as well as important characteristics of the
rational hybrid Monte Carlo evolution. Figure 1 shows
the time history for�H at a few selected gauge couplings.

We also generated 1200 trajectories at � ¼ 2:025 with a
volume of 163 � 32 and Ls ¼ 32, also with ml ¼ 0:003
and ms ¼ 0:037. We used these zero-temperature configu-
rations to determine the meson spectrum, as well as the
static quark potential.

III. FINITE TEMPERATURE OBSERVABLES

For QCD with massless quarks, there is a true phase
transition from a low-temperature phase with spontaneous
chiral symmetry breaking to a high-temperature phase
where chiral symmetry is restored. If the quarks have a
finite mass (mf), that explicitly breaks chiral symmetry, the

existence of a chiral phase transition persists for masses up
to a critical quark mass,mf <mcrit

f , abovewhich the theory

undergoes a smooth crossover rather than a singular phase
transition as the temperature is varied. The value of mcrit

f is

poorly known and depends sensitively on the number of
light quark flavors. For a transition region dominated by
two light quark flavors mcrit

f is expected to vanish and the

transition to be second order only for massless quarks. For
three or more light flavors a first-order region 0 � mf <

mcrit
f should be present.

A. Chiral condensate

The order parameter that best describes the chiral phase
transition is the chiral condensate, h �c qc qi, which vanishes
in the symmetric phase, but attains a nonzero expectation

value in the chirally broken phase. For quark masses above
mcrit

f , the chiral condensate will show only analytic behav-

ior, but both the light and strange quark chiral condensates,
h �c lc li, h �c sc si, and the disconnected part of their chiral
susceptibilities, �l, �s, still contain information about the
chiral properties of the theory in the vicinity of the cross-
over transition. The chiral condensate and the disconnected
chiral susceptibility for a single quark flavor are defined as

h �c qc qi
T3

¼ 1

VT2

@ lnZ

@mq

¼ N2
t

N3
s

hTrM�1
q i; (1)

�q

T2 ¼ 1

VT
hðTrM�1

q Þ2 � hTrM�1
q i2i

¼ VT3hð �c qc qÞ2 � h �c qc qi2i; (2)

wheremq is the mass of the single quark q being examined,

T the temperature, and V the spatial volume, andNt andNs

are the number of lattice sites in the temporal and spatial
directions, respectively.
On our finite temperature ensembles, we calculate both

the light (ml ¼ 0:003) and strange (ms ¼ 0:037) chiral
condensates using 5 stochastic sources to estimate
h �c qc qi on every fifth trajectory. Using multiple stochastic

sources on a given configuration allows us to extract an
unbiased estimate of the fluctuations in �c qc q and to

calculate the disconnected chiral susceptibility. The
Polyakov loop is calculated after every trajectory.
Figures 2 and 3 show the chiral condensate and the

disconnected part of the chiral susceptibility, respectively.
Examining the light and strange quark chiral condensates,
it is difficult to precisely determine an inflection point.
Such an inflection point could be used to locate the mid-
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FIG. 2 (color online). Unitary values for h �c lc li and h �c sc si
(the circles and squares, respectively) for Ls ¼ 32, as well as
additional measurements with Ls ¼ 64 and Ls ¼ 96 for the
valence quarks. For the Ls ¼ 96 measurements, ml and ms are
adjusted so that values for the sum mq þmres are approximately
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point of a thermal crossover. We can also study the dis-
connected chiral susceptibility. This is computed from the
fluctuations in the chiral condensate and will show a peak
near the location of the inflection point of the chiral con-
densate. Examining the time history of �c lc l shown in
Fig. 4, one can see that the fluctuations have a strong �
dependence. We will identify the peak in these fluctuations
with the location of the chiral crossover. The chiral sus-
ceptibility shown in Fig. 3 has a clear peak near � ¼
2:0375.

At finite quark mass the chiral condensate contains an
unphysical, quadratically divergent, additive contribution
coming from eigenvectors of the Dirac operator with ei-
genvalue �� 1=a. These perturbative / mf=a

2 terms will

show no finite temperature effects and obscure the physi-
cally important contribution from vacuum chiral symmetry
breaking. Since these terms enter both the light and strange
condensates h �c lc li and h �c sc si in the same way, it is

appealing to remove this unphysical portion of h �c lc li by
subtracting ðml=msÞh �c sc si from it [19]. This should ef-
fectively remove theml=a

2 term from h �c lc liwhile having
little effect on the contribution from vacuum chiral sym-
metry breaking. The result for such a subtracted light chiral
condensate is shown in Fig. 5.
The exact form for this subtraction is complicated for

domain wall fermions by the presence of residual chiral
symmetry breaking. In particular, the factor ml=ms might
be constructed from the bare input quark masses or from
the more physical combination ðml þmresÞ=ðms þmresÞ.
As is discussed in Sec. VB, theoretical expectations and
our numerical results suggest that the short-distance, 1=a2

portion of the chiral condensate will not show the 1=Ls

behavior seen in the residual mass so this latter subtraction
would not be appropriate. Instead, h �c qc qi approaches a

constant rapidly with increasing Ls, and in the limit of
infinite Ls the ratio of the explicit chiral symmetry break-
ing parametersml=ms is the correct factor to use. Thus, it is
this approach which is shown in Fig. 5.

B. Polyakov loop

For a pure SU(3) gauge theory, there exists a first-order
deconfining phase transition. The relevant order parameter
in this case is the Polyakov loop, L, which is related to the
free energy of an isolated, static quark, Vhq: L�
expð�Vhq=TÞ. In the confined phase, producing an isolated
quark requires infinite energy and the Polyakov loop van-
ishes. However, at sufficiently high temperatures, the sys-
tem becomes deconfined and the Polyakov loop acquires a
nonvanishing expectation value in a sufficiently large vol-
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FIG. 4 (color online). The time history of �c lc l for the light
quarks. There is a vertical offset of approximately 12 units
between successive data sets with the lowest set unshifted.
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leaving a quantity which more accurately describes vacuum
chiral symmetry breaking. This improvement is easily seen for
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seen for h �c lc li in Fig. 2.
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ume. The Polyakov loop and its susceptibility are defined
in terms of lattice variables as

L ¼ 1

3N3
s

X
~r

Tr

�YNt�1

t¼0

U0ð ~r; tÞ
�
; (3)

�L ¼ N3
s fhL2i � hLi2g: (4)

Figures 6 and 7 show the Polyakov loop and the
Polyakov loop susceptibility. As in the case of the chiral
condensate, it is difficult to precisely locate an inflection
point in the � dependence of the Polyakov loop, although
the region where the Polyakov loop begins to increase
more rapidly is roughly coincident with the peak in chiral
susceptibility. There is no well-resolved peak in the data
for the Polyakov loop susceptibility, so we are unable to
use this observable to locate the crossover region. We list
our results for these finite temperature quantities in
Table II.

C. Quark number susceptibilities

Calculations performed with staggered and Wilson fer-
mions at finite temperature have shown that the analysis of
thermal fluctuations of conserved charges, e.g., baryon
number, strangeness, or electric charge, gives sensitive
information about the deconfining features of the QCD
transition at high temperature. Charge fluctuations are
small at low temperature, rapidly rise in the transition
region, and approach the ideal gas Stefan-Boltzmann limit
at high temperature. These generic features are easy to
understand. Charge fluctuations are small at low tempera-
tures as charges are carried by rather heavy hadrons, while
they are large at high temperature where the conserved
charges are carried by almost massless quarks. Charge
fluctuations therefore reflect deconfining aspects of the
QCD transition.

Thermal fluctuations of conserved charges can be calcu-
lated from diagonal and off-diagonal quark number sus-

ceptibilities which are defined as second derivatives of the
QCD partition function with respect to quark chemical
potentials [20], ð�u;�d;�sÞ,
�f
2

T2
¼ 2cf2

T2
¼ 1

VT3

@2 lnZðV; T;�u;�d;�sÞ
@ð�f=TÞ2

���������f¼0

¼ 1

VT3

��
trðM�1

f

d2Mf

d�2
f

��

�
�
tr

�
M�1

f

dMf

d�f

M�1
f

dMf

d�f

��

þ
�
tr2

�
M�1

f

dMf

d�f

���
; f ¼ u; d; s; (5)

�fg
11

T2
¼ cfg11

T2
¼ 1

VT3

@2 lnZðV; T;�u;�d;�sÞ
@�f=T@�g=T

���������g¼�f¼0

¼ 1

VT3

�
tr

�
M�1

f

dMf

d�f

�
tr

�
M�1

g

dMg

d�g

��
;

f; g ¼ u; d; s; f � g; (6)
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TABLE II. Results obtained for the light and strange quark
chiral condensates and disconnected chiral susceptibilities as
well as the Polyakov loop and its susceptibility.

� h �c lc li=T3 �l=T
2 h �c sc si=T3 �s=T

2 hLi (10�3) �L

1.95 22.8(2) 6.4(17) 40.9(1) 3.5(8) 4.40(62) 0.47(4)

1.975 17.9(2) 8.2(14) 36.8(1) 4.1(7) 5.44(42) 0.58(4)

2.00 13.5(2) 9.4(27) 33.2(1) 2.7(7) 6.52(47) 0.54(5)

2.0125 11.6(2) 16.4(20) 31.6 5.7(7) 9.02(53) 0.60(2)

2.025 9.9(2) 17.8(26) 30.2(1) 4.7(6) 10.18(61) 0.59(3)

2.0375 8.2(2) 28.2(25) 28.9(1) 5.3(5) 13.61(55) 0.59(2)

2.05 6.0(2) 20.5(18) 27.4(1) 4.5(8) 16.77(71) 0.64(3)

2.0625 5.1(2) 20.7(27) 26.6(1) 4.2(5) 18.22(86) 0.70(4)

2.08 3.5(2) 11.4(20) 25.2(1) 3.0(6) 25.91(129) 0.73(5)

2.11 2.37(7) 3.7(30) 23.51(5) 0.9(2) 34.74(99) 0.57(2)

2.14 2.03(2) 0.15(2) 22.59(7) 0.6(3) 45.6(20) 0.73(4)
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where cf2 and cfg11 are the second-order coefficients in a

Taylor expansion of p=T4.
In the domain wall fermion formalism the introduction

of quark chemical potentials is straightforward [21–23].
It follows the same approach used in other fermion dis-
cretization schemes [24]; i.e., in the fermion determinant
for quarks of flavor f the parallel transporters in for-
ward [backward] time direction are multiplied with expo-
nential factors expð�faÞ [ expð��faÞ], respectively

(for other implementations of a chemical potential see
Refs. [23,25]). Since these time direction parallel trans-
porters couple to the fermion fields for all locations 0 �
s < Ls in the fifth dimension, fermionic charge is assigned
in a consistent way throughout the fifth dimension. Just
as in the case of the fermionic action [9,26], a precaution
must be taken to ensure that unphysical, five-dimensional
modes do not begin to contribute as Ls becomes large. The
contribution of individual five-dimension modes, not
bound to the s ¼ 0 or s ¼ Ls � 1 walls, will vanish in
the continuum limit. However, for finite lattice spacing and
large Ls the number of these modes may be sufficient to
distort physical quantities. In our calculation this is
avoided by adding an additional compensating Pauli-
Villars pseudofermion field for each quark flavor. Thus,
the chemical potential �f for each quark flavor enters the

time parallel transporters for both the light quark and the
corresponding Pauli-Villars pseudofermion carrying that
flavor. These Pauli-Villars fields have mf ¼ 1 and there-

fore satisfy antiperiodic boundary conditions in the fifth
dimension. Thus, they contribute no ‘‘physical’’ four-
dimensional surface states but act to cancel any possible
bulk contributions / Ls introduced by the domain wall
quarks.

Introducing chemical potentials for conserved charges,
e.g., baryon number (�B), strangeness (�S), and electric
charge (�Q), allows us to define susceptibilities (charge

fluctuations) by taking derivatives with respect to these
chemical potentials [27],

�X
2

T2
¼ 2cX2

T2
¼ 1

VT3

@2 lnZðV; T;�B;�S;�QÞ
@ð�X=TÞ2

���������X¼0
;

X ¼ B; S;Q:

(7)

Expressed in terms of quark number susceptibilities, one
finds

cS2 ¼ cs2; (8)

cB2 ¼ 1
9ð2cu2 þ cs2 þ cud11 þ 2cus11Þ; (9)

cQ2 ¼ 1
9ð5cu2 þ cs2 � 2cud11 � cus11Þ: (10)

Similar to the chiral susceptibility, the two derivatives
appearing in Eq. (5) generate ‘‘disconnected’’ and ‘‘con-
nected’’ contributions to the flavor diagonal susceptibili-
ties. The mixed susceptibilities defined in Eq. (6), on the
other hand, only receive contributions from disconnected
terms. As the disconnected terms are much more noisy
than the connected terms, those susceptibilities that are
dominated by contributions from the latter are generally
easier to calculate. This makes the electric charge suscep-
tibility and the isospin susceptibility, cI2 ¼ ð2cu2 � cud11 Þ=4,
most suitable for our current, exploratory analysis with
domain wall fermions.
Computing the susceptibilities involves measuring

traces of operators. We used stochastic estimators with
100–200 random vectors per configuration. Our measure-
ments are summarized in Table III. Some of the results
presented here have been shown previously [28].
In Fig. 8, we show our results for the diagonal light and

strange quark number susceptibilities cu2 and cs2, respec-
tively. We see that these susceptibilities do transit from a
low value to a high one as � increases. However, given the
current statistical accuracy of our calculation, it is difficult
to assign any definite value of � around which the tran-
sition takes place. To a large extent the fluctuations ob-
served in the data arise from contributions of off-diagonal

TABLE III. Details of the calculation of quark number susceptibilities. The column labeled
‘‘measurements’’ gives the number of measurements that were performed. That labeled
‘‘separation’’ gives the number of time units between those measurements, while the ‘‘random
vectors’’ column gives the number of random vectors used in each measurement.

� Measurements Separation Random vectors cu2 cs2 cI2 cQ2

1.95 73 10 200 0.08(11) 0.01(5) 0.046(8) 0.060(10)

1.975 61 10 200 0.03(10) 0.03(7) 0.070(8) 0.085(10)

2.0125 125 10 150 0.22(6) 0.16(2) 0.119(7) 0.148(10)

2.025 71 20 150 0.30(5) 0.19(3) 0.141(6) 0.176(8)

2.0375 96 20 150 0.30(6) 0.16(2) 0.160(6) 0.205(8)

2.05 81 25 150 0.38(5) 0.25(4) 0.191(9) 0.243(11)

2.0625 111 10 150 0.32(6) 0.24(4) 0.200(9) 0.252(10)

2.11 35 10 100 0.51(6) 0.44(5) 0.233(11) 0.303(14)

2.14 40 10 100 0.51(3) 0.43(2) 0.256(4) 0.333(5)
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susceptibilities, cfg11 , with f � g. In fact, with our current

limited statistics these susceptibilities vanish within errors
and therefore only contribute noise to the diagonal
susceptibilities.
The disconnected parts, however, either completely or

partially cancel out in the two susceptibilities cI2 and c
Q
2 . As

a result, one obtains much better results for these quanti-
ties, as seen in Fig. 9.
We have tried to determine the inflection point for the

electric charge and isospin susceptibilities, which may
serve as an estimate for the transition point, although the
slope of these observables also receives contributions from
the regular part of the free energy. We have fit the data
using two different fit Ansätze,

fIð�Þ ¼ A tanhðBð�� �0ÞÞ þ C;

fIIð�Þ ¼ A3 þ B3�þ C3�
2 þD3�

3:
(11)

To estimate systematic errors in the fits we performed fits
for the entire data set as well as in limited ranges by leaving
out one or two data points at the lower as well as upper
edge of the � range covered by our data sample. From this
we find inflection points in the range 2:024 � �0 � 2:037

for cI2 and 2:024 � �0 � 2:034 for cQ2 . Summarizing this

analysis we therefore conclude that the inflection points in
the electric charge and isospin susceptibilities coincide
within statistical errors and are given by �0 ¼ 2:030ð7Þ.
This is in good agreement with the determination of a
pseudocritical coupling obtained from the location of
peak in the chiral susceptibility, � ¼ 2:0375, found in
Sec. III A.

IV. ZERO-TEMPERATURE OBSERVABLES

In this section we present the results for physical quan-
tities at zero temperature computed on a 163 � 32 lattice
for � ¼ 2:025 which, as Fig. 3 suggests, lies in the lower
temperature part of the Nt ¼ 8 transition region.

A. Static quark potential

To determine the lattice scale, we measured the static
quark-antiquark correlation function, Wðr; tÞ, on 148 con-
figurations (every 5 molecular dynamics trajectories from
300 to 1035) on these zero-temperature configurations. The
quantity Wðr; tÞ is the product of two spatially separated
sequences of temporal gauge links connecting spatial hy-
perplanes, each containing links that have been fixed to the
Coulomb gauge [12,29]:

Wðr; tÞ ¼ 1

NpairsðrÞ
X

j~r1�~r2j¼r

trfU0ð ~r1; 0ÞU0ð~r1; 1Þ . . .

�U0ð~r1; t� 1Þ �Uy
0 ð ~r2; t� 1Þ . . .

�Uy
0 ð ~r2; 1ÞUy

0 ð~r2; 0Þg; (12)

where NpairsðrÞ is the number of pairs of lattice points with

a given spatial separation r. In our calculation the results
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FIG. 9 (color online). The susceptibilities cQ2 and cI2 plotted
versus �. The lines show fits based on the hyperbolic Ansatz,
fIð�Þ, given in Eq. (11). The legend also gives the fit parameters,
which include the location of the inflection point, �0. SB
indicates the infinite temperature, Stefan-Boltzmann limit.
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obtained from orienting the ‘‘time’’ axis along each of the
four possible directions are also averaged together. The
time dependence of Wðr; tÞ was then fit to an exponential
form in order to extract the static quark potential VðrÞ:

Wðr; tÞ ¼ cðrÞ expð�VðrÞtÞ: (13)

The potential VðrÞ was subsequently fit to the Cornell
form, and used to determine the Sommer parameter r0,
as defined below:

VðrÞ ¼ ��

r
þ �rþ V0; (14)

�
r2
dVðrÞ
dr

�
r¼r0

¼ 1:65: (15)

Table IV gives the details of the fit which determines the
parameters � and � of Eq. (14) and results in a value of
r0=a ¼ 3:08ð9Þ. For the physical value of r0, we use the
current standard result r0 ¼ 0:469ð7Þ fm [30]. This gives a
lattice spacing a � 0:15 fm, or a�1 � 1:3 GeV. It should
be emphasized that this value for r0 has been determined
for a single light quark mass and no extrapolation to the
physical value of the light quark mass has been performed.
This failure to extrapolate to a physical value for the light
quark mass is likely to result in an overestimate of the
lattice spacing a by about 3%.

B. Meson mass spectrum

In addition to the static quark potential, we also calcu-
lated the meson spectrum on the same zero-temperature
ensemble at � ¼ 2:025. The meson spectrum was deter-
mined using 55 configurations, separated by 10 molecular
dynamics time units, from 500 and 1040. Table V gives the
results for m	 and m
 for three different valence mass

combinations, as well as their values in the chiral limit
from linear extrapolation. Equating the physical value of
m	 ¼ 776 MeVwith the chirally extrapolated lattice value

gives a lattice scale of a�1 ¼ 1:26ð11Þ GeV, which is

consistent with the scale determined from r0. Examining
the data for the light pseudoscalar meson, we find m
 �
308 MeV, somewhat larger than twice the mass of the
physical pion. For the kaon, we have mK � 496 MeV,
very close to the physical kaon mass.

V. RESIDUAL CHIRAL SYMMETRY BREAKING

We now examine the central question in such a coarse-
lattice calculation using domain wall fermions: the size and
character of the residual chiral symmetry breaking effects.
We examine the residual mass computed at finite tempera-
ture, its Ls dependence, and the dependence of the chiral
condensate on Ls. In both cases we examine the value of
Ls ¼ 32 used for the dynamical quarks as well as ‘‘non-
unitary,’’ valence values of Ls varying between 8 and 128.

A. Residual mass

One of the primary difficulties with the calculation
presented here is the rather large residual chiral symmetry
breaking at the parameters that we employ. This manifests
itself in a value for the residual mass, mres which is larger
than the input light quark mass, mud ¼ 0:003 over almost
the entire temperature range of our calculation.
For the Iwasaki gauge action, the residual chiral sym-

metry breaking has been extensively studied by the RBC-
UKQCD Collaboration for � � 2:13 and Ls ¼ 16
[10,11,13,14]. However, the lattice ensembles that we use
here are significantly coarser, resulting in larger residual
chiral symmetry breaking, even for our increased value of
Ls ¼ 32.
Table VI shows our results for mres on several of the

163 � 8 finite temperature ensembles. We follow the stan-
dard method, described, for example, in Ref. [10], deter-
mining the residual mass by computing the ratio of the
midpoint correlator to the pion correlator evaluated at
source-sink separations sufficiently large to suppress
short-distance lattice artifacts. This is most easily done
on these finite temperature lattices by choosing the
source-sink separation to lie in a spatial rather than tem-
poral direction.
Table VII gives mres on the 163 � 32 ensemble at � ¼

2:025 where the correlators are measured in the temporal
direction. It is important to observe that the values of mres

determined at � ¼ 2:025 at finite and zero temperature,
0.0069(5) and 0.006 647(84), respectively, are consistent.

TABLE IV. Results for r0. The errors are calculated by the
jackknife method, with data binned into blocks, each containing
10 molecular dynamics time units.

� r0=a a�1 (GeV) t fit range r fit range �2=dof

2.025 3.08(9) 1.30(4) (4, 9) ð ffiffiffi
3

p
; 6Þ 1.03

TABLE V. The calculated masses m	 and m
 for various combinations of valence quark mass.
The last line represents extrapolation of the light quark mass to mavg ¼ ðmx þmyÞ=2 ¼ �mres.

mval
x mval

y mavg Fit range m	a �2=dof m
a �2=dof

0.003 0.003 0.0030 8–16 0.646(63) 0.3(4) 0.2373(20) 2.4(11)

0.003 0.037 0.0200 8–16 0.716(23) 0.8(7) 0.3815(15) 2.0(10)

0.037 0.037 0.0370 8–16 0.776(10) 2.2(11) 0.4846(11) 1.2(8)

�mres 0.617(56) 0.073(6)
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This is an important check on the domain wall method
since mres should be a temperature-independent constant
representing the leading long-distance effects of residual
chiral symmetry breaking.

Table VIII shows results for mres evaluated at different
values for the valence Ls at � ¼ 2:00. The expected be-
havior of mres as a function of Ls is given by [14]

mresðLsÞ ¼ c1
Ls

expð��cLsÞ þ c2
Ls

: (16)

Here the exponential term comes from extended states with
eigenvalues near the mobility edge, �c, while the 1=Ls

piece reflects the presence of localized modes with small
eigenvalues and is proportional to the density of such small
eigenvalues at � ¼ 0 [14,31–33]. This formula describes
our data very well as can be seen from Fig. 10, where both
the data presented in Table VII and the resulting fit to
Eq. (16) are shown. The proportionality of mres to 1=Ls

shown in Table VIII for Ls � 32 indicates that our choice
of Ls ¼ 32 has effectively suppressed the exponential term
in Eq. (16) but that a large contribution remains from the

significant density of near-zero eigenvalues on our rela-
tively coarse lattice.
Since we have chosen the input light quark mass ml ¼

0:003 to be fixed for the different values of �, the strong
dependence of mres on � shown in Table VI means that the
total light quark mass, mq ¼ ml þmres, changes signifi-

cantly in the crossover region, from mq � 0:0075 at � ¼
2:05 increasing to mq � 0:013 at � ¼ 2:00. This substan-

tial increase may significantly affect the quantities whose
temperature dependence we are trying to determine.

B. Chiral condensate and susceptibility at varying Ls

The change in the total quark mass as we vary � is
expected to cause a distortion of the chiral susceptibility
curve that we use to locate the crossover transition. In order
to understand how this varying mass affects our results, we
have computed the chiral condensate and its susceptibility
with different choices for the valence Ls and valence ml at
several values of �.
In one set of measurements, we increased Ls from 32 to

64, while keeping the input quark masses fixed at ml ¼
0:003 and ms ¼ 0:037. This has the result of reducing the
total light and strange quark masses, as the residual masses
are reduced by approximately a factor of 2. In another set
of measurements, we increased Ls to 96 but adjusted the
input quark masses to compensate for the reduced residual
mass so that the total light and strange quark masses, ml þ
mres and ms þmres, respectively, matched those in the
Ls ¼ 32 calculation for each value of beta. Finally, for
one value of the gauge coupling, � ¼ 2:0375, we used
several choices of valence Ls (8, 16, 24, 48) at fixed input
quark mass ðml;msÞ ¼ ð0:003; 0:037Þ in order to examine
the Ls dependence of our observables at fixed �. Table IX
gives the results of these measurements. Figures 2 and 3
show the results with the valence Ls ¼ 64 and Ls ¼ 96 in
context with the Ls ¼ 32 results.

TABLE VII. The residual mass as a function of valence quark
mass computed on thezero-temperature, 163 � 32 lattice volume
with � ¼ 2:025, with the extrapolated mval ! 0 value.

mval mres Fit range

0.003 0.006 647(84) 8–16

0.020 0.006 227(74) 8–16

0.037 0.005 835(71) 8–16

0.000 0.006 713(85)

TABLE VIII. The residual mass as a function of the valence Ls

computed on a 163 � 8 lattice volume with � ¼ 2:00.

Ls mres (mf ¼ 0:003) mres (mf ¼ 0:037)

8 0.0529(9) 0.0508(7)

16 0.0235(5) 0.0220(4)

32 0.0105(3) 0.0095(2)

64 0.0048(3) 0.0044(3)

128 0.0024(2) 0.0025(2)
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FIG. 10 (color online). The residual massmres is plotted versus
Ls for � ¼ 2:00, 163 � 8. The fit to Eq. (16) is also shown.

TABLE VI. The residual mass as a function of � computed on
the finite temperature, 163 � 8 lattice volume.

� mres (mf ¼ 0:003) mres (mf ¼ 0:037)

1.95 0.0253(5) 0.0244(5)

2.00 0.0105(3) 0.0095(2)

2.025 0.0069(3) 0.0059(3)

2.05 0.0046(5) 0.0034(2)

2.08 0.0023(5) 0.0016(2)

2.11 0.0011(2) 0.0009(1)

2.14 0.0010(4) 0.0006(2)
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From Fig. 2, we see that increasing Ls from 32 to 64
while keeping the input quark masses fixed does not have
much effect on the chiral condensate for each � at which
we measure. On the other hand, using Ls ¼ 96 and larger
input quark masses causes a noticeable increase in the
chiral condensate. A closely related phenomenon can be
found in Fig. 11 which shows the dependence of h �c qc qi
on Ls at the single value of � ¼ 2:0375. For small values
of Ls, there is a strong Ls dependence, but the chiral
condensate quickly plateaus to an approximately constant
value for Ls > 32, even thoughmres and thus the total light
quark mass are still changing significantly as Ls increases
above 32.

This contrast between the Ls dependence of h �c qc qi and
mres can be made more precise if we attempt to fit the Ls

dependence of h �c qc qi by a single exponential, omitting

the power-law piece that is important in mresðLsÞ:

h �c qc qiðLsÞ ¼ a

Ls

expð�bLsÞ þ c: (17)

This fit describes the data very well, giving �2=dof ¼ 0:4,
in strong contrast to mresðLsÞ where the c2=Ls term in
Eq. (16) is required to fit the data. Thus, it appears that
the contribution of the localized modes, responsible for the
c2=Ls term in Eq. (16), is much less important for the chiral
condensate than for the residual mass.
In fact, this is to be expected. The localized states are

rather special. They are associated with the near-zero
modes of the four-dimensional Wilson-Dirac operator
evaluated at a mass equal to the domain wall height,
�M5. They are nonperturbative and appear when topology
changes. They are thus related to continuum physics and
are limited in number. In contrast, the extended states
which give the exponential term expð��cLsÞ=Ls, can be
seen in perturbation theory, correspond to large, Oð1=aÞ
eigenvalues ofD4D

W ð�M5Þ, and are far more numerous with
a density given by four-dimensional free-field phase space
at the �� 1=a scale. Since the perturbative contribution to
the dimension-one residual mass behaves as 1=a, while
that to the dimension-three chiral condensate as 1=a3, it is
to be expected that the nonperturbative, localized states
will play a much larger role in the former.
If we accept that the Ls behavior of the chiral condensate

differs in this way from that of the residual mass, then the
behavior of the chiral condensate shown in Fig. 2 becomes
easy to understand. In contrast to the total quark mass
mf þmres which depends significantly on both the input

bare massmf and on Ls throughmres, the chiral condensate

is expected to depend only on the input bare mass mf. In

fact this dependence is quite strong with the familiar form
mf=a

2. Thus, when we keep mf fixed and simply increase

Ls from 32 to 64 we should expect little change in h �c qc qi
as is shown in Fig. 2. However, for the second set of points
where Ls is increased to 96 andmf is also increased to keep
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FIG. 11 (color online). Chiral condensate versus the valence
Ls for � ¼ 2:0375, on a 163 � 8 lattice volume. The fit to Eq.
(17) for �c lc l=T

3 is also shown.

TABLE IX. Results for h �c qc qi and the corresponding disconnected susceptibility in which
some of the values for Ls and ml, assigned to the quark loop present in the �c qc q observable,

differ from those that appear in the quark determinant.

Ls � ml h �c lc li=T3 �l=T
2 ms h �c sc si=T3 �s=T

2

8 2.0375 0.003 26.6(1) 7.2(8) 0.037 45.5(1) 4.3(5)

16 10.8(1) 12.4(1) 31.1(1) 4.4(5)

24 8.6(1) 17.8(2) 29.4(1) 4.6(6)

48 7.8(2) 33.2(5) 28.5(1) 5.0(8)

64 2.0125 0.003 11.2(2) 32.3(3) 0.037 31.0(1) 6.5(6)

2.025 9.7(1) 32.6(4) 29.7(1) 5.1(8)

2.0375 8.0(2) 46.2(8) 28.4(1) 4.9(7)

2.05 5.9(2) 39.0(4) 27.1(1) 5.3(7)

96 2.00 0.0078 17.0(4) 13.6(36) 0.0418 36.4(2) 1.9(11)

2.0375 0.0063 9.8(1) 24.8(26) 0.0403 30.4(1) 4.9(6)

2.05 0.0070 8.4(1) 20.2(23) 0.0410 29.4(1) 4.1(6)

MICHAEL CHENG et al. PHYSICAL REVIEW D 81, 054510 (2010)

054510-10



mf ¼ mres fixed, the increase in the bare input quark mass

mf produces a significant increase in h �c qc qi.
As will become clear below, the above discussion of the

chiral condensate is approximate, focusing on the domi-
nant explicit chiral symmetry breaking termmf=a

2 coming

from the input quark mass and a residual chiral symmetry
breaking piece expected to behave as expð��cLsÞ=a3. The
more interesting, physical contribution to the chiral con-
densate which arises from vacuum symmetry breaking and
is described, for example, by the Banks-Casher formula,
will depend on the physical quark mass, mf þmres. Such

dependence on mres will necessarily introduce a 1=Ls

dependence on Ls, not seen in the results described in the
paragraph above. This is to be expected because the much
larger mf=a

2 and expð��cLsÞ=a3 terms do not show this

behavior.
In contrast to the chiral condensate, the disconnected

part of the chiral susceptibility is more physical and grows
with decreasing quark mass. It is dominated by the large
fluctuations present in the long-distance modes. The large
mf=a

2 and expð��cLsÞ=a3 which dominate the averaged

h �c qc qi fluctuate less because of the large number of short-

distance modes and hence contribute relatively little to the
fluctuations in the quantity �c qc q. This behavior should be

contrasted to that of the connected chiral susceptibility
which is again dominated by short-distance modes and
hence of less interest and not considered here.

Thus, for small quark mass and � � �c we expect that
the disconnected chiral susceptibility will depend on the
total effective quark mass,mq ¼ ml þmres, that enters into

the low energy QCD Lagrangian. Figure 12 shows the
disconnected chiral susceptibility at � ¼ 2:0375 as a func-
tion of the valence Ls. The chiral susceptibility does not
plateau as Ls grows. Rather, it increases as the total quark
mass mq ¼ ml þmres is decreased as we move to larger

Ls. The fact that the chiral susceptibility depends only on
the total quark mass can also be seen in the measurements
at Ls ¼ 96, where the input quark masses are adjusted to
keep the total quark mass fixed. As we can see in Fig. 3, the
chiral susceptibility at Ls ¼ 96 is roughly the same as at
Ls ¼ 32, even though the relative sizes of the input quark
masses and the residual mass have changed dramatically.
This behavior provides a reassuring consistency check on
the domain wall fermion approach: even at finite tempera-
ture the light fermion modes carry the expected quark
mass, mq ¼ ml þmres.

VI. LOCATING Tc

We will now attempt to combine our finite and zero-
temperature results to determine the pseudocritical tem-
perature, Tc. As discussed in Sec. III and shown in Fig. 3,
the chiral susceptibility shows a clear peak whose location
gives a value for�c. The result for�c is consistent with the
region of rapid increase in the Polyakov loop and quark
number susceptibilities seen in Figs. 6 and 9. Even though
�c is fairly well resolved, there are still significant uncer-
tainties in extracting a physical value of Tc from our
calculation. The most important issues are
(i) The distortion in the dependence of the chiral sus-

ceptibility on � induced by the variation ofmres with
�.

(ii) The uncertainty in determining the lattice scale at the
peak location near�c ¼ 2:0375 from our calculation
of r0=a at � ¼ 2:025, performed with light quarks
considerably more massive than those found in
nature.

(iii) The absence of chiral and continuum extrapolations.
We address each of these sources of uncertainty in turn.

A. Correcting for mresð�Þ
In Sec. III, we observed that the chiral susceptibility has

a peak near � ¼ 2:0375, which we can identify as the
center of the transition region. However, the total light
quark mass mq ¼ ml þmres is different for each value of

� because of the changing residual mass mresð�Þ. This
changing quark mass distorts the shape of the chiral sus-
ceptibility curve, shifting the location of its peak from what
would be seen were we to have held the quark mass mq ¼
ml þmres fixed as � was varied.
In order to correct for this effect, we must account for the

quark mass dependence of the chiral susceptibility. Our
valence measurements at Ls ¼ 64 and Ls ¼ 96 indicate
that the chiral susceptibility is inversely related to the
quark mass and depends only on the combination mq ¼
ml þmres. Figure 13 shows the resulting chiral suscepti-
bility, when one corrects for the known � dependence of
mresð�Þ by assuming a power-law dependence of �l /
1=m�

q on the quark mass for various choices of the power

� ranging between � ¼ 0 and � ¼ 3=2.
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FIG. 12 (color online). Disconnected chiral susceptibility ver-
sus Ls for � ¼ 2:0375, 163 � 8, with input quark masses fixed to
ml ¼ 0:003 and ms ¼ 0:037.
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While for T � Tc and in the limit of small quark mass
the chiral susceptibility is expected to behave as / 1=

ffiffiffiffiffiffiffi
mq

p
[34–38] corresponding to� ¼ 1=2, our data from the Ls ¼
64 valence measurements suggest �� 1:2–1:8, albeit with
rather large uncertainty. While �> 0:5 is inconsistent with
the expected chiral behavior, we conservatively include
such larger exponents as a possible behavior over our
limited range of nonzero quark mass. Adjusting the chiral
susceptibility curve in this manner enhances the chiral
susceptibility at stronger coupling, as mresð�Þ is larger on
the coarser lattices. This causes a systematic shift in the
peak location to stronger coupling when this correction is
made.

While a cursory examination of Fig. 13 suggests that this
correction does not change the peak structure, more careful
study reveals that for the extreme � ¼ 1:5 case the peak
may have disappeared if the two lowest� values with large
errors are taken seriously. We view this possibility as
unlikely but not absolutely ruled out.

Table X gives the results of fitting the peak region to
Lorentzian and Gaussian peak shapes for various �. If we
make no adjustment to the raw data (� ¼ 0), we obtain
�c ¼ 2:041ð2Þ. However, with � ¼ 3=2, we have �c ¼
2:024ð5Þ with the Gaussian fit. While � ¼ 3=2 seems to be
favored by our valence measurements, we would like to
emphasize that the quark mass dependence of the chiral
susceptibility has large uncertainties. In particular, since
we performed valence measurements at only three values
of �, it is unclear if this � � 3=2 behavior holds over a
broader range in �. Also, we do not know whether the
same mass dependence will persist if both the valence and
dynamical quark masses are varied.

It should be recognized that if �l / 1=m�
q behavior for

T � Tc persists in the limit of vanishing mq the peak

structure suggested by Fig. 13 may take on the appearance
of a shoulder as the �l grows for T < Tc. Such a singular
behavior at small quark mass, for example, the � ¼ 1=2
case suggested by chiral symmetry, would make �l a poor
observable to locate the finite temperature transition [39].
Although our data show an easily identified peak, un-
clouded by a large 1=

ffiffiffiffiffiffiffi
mq

p
term for T � Tc, it is possible

that such behavior may substantially distort the chiral
susceptibility as the light quark mass is decreased from
that studied here to its physical value.
With these caveats in mind, we estimate the pseudocriti-

cal coupling to be �c ¼ 2:03ð1Þ. The central value corre-
sponds to the peak location if we assume a quark mass
dependence of �l � 1=ðmq þmresÞ. The quoted error re-

flects the uncertainty in the mass dependence of �l, and is
chosen to encompass the range of values for �c shown in
Table X.

B. Extracting the lattice scale at �c

This value of �c differs from that of our zero-
temperature ensemble (� ¼ 2:025) where we have mea-
sured the Sommer parameter, r0=a. Thus, in order to
determine the lattice scale at �c, we need to know the
dependence of r0=a on �. Fortunately, in addition to our
measurements at � ¼ 2:025, r0=a has been extensively
measured at � ¼ 2:13 [29].
At � ¼ 2:13, the value of r0=a at the quark mass corre-

sponding most closely to the current calculation is r0=a ¼
3:997ð22Þ. Extrapolation to the chiral limit gives r0=a ¼
4:113ð31Þ for � ¼ 2:13, an approximately 3% increase. A
study of finite volume effects in Ref. [29] suggests that, in
addition, the value computed on a 163 � 32 lattice is too
low by approximately 1%–2%.
To obtain r0=a at �c, we use an exponential interpola-

tion in �, giving r0=a ¼ 3:12ð13Þ, which includes the
statistical errors for r0=a and the uncertainty in �c ¼
2:03ð1Þ. To account for chiral extrapolation and finite
volume effects, we add 4% to this central value and also
add a 4% error in quadrature, resulting in r0=a ¼ 3:25ð18Þ.
This corresponds to Tcr0 ¼ 0:406ð23Þ.

TABLE X. The corrected peak location (�c) in the light chiral
susceptibility determined from fits to Lorentzian and Gaussian
peak shapes resulting from different assumptions for the light
quark mass dependence of �l: �l=T

2 � 1=ðml þmresÞ�. All fits
include the 7 data points nearest the peak location, i.e., � 2
½2:00; 2:08	.

Gaussian Lorentz

� �c �2=dof �c �2=dof

0 2.041(2) 1.7 2.041(2) 2.3

1=2 2.036(3) 1.7 2.035(3) 1.7

1 2.030(3) 1.7 2.030(3) 1.8

3=2 2.024(5) 1.8 2.026(3) 2.0

1.94 1.96 1.98 2 2.02 2.04 2.06 2.08 2.1 2.12 2.14
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FIG. 13 (color online). Light quark chiral susceptibility, where
different assumptions for mass dependence are used to adjust the
data to a constant bare light quark mass ðml þmresÞa ¼ 0:0097,
corresponding to the value at � ¼ 2:025, Ls ¼ 32 in our simu-
lations.
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C. Chiral and continuum extrapolations

In the end, we wish to obtain a value for the pseudocriti-
cal temperature Tc corresponding to physical quark masses
and in the continuum (a ! 0) limit. However, our current
calculation is performed with a single value for the light
quark masses (ml=ms � 0:25) and a single value for the
temporal extent (Nt ¼ 8). Thus, we are not at present able
to perform a direct chiral or continuum extrapolation.

We can make an estimate of the shift in Tc that might be
expected when the light quark mass is reduced to its
physical value by examining the dependence of Tc on the
light quark mass found in the Nt ¼ 6, staggered fermion
calculations in Ref. [2]. The quark mass dependence of Tc

found in Table IV of that paper suggests a 3% decrease in
Tc when one goes to the limit of physical quark masses.

The effects of finite lattice spacing on our result can be
estimated from the scaling errors that have been found in
recent zero-temperature domain wall fermion calculations
[40,41]. Here hadronic masses and decay constants were
studied on a physical volume of size roughly 3 fm3 using
two different lattice spacings: 1=a ¼ 1:73 and 2.32 GeV.
The approximate 1%–2% differences seen between physi-
cally equivalent ratios in this work suggest fractional lat-
tice spacing errors given by ða�Þ2 where
� � 260–370 MeV. If this description applies as well
for the a�1 � 1:3 GeV lattice spacing being used here,
we expect deviations from the continuum limit of 4%–7%.

Thus, to account for the systematic uncertainty in failing
to perform chiral and continuum extrapolations, we add a
10% systematic uncertainty to our final value for the
pseudocritical temperature, giving Tcr0 ¼ 0:406ð23Þð41Þ.
Using r0=a ¼ 0:469ð7Þ fm, this corresponds to Tc ¼
171ð10Þð17Þ MeV. Here the first error represents the com-
bined statistical and systematic error in determining Tcr0
for our a�1 � 1:3 GeV lattice spacing and light quark
mass of � 0:22 times the strange mass. The second error
is an estimate of the systematic error associated with this
finite lattice spacing and unphysically large light quark
mass.

VII. CONCLUSION AND OUTLOOK

We have carried out a first study of the QCD phase
transition using chiral, domain wall quarks on a finite
temperature lattice with temporal extent Nt ¼ 8. This
work represents an advance over earlier domain wall cal-
culations [5,42] with Nt ¼ 4 and 6, having significantly
smaller residual chiral symmetry breaking and including
important tests of the physical interpretation of the result-
ing residual mass. Most significant is the comparison of the
residual mass computed at fixed � ¼ 2:025 for both zero
and finite temperature yielding mres ¼ 0:0069ð5Þ and
0.006 647(84), respectively. The equality of these two re-
sults suggests thatmres can indeed be interpreted as a short-
distance effect which acts as a small additive mass shift
over the range of temperatures which we study.

As can be seen in Fig. 3 the chiral susceptibility shows a
clear peak around �c ¼ 2:03ð1Þ and suggests a critical
region between 155 and 185 MeV. The peak location can
be used to estimate a pseudocritical temperature Tcr0 ¼
0:406ð23Þð41Þ or Tc ¼ 171ð10Þð17Þ MeV. The first error
represents the statistical and systematic uncertainties in
determining �c and the corresponding physical scale at
our larger than physical quark mass (m
 ¼ 308 MeV) and
nonzero lattice spacing, a�1 � 1:3 GeV. The second error
is our estimate of the shift that might be expected in Tc as
the quark mass is lowered to its physical value and the
continuum limit is taken.
The transition region identified from the peak in the

chiral susceptibility �l shown in Fig. 3 agrees nicely with
the region of rapid rise of the Polyakov line L shown in

Fig. 6 and the charge and isospin susceptibilities, cQ2 and

cI2, shown in Fig. 9. This coincidence of the transition

region indicated by observables related to vacuum chiral
symmetry breaking (�l) and those sensitive to the effects of

deconfinement (L, cQ2 , and cI2) suggests that these two

phenomena are the result of a single crossover transition.
It is of considerable interest to compare this result with

those obtained in two recent large-scale studies using
staggered fermions [2,43]. Unfortunately, because of our
large uncertainties, our result is consistent with both of
these conflicting determinations of Tc.
However, there are now substantial opportunities to

improve on the calculation presented here. Most important
the size of residual chiral symmetry breaking must be
substantially reduced. This could be achieved directly for
the calculation described here by simply increasing the size
of the fifth dimension. Of course, such an increase in Ls

incurs significant computational cost. Nevertheless, a study
similar to that reported here is presently being carried out
by the HotQCD Collaboration using Ls ¼ 96. This will
provide an improved result for the chiral susceptibility as a
function of temperature, giving a new version of Fig. 3 in
which the total quark mass, mf þmres, remains constant

across the transition region.
More promising for large-volume domain wall fermion

calculations is the use of a modified gauge action, carefully
constructed to partially suppress the topological tunneling
which induces the dominant 1=Ls term in Eq. (16) [44–47].
This is accomplished by adding the ratio of four-dimension
Wilson determinants for irrelevant, negative mass fermion
degrees of freedom to the action. Preliminary results [47]
indicate that without increasing Ls beyond 32, this im-
proved gauge action can reduce the residual mass in the
Nt ¼ 8 critical region by perhaps a factor of 5 below its
current value while maintaining an adequate rate of topo-
logical tunneling. This improvement, when combined with
the next generation of computers should permit a thorough
study of the QCD phase transition at a variety of quark
masses, approaching the physical value and on larger
physical spatial volumes.
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It is hoped that such a study of the QCD chiral transition
with a fermion formulation that respects chiral symmetry
at finite lattice spacing will yield an increasingly accurate
quantitative description of and greater insight into the
behavior of QCD at finite temperature.
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