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We discuss the essential role of the low-lying eigenmodes of the Faddeev-Popov (FP) ghost operator on

the confining color-Coulomb potential using SUð3Þ quenched lattice simulations in the Coulomb gauge.

The color-Coulomb potential is expressed as a spectral sum of the FP ghost operator and has been

explored by partially summing the FP eigenmodes. We take into account the Gribov copy effects that have

a great impact on the FP eigenvalues and the color-Coulomb potential. We observe that the lowest

eigenvalue vanishes in the thermodynamic limit much faster than that in the Landau gauge. The color-

Coulomb potential at large distances is governed by the near-zero FP eigenmodes; in particular, the lowest

one accounts for a substantial portion of the color-Coulomb string tension comparable to the Wilson string

tension.
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I. INTRODUCTION

The use of the Coulomb gauge has great advantages in
studying the nonperturbative aspects of Yang-Mills theory,
such as color confinement [1–3]. In the Coulomb gauge the
three dimensionally transverse components and the time-
time component of the gluon propagator do not mix with
each other. Although this makes the perturbative calcula-
tion cumbersome, the confinement phenomenon can be
tackled in a comprehensive way. In QCD gluons play a
dual role: confining gluons and confined gluons. Confining
gluons mean that the gluons play the role to confine quarks,
and they cause a strong long-range correlation between
quarks distant apart. Confined gluons indicate that gluons
themselves are confined in hadrons, that is, the gauge fields
cannot have a correlation beyond the hadronic scale. Such
complementary aspects of the gluons can coexist in the
Coulomb gauge: The transverse gluon propagator is sup-
pressed in the infrared region, which indicates the confine-
ment of gluons, and the time-time component of the gluon
propagator diverges much stronger in the infrared limit
than the free field propagator [4–11]. This interpretation
of color confinement differs from the confinement mecha-
nism in the covariant gauge, in which the highly random
fluctuations of the gauge fields lead the incoherent inter-
ference of different paths of the transport of color charges
[12].

The Coulomb gauge Hamiltonian contains the instanta-
neous interaction which plays a significant role in the
Gribov-Zwanziger scenario [2]. The instantaneous interac-
tion energy between color charges is called the color-
Coulomb potential. Lattice QCD simulations have showed
that the color-Coulomb potential rises linearly at large
distances and it has 2� 3 times larger string tension than
the static Wilson potential [13–15]. This is consistent with
the Zwanziger’s inequality which states that the instanta-

neous color-Coulomb potential provides an upper bound
for the static potential [16]. In other words, the necessary
condition for the static Wilson potential being a confining
potential is that the color-Coulomb potential is also a
confining potential. Furthermore, it has been shown that
the scaling violation of the color-Coulomb string tension is
weaker than that of the Wilson string tension [14,17].
The confining nature of the color-Coulomb potential is

attributed to the accumulation of the low-lying eigenmodes
of the Faddeev-Popov (FP) ghost operator. As pointed out
by Gribov, the linear gauges such as Coulomb gauge or
Landau gauge do not fix the gauge completely [18,19].
There remain gauge-equivalent configurations after impos-
ing the gauge fixing condition on the gauge fields. In order
to select only one representative from each gauge orbit we
have to restrict the gauge configurations to the so-called
Gribov region (or more precisely, the fundamental modular
region) where the Faddeev-Popov operator is positive.
Because of the entropy considerations [20], a typical gauge
configuration lies near the Gribov horizon where the lowest
eigenvalue of the FP operator vanishes. Consequently, the
ghost propagator and the color-Coulomb potential which
contains the inverse of the FP operator twice become
infrared singular. Recent lattice QCD simulations have
revealed that the eigenmodes of the FP operator accumu-
late in the low-lying level and its density increases with
increasing the lattice volume [6,21].
In this study, we investigate the impact of the low-lying

eigenmodes of the FP operator on the confining behavior of
the color-Coulomb potential. The Gribov copy effects are
taken into account by generating the gauge copies and by
selecting the representatives that give the smallest value of
the minimizing functional. We exploit the spectral repre-
sentation of the FP ghost Green’s function. Because the
color-Coulomb potential can be expressed in terms of the
Green’s function of the FP operator, the color-Coulomb
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potential is explicitly written as a spectral sum of the FP
ghost eigenmodes. We examine how the long-distance
behavior of the color-Coulomb potential is governed by
the low-lying FP eigenmodes.

The organization of the paper is as follows. In the next
section we express the color-Coulomb potential as the
spectral sum of FP ghost eigenmodes. Section III is de-
voted to explain the technical details of the simulations and
to show the results of our numerical simulations. The
effects of the Gribov copies on the FP eigenvalues are
examined in Sec. III A. In Sec. III B, the lowest FP eigen-
value will be shown to vanish in the infinite volume limit
faster than that in the Landau gauge. The color-Coulomb
potential obtained by the partial spectral sum and the color-
Coulomb string tension are given in Secs. III C and III D.
We will see that the low-lying modes account for the large
portion of the color-Coulomb string tension, and the lowest
eigenmode has a substantial contribution to the spectral
sum. The results for the weight factor which controls the
contribution of each eigenmode to the spectral sum are
given in Sec. III E. The correlation function of the FP
eigenmodes which is responsible for the distance depen-
dence of each eigenmode is examined in Sec. III F. Finally,
we present conclusions in Sec. IV.

II. SPECTRAL SUM FOR THE COLOR-COULOMB
POTENTIAL

In the Coulomb gauge, the Hamiltonian can be decom-
posed into the transverse part and the instantaneous part
[22];

H ¼ 1

2

Z
d3xfðEtr

i Þ2 þ B2
i g þ

1

2

�
Z

d3y
Z

d3z�að ~y; tÞV abð ~y; ~z;AtrÞ�bð~z; tÞ: (1)

Ei are the transverse components of the color-electric field
and Ba

i � �ijkFjk=2 the color-magnetic fields. � is the

color charge density

�a ¼ gfabcAb;tr
i Ec;tr

i þ �a
quark: (2)

Color charges interact with each other instantaneously
through the kernel V which is expressed in terms of the
Green’s function M�1 of the FP ghost operator Mab ¼
�@iD

ab
i ¼ ��ab@2i � gfabcAc;tr

i @i,

V abð ~y; ~z;AtrÞ ¼ ðM�1½A�ð�@2i ÞM�1½A�Þab~y;~z: (3)

In the Abelian theory the FP operator is the negative
Laplacian since the structure constants fabc are zero.
Accordingly the instantaneous interaction is reduced to
the well-known Coulomb potential.

As can be seen from the Coulomb gauge Hamiltonian,
the instantaneous interaction between quarks is propor-
tional to the product of the color charges as the one-gluon
exchange; namely, the instantaneous interaction is purely a

two-body interaction and is proportional to the quadratic
color factor [23]. The vacuum expectation value of the
instantaneous interaction energy between a quark and an
antiquark located at ~x and ~y is given by

Vcð ~x� ~yÞ ¼ g2 ~Ta
q � ~Tb

�qhV abð ~x; ~y;AtrÞi; (4)

and we call Vc the color-Coulomb potential. Here h�i
denotes the Monte Carlo average and Ta

qð �qÞ are the gener-

ators of the color-SUð3Þ group. In the color-singlet channel
the color-Coulomb potential is

Vsinglet
c ð ~x� ~yÞ ¼ g2

�Cf

N2
c � 1

hV aað ~x; ~y;AtrÞi; (5)

where Cf ¼ 4=3 is the Casimir invariant in the fundamen-

tal representation of the color-SUð3Þ group and�Cf is the

color factor in the singlet channel. Nc is the number of
colors. In this paper we are interested in only the color-
singlet channel and for simplicity we denote the color-
Coulomb potential in the singlet channel by Vc.
Our definition of the color-Coulomb potential is slightly

different from what appeared in [22] where the color-
Coulomb potential is given as the instantaneous part of
the time-time component of the gluon propagator,

D44ðx� yÞ ¼ TrhA4ð ~x; x4ÞA4ð ~y; y4Þi
¼ V0

cðj ~x� ~yjÞ�ðx4 � y4Þ þ Pðx� yÞ: (6)

V0
c can be written as

V 0
cðj ~x� ~yjÞ�ab ¼ g2hV abð ~x; ~y;AtrÞi: (7)

Therefore, our definition of the color-Coulomb potential
differs from that in [22] by the color factor �Cf.

The Green’s function of the FP operator can be ex-
panded explicitly in terms of the eigenfunctions �n and
the eigenvalues �n of the FP operator as

ðM�1½A�Þabð ~x; ~yÞ ¼ X
n

��a
n ð ~xÞ�b

nð ~yÞ
�n

; (8)

where the sum extends over the whole eigenmodes besides
the trivial zero modes.
In the same way, the color-Coulomb potential can be

written as a spectral sum of the ghost eigenmodes,

Vcð ~x� ~yÞ ¼ g2
�Cf

N2
c � 1

�X
n;m

��a
n ð ~xÞ�a

mð ~yÞ

�
R
d3z�c

nð~zÞð�@2i Þ��c
m ð~zÞ

�n�m

�
: (9)

We notice that the distance dependence of the color-
Coulomb potential comes from the product of the eigen-
modes ��a

n ð ~xÞ�b
mð ~yÞ. The remaining part,

!nm ¼
R
d3z�c

nð ~zÞð�@2i Þ��c
m ð~zÞ

�n�m

; (10)
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gives a weight of the contributions from each eigenmode.
In the Abelian theory, the eigenvalue is 1= ~p2 and the
eigenfunctions are the plane waves since the FP operator
is the negative Laplacian. Therefore the weight factor
becomes diagonal and is proportional to the inverse of
the FP eigenvalue, !nm / �nm=�n.

In the Gribov-Zwanziger scenario the FP eigenmodes
get accumulated in the low-lying modes [20], and as the
volume increases the lowest eigenvalue of the FP operator
in the Yang-Mills theory goes toward zero faster than that
in the Abelian theory where the lowest eigenvalue of the FP
operator on a lattice is 4sin2ð�=LÞ, see Sec. III B.
Accordingly we expect that the lowest component of the
weight factor !11 becomes significantly large in the Yang-
Mills theory and the color-Coulomb potential is dominated
by the lowest FP eigenmode.

III. NUMERICAL SIMULATIONS

The lattice configurationsU ¼ fU�ðxÞg are generated by
the Cabibbo-Marinari pseudo-heat-bath algorithm [24]
with the Wilson plaquette action on several lattice volumes
and lattice couplings. Ten thousand sweeps are discarded
for thermalization and a measurement has been done every
100 sweeps. The lattice parameters used in this study are
summarized in Table I.

The Coulomb gauge condition

@iAið ~x; tÞ ¼ 0 (11)

does not mix the spatial components and the temporal
component of the gauge fields, and each time slice is
gauge-fixed independently. In this work, we adopt the
Wilson-Mandula iterative method with the Fourier accel-
eration to fix to the Coulomb gauge [25]; namely, we
minimize the functional

FU½g� ¼ 1

L3

X
~x

ReTr

�
1� 1

3
gyð ~x; tÞU�ð ~x; tÞgð ~xþ ~i; tÞ

�
;

(12)

with respect to the gauge transformation gð ~x; tÞ 2 SUð3Þ
and find the local minimum of FU½g�. Here L3 is the spatial
lattice volume. The gauge fields A�ð ~x; tÞ are defined as

A�ð ~x; tÞ ¼
U�ð ~x; tÞ �Uy

�ð ~x; tÞ
2iag0

��������traceless
; (13)

and the gauge fields at the minima of FU½g� satisfy the
transversality condition riAið ~x; tÞ ¼ 0 where r is the lat-
tice backward difference. We stop the iterative gauge fixing
if the violation of the transversality becomes less than
10�14;

� ¼ 1

ðN2
c � 1ÞL3

X
a; ~x

ðriA
a
i ð ~x; tÞÞ2 < 10�14: (14)

This stopping criterion is applied for each time slice. We
refer the configurations gauge-fixed in this way to first
copies.
In order to examine the effects of Gribov copies, we

generate 30 gauge copies by performing the random gauge
transformation for each time slice. Then, we find the
minimum of the functional (12). Configurations giving a
lowest value of the minimizing functional among the gauge
copies for all time slices are called best copies, candidates
of gauge configurations in the fundamental modular re-
gion. In this way, we can prepare the configurations that are
close to the fundamental modular region and discuss the
Gribov copy effects.
The effects of the Gribov copies on the color-Coulomb

potential obtained by inverting the FP operator in the
conjugate gradient method have been discussed in [26]. It
has been clarified that the Gribov copies tremendously
affect the color-Coulomb potential at small momenta. In
the following, we shall see that the color-Coulomb string
tension extracted from the spectral sum of the FP eigen-
modes is also influenced by the Gribov copies.
In the Coulomb gauge the FP operator is a 8L3 � 8L3

matrix on a lattice and a purely spatial quantity. It can be
expressed in terms of the spatial link variables UiðxÞ as
Mab

~x ~y ¼
X
i

ReTr½fTa; TbgðUið ~x; tÞ þUið ~x� î; tÞÞ�~x; ~y

� 2TbTaUið ~x; tÞ�~y; ~xþî � 2TaTbUið ~x� îÞ�~y; ~x�î�:
(15)

Since the FP matrix is the Hessian matrix associated with
the functional (12), the eigenvalues we obtain are positive.
In SUð3Þ Yang-Mills theory there are eight trivial zero
modes associated with the spatially constant eigenfunc-
tions. We exclude these modes from the spectral sum of
the color-Coulomb potential.

TABLE I. The lattice couplings, the lattice volumes, the num-
ber of configurations used to evaluate the FP eigenvalues and the
corresponding eigenfunctions. Ncp refers to the number of

random gauge copies generated for each time slice to investigate
the Gribov copy effects.

	 L4 a�1 [GeV] a [fm] V [fm4] # of confs. Ncp

5.70 84 1.160 0.1702 1:364 100 30

164 1.160 0.1702 2:724 100 30

5.80 84 1.446 0.1364 1:094 100 30

124 1.446 0.1364 1:644 100 30

164 1.446 0.1364 2:184 100 30

204 1.446 0.1364 2:734 100 30

244 1.446 0.1364 3:274 100 30

6.00 84 2.118 0.0931 0:744 100 30

164 2.118 0.0931 1:494 100 30

244 2.118 0.0931 2:234 100 30

6.20 84 2.914 0.0677 0:544 100 30

164 2.914 0.0677 1:084 100 30

244 2.914 0.0677 1:634 100 30
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We solve the eigenvalue equation

M�n ¼ �n�n; (16)

and evaluate low-lying 300 eigenvalues and the corre-
sponding eigenvectors including the trivial zero modes
using the ARPACK package [27]. The spectral representa-
tion of the color-Coulomb potential in the singlet channel
is

VcðRÞ ¼ g2
�Cf

N2
c � 1

� Xnmax

k;l¼nmin

��a
k ð ~xÞ�a

l ð ~yÞ!kl

�
; (17)

where R ¼ j ~x� ~yj. We investigate the behavior of the
color-Coulomb potential by changing the lower and the
upper limits of the spectral sum, nmin and nmax. Statistical
errors are estimated by the jackknife method.

A. Effects of the Gribov copies on the FP eigenvalues

We discuss the effects of the Gribov copies on the
eigenvalues of the FP operator. In the left panel of Fig. 1,
the lowest nontrivial 292 eigenvalues evaluated on the first
copies and the best copies on the 244 lattice at 	 ¼ 6:0 are
plotted. We observe that the first copies underestimate the
FP eigenvalues and the discrepancies are large at small

eigenvalues. The ratio �fc
n =�bc

n of the FP eigenvalues on
almost the same physical volume is plotted in the right

panel of Fig. 1. Here �fc
n refers to the FP eigenvalue for the

first copies and �bc
n for the best copies. We see that the ratio

decreases as we get close to the critical limit (i.e., the
thermodynamic limit and the continuum limit). The effects
of the Gribov copies cause more than 10% systematic
errors for the lowest eigenvalue on the 244 lattice. This
indicates that we have to pay adequate attention to the
Gribov copy effects on the FP eigenvalues.

The reason why the best copies give larger eigenvalues
than the first copies can be explained as follows. Except for
the trivial zero modes, the FP eigenvalues are strictly
positive for the trivial vacuum A ¼ 0. As we come close
to the first Gribov horizon, the lowest eigenvalue decreases
and becomes zero for configurations on the first Gribov
horizon. The fundamental modular region is a subset of the
Gribov region and its boundary does not necessarily coin-
cide with the Gribov horizon, although it has a common
boundary with the Gribov region [20]. Therefore, the fun-
damental modular region has a small overlap with the
Gribov horizon compared to the Gribov region. It implies
that the FP eigenvalues for the best copies are larger than
that for the first copies, which is seen in our result.

B. Lowest eigenvalues of the FP operator

At the zeroth order of the coupling, the FP operator is the
negative Laplacian, Mab ¼ ��ab@2i , and there are (N2

c �
1) nontrivial lowest eigenmodes taking the value

� ¼
�
2

a
sin

�
�

L

��
2
; (18)

which are degenerated. In the infinite volume limit, this
eigenvalue approaches zero as�

2

a
sin

�
�

L

��
2 !

�
1

aL

�
2
: (19)

We investigate the volume dependence of the lowest ei-
genvalues of the FP operator and see if they vanish faster
than that for the negative Laplacian, Eq. (19).
In Fig. 2, the lowest eigenvalues, �i (i ¼ 1, 2, 5, 8), for

the best copies are plotted as a function of the inverse of the
spatial extent of the lattice. We find that the eigenvalues
decrease with increasing the lattice volumes. Moreover, the
data points seem to lie on straight lines in the log-log plot.

1 10 100

n

0.001

0.01

0.1

λ n

24
4
, β=6.0, first copy

24
4
, β=6.0, best copy

11.010.0

λbc

n
 [GeV

2
]

0.85

0.9

0.95

1

λ nfc
 / 

λ nbc

12
4
, β=5.8, V~1.64

4
 [fm

4
]

24
4
, β=6.2, V~1.63

4
 [fm

4
]

FIG. 1 (color online). (Left) The eigenvalues of the FP operator on the 244 lattice at 	 ¼ 6:0 for the first copies and the best copies.

(Right) The ratio �fc
n =�bc

n of the FP eigenvalues on almost the same physical volume is plotted as a function of �bc
n .
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In order to explore the volume dependence of the eigen-
values, we fit the data with the function

�i ¼ b

�
1

aL

�
c
; (20)

in the range ð1=aLÞ � ð1=aLÞmax. The fitted parameters
are given in Table II. The corresponding fitted functions for
ð1=aLÞmax ¼ 0:8 ½fm�1� are drawn in Fig. 2 by the dotted
lines. We observe that the fitting works well and the
exponent c is larger than 2 in all the cases. It implies that
not only the lowest FP eigenvalue approaches zero faster
than that of the lattice Laplacian operator, but the low-lying
eigenvalues also do. Our result is consistent with the
hypothesis in the Gribov-Zwanziger scenario that the mea-
sure of the path integral is concentrated on the part of the
horizon where ‘‘all horizons are one horizon’’ [28].

This has also been observed in the Landau gauge [29].
However, the fitting results have been obtained as 2.16(4),
2.24(5), and 2.45(4) for �1, �2, and �5, respectively. It
means that the lowest eigenvalue of the FP operator in
the Coulomb gauge vanishes faster than that in the Landau
gauge. Since the ghost propagator can be expanded by the
FP eigenmodes as Eq. (8), it may be expected to be
enhanced in the Coulomb gauge compared to the Landau
gauge.

C. Spectral sum of the color-Coulomb potential

We here discuss the spectral sum of the color-Coulomb
potential. Figure 3 illustrates the effects of Gribov copies
on the color-Coulomb potential. In the left figure, the result
for ðnmin; nmaxÞ ¼ ð1; 292Þ is shown. We find that the color-
Coulomb potential becomes shallow for the best copies
compared to the first copy result. The discrepancy between
the first and the best copies reaches about 200% at R ¼ 0.
In addition to the absolute value, the statistical errors are
also influenced by the Gribov copies; namely, they are
reduced for the best copies. Accordingly, it is indispensable
to take into account the effects of the Gribov copies to
calculate the color-Coulomb potential.
In the right panel of Fig. 3, the color-Coulomb potential

for ðnmin; nmaxÞ ¼ ð100; 292Þ is depicted. We see that the
spectral sum of the color-Coulomb potential is less affected
by the Gribov copies if we exclude the low-lying modes
from the summation. This result is quite consistent with
those discussed in the previous subsection, that is, the
higher FP eigenvalues are less influenced by the Gribov
copies.
The partial spectral sum of the color-Coulomb potential

for the best copies is plotted in Fig. 4. The right panel
illustrates the color-Coulomb potential normalized to be 0
at R ¼ 0 in order to make the distance dependence more
visible. By comparing data for nmin ¼ 1 with different
nmin, we observe that the exclusion of the near-zero modes
substantially reduces the slope and the absolute value of
the color-Coulomb potential. This is because the low-lying
components of the weight factor, !nm, are quite large and
!nm rapidly decrease by increasing n or m, as we shall
show later. We should mention that the long-distance be-
havior of the potential is governed by only a small fraction
of ghost eigenmodes since the total number of the FP
eigenvalues on the 244 lattice is 8L3 ¼ 110 592.
Data for ðnmin; nmaxÞ ¼ ð50; 292Þ and (100, 292) in Fig. 4

suggest that the inclusion of the eigenmodes in the range
50 � n � 99 changes only the short-distance behavior of
the color-Coulomb potential and the long-range part is not
affected. From Fig. 4 we see that the absolute value of the
color-Coulomb potential at large distances decreases by
increasing nmin and it gets close to zero. In other words, the
non low-lying modes contribute only to the short distant
part of the potential and its long distant part is not altered
by them. Thus the inclusion of the non low-lying FP

0.1 1

1 / (aL) [fm
-1

]

0.001

0.01

0.1

1
λ 

[G
eV

2 ]

λ
8

λ
5

λ
2

λ
1

FIG. 2 (color online). The lowest eigenvalues, �i (i ¼ 1, 2, 5,
8), for the best copies are plotted as a function of the inverse of
the spatial lattice extent. The dotted lines correspond to the fitted
results.

TABLE II. The fitted results for the lowest eigenvalues of the
FP operator. ð1=aLÞmax ½fm�1� is the maximum value of the
fitting range.

�i ð1=aLÞmax [fm�1] b c 
2=ndf

�1 0.6 0.121(6) 2.49(4) 1.02

0.7 0.121(4) 2.48(3) 0.77

0.8 0.118(1) 2.46(1) 0.76

�2 0.6 0.180(6) 2.46(3) 0.67

0.7 0.186(4) 2.48(2) 0.86

0.8 0.185(2) 2.48(1) 0.72

�5 0.6 0.331(6) 2.51(2) 0.30

0.7 0.339(3) 2.53(1) 0.74

0.8 0.338(2) 2.53(1) 0.61

�8 0.6 0.461(6) 2.55(1) 1.17

0.7 0.455(3) 2.54(1) 1.15

0.8 0.454(2) 2.54(1) 0.93
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eigenmodes changes only the short-distance behavior of
the color-Coulomb potential.

D. Color-Coulomb string tension

In order to reveal how the low-lying FP modes saturate
the color-Coulomb potential at large distances, we extract
the color-Coulomb string tension by fitting the potential
with a straight line and investigate how the color-Coulomb
string tension changes by varying the maximummode nmax

of the spectral sum. We do not include the Coulomb term,
1=r, in the fitting function since the higher FP modes that
are responsible for the short distant part of the color-
Coulomb potential are not incorporated in the analysis.
The fitted results are summarized in Table III. In this

analysis, nmin is fixed to be 1. Thus, the result for nmax ¼
50means that the color-Coulomb potential is reconstructed
from the low-lying 50 eigenmodes.
We discuss the effects of the Gribov copies on the color-

Coulomb string tension. This is illustrated in Fig. 5, where
the first copy and the best copy results are shown. The
string tension Kll

c of the color-Coulomb potential which is
obtained by measuring the link-link correlator1 and the
Wilson string tension KW , the string tension of the static

0 5 10
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FIG. 3 (color online). The spectral sum of the color-Coulomb potential for the first and the best copies on the 244 lattice at 	 ¼ 6:0
in lattice units. The lower-upper limit of the sum is (1, 292) on the left figure and (100, 292) on the right figure.

0 5 10

R

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

V c
(R

)

(nmin, nmax) = (100, 292), best copy
(nmin, nmax) = (  50, 292), best copy
(nmin, nmax) = (    2, 292), best copy
(nmin, nmax) = (    1, 292), best copy

0 5 10

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V c
(R

)   
 (

no
rm

al
iz

ed
)

(nmin, nmax) = (100, 292), best copy
(nmin, nmax) = (  50, 292), best copy
(nmin, nmax) = (    2, 292), best copy
(nmin, nmax) = (    1, 292), best copy

FIG. 4 (color online). (Left) The partially summed color-Coulomb potential as a function of R for the best copies in lattice units.
Circles, squares, diamonds, and triangles correspond to ðnmin; nmaxÞ ¼ ð1; 292Þ, (2, 292), (50, 292), (100, 292), respectively. (Right)
The partially summed color-Coulomb potential normalized to be 0 at R ¼ 0 in order to make the distance dependence more visible.

1In this section, the color-Coulomb string tension for the
spectral summed potential is referred to as Kc and the string
tension of the color-Coulomb potential obtained from the link-
link correlator is referred to as Kll

c .
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potential, are also depicted by bands, respectively. We note
that Kll

c is the best copy result and the detail of the calcu-
lation is given in the Appendix. We find that the first copy
result for Kc overestimates Kll

c and it is more than 3 times
larger than the Wilson string tension. By taking into ac-
count the Gribov copies, the color-Coulomb string tension
is drastically reduced and it becomes less thanKll

c although
it is still larger than the Wilson string tension.

It may be not a problem that Kc does not agree with K
ll
c .

The color-Coulomb potential can be calculated in different
ways. One way is to calculate the color-Coulomb potential
directly by inverting the FP matrix or solving the eigen-
value equation of the FP ghost matrix. In this method, only
the spatial link variables at a fixed time slice are needed to

calculate the color-Coulomb potential. The other way is to
exploit the fact that the color-Coulomb potential is the
instantaneous part of the time-time component of the gluon
propagator,

D44ð ~x; tÞ ¼ V 0
cð ~xÞ�ðtÞ þ Pð ~x; tÞ; (21)

and to calculate the correlator of the timelike links at a
fixed time slice. Only the temporal links are needed to
calculate the color-Coulomb potential in this method.
Although these two ways provide a complementary way
to obtain the color-Coulomb potential, the lattice results
performed at finite lattice spacings do not necessarily
agree. Of course, the results should coincide in the con-
tinuum limit.
We next discuss the nmax dependence of the color-

Coulomb string tension. The color-Coulomb string tension
for the best copies at various lattice couplings and the
corresponding Wilson string tension are displayed in
Fig. 6. We see that the color-Coulomb string tension for
the lowest eigenmode is comparable to the Wilson string
tension, indicating that the lowest mode accounts for the
large portion of the string tension. Kc rapidly increases at
small nmax, and the rate of increase decreases with nmax.
The values of Kc for nmax ¼ 200 and for nmax ¼ 292 al-
most agree within the statistical errors. Thus, it is expected
that the further inclusion of the higher eigenmodes into the
spectral sum does not alter the color-Coulomb string ten-
sion and the long-range behavior of the color-Coulomb
potential is governed by the low-lying eigenmodes.

TABLE III. The result of fitting the color-Coulomb potential
with a straight line, VðRÞ ¼ KcRþ c in the range 4 � R � 7.
The Wilson string tension KW is taken from [30].

nmax Kfc;	¼6:0
c 
2=NDF K	¼6:0

W Kc=KW

1 0.1120(9) 0.19 2.18(12)

16 0.1490(12) 0.16 2.90(16)

30 0.1624(12) 0.19 3.17(18)

50 0.1668(12) 0.20 0.0513(25) 3.25(18)

100 0.1730(12) 0.23 3.37(19)

200 0.1782(12) 0.29 3.47(19)

292 0.1804(12) 0.36 3.52(19)

nmax Kbc;	¼5:8
c 
2=NDF K	¼5:8

W Kc=KW

1 0.1050(183) 0.08 0.96(19)

8 0.1249(65) 0.90 1.15(8)

30 0.1477(65) 1.13 1.36(8)

50 0.1550(65) 1.18 0.1090(20) 1.43(9)

100 0.1646(65) 1.28 1.51(9)

200 0.1720(65) 1.65 1.58(9)

292 0.1749(65) 2.08 1.60(9)

nmax Kbc;	¼6:0
c 
2=NDF K	¼6:0

W Kc=KW

1 0.0413(22) 0.41 0.81(8)

8 0.0676(38) 0.26 1.32(14)

30 0.0798(37) 0.36 1.56(15)

50 0.0841(37) 0.38 0.0513(25) 1.64(15)

100 0.0901(37) 0.46 1.76(16)

200 0.0953(37) 0.78 1.86(16)

292 0.0975(37) 1.15 1.90(16)

nmax Kbc;	¼6:2
c 
2=NDF K	¼6:2

W Kc=KW

1 0.0276(24) 0.21 1.05(12)

8 0.0389(14) 1.92 1.48(9)

30 0.0469(14) 2.23 1.79(9)

50 0.0498(14) 2.03 0.0262(06) 1.90(10)

100 0.0544(14) 1.35 2.08(10)

200 0.0587(14) 1.46 2.24(10)

292 0.0609(14) 2.56 2.32(11)
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FIG. 5 (color online). The color-Coulomb string tension ex-
tracted by fitting the color-Coulomb potential with a straight line
is plotted as a function of nmax, the maximum FP mode in the
spectral summation. The squares correspond to the first copy
result on the 244 lattice at 	 ¼ 6:0, and the circles represent the
best copy one. The upper band and the lower band indicate the
color-Coulomb string tension Kc obtained by measuring the link-
link correlator and the Wilson string tension KW obtained from
the Wilson loop calculation, respectively.
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The ratio of the color-Coulomb string tension to the
Wilson string tension is listed in Table III. We observe
that the ratio for nmax ¼ 292 increases with increasing the
lattice couplings, ranging from 1.6 to 2.3. Since the inclu-
sion of the higher eigenmodes, which we do not take into
account, does not reduce the values of the string tension,
our results exclude the possibility that the color-Coulomb
string tension saturates the Wilson string tension. Instead,
the lowest FP eigenmode gives a large contribution to the
color-Coulomb string tension comparable to the Wilson
string tension.

In [5,26], the color-Coulomb string tension has been
estimated from the zero-momentum value of the color-

Coulomb potential in momentum space. This method re-
quires simulations on large lattice volumes to extract a
reliable value of the string tension. However, large lattice
simulations of the color-Coulomb potential are extremely
cumbersome since we have to take into account the Gribov
copies, which greatly influence the color-Coulomb poten-
tial. The method we used in this paper is superior in this
respect; namely, the spectral expansion of the color-
Coulomb potential in position space does not require so
much large lattices and only a few hundreds of FP eigen-
modes are needed to estimate the color-Coulomb string
tension.
The fact that the color-Coulomb string tension is larger

than the Wilson string tension is physically admissible. If
Kc saturatesKW , the color-Coulomb potential has the same
energy as the ground state energy of the QCDHamiltonian,
that is, the Wilson static potential. Since the color-
Coulomb potential is the energy of the system obtained
by adding a q �q pair to the QCD vacuum [16], Kc ¼ KW

would indicate that such a state is also the eigenstate of the
QCD Hamiltonian. The QCD vacuum does not have a flux
tube, and it also holds for the state, jQCD vacuumþ
q �q pairi. Hence there is no room for the formation of the
flux tube between quarks if Kc saturates KW . Moreover, if
such a state having no flux tube was the eigenstate of the
QCD Hamiltonian, it could be found by the lattice calcu-
lations as the degenerated ground state of the q �q system.
Currently, the lattice simulations, however, suggest that the
state with the flux tube is the ground state of the q �q system
and the state without the flux tube has not been found as the
ground state of the QCD Hamiltonian. Thus, our result that
the color-Coulomb string tension is larger than the Wilson
string tension is quite reasonable.
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FIG. 6 (color online). The color-Coulomb string tension for
the best copies is plotted as a function of nmax, the maximum FP
mode in the spectral summation. The Wilson string tension is
also shown by the bands.
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E. Weight factor !nm

The weight factor !nm for the best copies is depicted in
the left panel of Fig. 7. We observe that the diagonal
components are extremely larger than the off-diagonal
components. This means that the contributions to the spec-
tral sum of the color-Coulomb potential from the combi-
nations ��

nð ~xÞ�mð ~yÞ with different eigenmodes n � m are
small. In the Abelian theory the off-diagonal components
are exactly zero, !nm � �nm=�n. It is due to the non–
Abelian nature of Yang-Mills theory that the off-diagonal
components have finite values, even though they are quite
small compared to the diagonal components.

The diagonal components of the weight factor, !nn, are
shown in the right panel of Fig. 7. In the figure, both the
best copy and the first copy results are drawn. We find that
the Gribov copy effects can be seen at small n and the two
curves approach each other as n increases. For the lowest
component !11, the ratio of the first copy result to the best
copy one is about 2.7, that is, the systematic errors due to
the Gribov copies reach 170%.

Figure 7 shows that the lowest component !11 takes a
significantly large value. For instance, !22 is about 1=4 of
!11, and the diagonal component for n ¼ 20 is smaller
than !11 by a factor about 100. It implies that the lowest
ghost eigenmode dominates the color-Coulomb potential.
In the Gribov-Zwanziger scenario, a typical configuration
lies near the Gribov horizon and the lowest FP eigenvalue
goes to zero faster than the free field case as the lattice
volume increases. Since the weight factor!nm contains the
inverse of the FP eigenvalue twice, it is the expected result
that the lowest component !11 takes a significantly large
value and the lowest FP eigenmode dominates the spectral
sum of the color-Coulomb potential.

F. Correlation of the FP eigenmodes

The correlation function of the FP ghost eigenmodes,
�h��a

n ð ~xÞ�a
nð ~yÞi, is shown in Fig. 8 as a function of R ¼

j ~x� ~yj. As we have mentioned in Sec. II, the distance
dependence of the color-Coulomb potential comes from
the correlation function. We see that the correlation func-
tion of the low-lying FP eigenfunctions shows a linearly
rising behavior. The distance dependence of the correlation
function does not so much differ for n � 50. The confining
behavior of the color-Coulomb potential is ascribed to the
fact that the correlation function of the low-lying modes
rises linearly and the corresponding wnm take large values.
Furthermore, we observe that the correlation function for
n ¼ 292 starts to decrease at a large distance; namely, the
correlation function completely loses the confining prop-
erty in the sense that it does not rise with distance. This
result strongly supports our expectation that the higher
eigenmodes that are not taken into account in our analysis
do not change the long-range behavior of the color-
Coulomb potential and the color-Coulomb string tension
is almost saturated by the low-lying eigenmodes.
In addition to the distance dependence, we notice that

the correlation function is not sensitive to the Gribov copy
effects. This can be seen in Fig. 8 where the first copy and
the best copy results are shown by red circles and violet
crosses, respectively. Therefore, the Gribov copy effects on
the color-Coulomb potential stem from that on the FP
eigenvalues and the weight factor.

IV. SUMMARY

In this paper we discussed the effects of the Gribov
copies on the FP eigenvalues and the essential role of the
low-lying FP eigenmodes on the confining color-Coulomb
potential in SUð3Þ Coulomb gauge Yang-Mills theory us-
ing lattice Monte Carlo simulations.
The low-lying FP eigenvalues are sensitive to the Gribov

copies and the discrepancy between the first copy and the
best copy results exceeds 10% for the lowest eigenvalue.
The volume scaling of the low-lying eigenvalues was in-
vestigated and we found that the lowest eigenvalue ap-
proaches zero much faster than that in the Landau gauge.
We exploited the fact that the color-Coulomb potential

can be expressed as the spectral sum of the FP ghost
eigenmodes. It was shown that the long-distance linearity
of the color-Coulomb potential is ascribed to the low-lying
FP eigenmodes. Changing nmax does not alter the color-
Coulomb string tension for nmax 	 200 within the statisti-
cal errors, and about 300 eigenmodes almost saturate the
string tension. The ratio of the color-Coulomb potential to
the Wilson string tension takes values raging from 1.6 to
2.3. This is consistent with the Zwanziger’s inequality.
Moreover, the contribution of the lowest eigenmode to
the string tension is comparable to the Wilson string ten-
sion. Since the inclusion of the higher eigenmodes that
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FIG. 8 (color online). The correlation function of the FP ghost
eigenfunctions, �h��a

n ð ~xÞ�a
nð ~yÞi, is shown as a function of R ¼

j ~x� ~yj.
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have not been taken into account does not reduce the string
tension, our estimated values of the string tension give a
lower limit for the color-Coulomb string tension. Thus, our
result excludes the possibility that the color-Coulomb
string tension saturates the Wilson string tension.

We observed that the weight factor is also sensitive to the
Gribov copies. The systematic errors on the lowest com-
ponent due to the copies are shown to be about 170%.
Although the Gribov copy effects are large, the lowest
component takes quite a large value compared to the higher
components. This leads to the fact that the lowest eigen-
mode has a substantial contribution to the spectral sum of
the color-Coulomb potential.

The correlation function of the FP eigenfunctions is
shown to be insensitive to the Gribov copies.
Accordingly, the Gribov copy effects on the color-
Coulomb potential stem from that on the FP eigenvalues.
The correlation function of the low-lying eigenmodes in-
creases with the distance. By contrast, the correlation
function for n ¼ 292 decreases at large distances.
Therefore, such eigenmodes do not account for the confin-
ing property of the color-Coulomb potential. This supports
our finding that the color-Coulomb string tension is not

altered so much by including the eigenmodes higher than
n� 200. Our results strongly support the Gribov-
Zwanziger scenario: The infrared dynamics of Yang-
Mills theory is governed by the configurations near the
Gribov horizon where the lowest eigenvalue vanishes.

ACKNOWLEDGMENTS

The simulation was performed on NEC SX-8R at RCNP,
and NEC SX-9 at CMC, Osaka University. We appreciate
the warm hospitality and support of the RCNP adminis-
trators. Y.N. is supported by a JSPS Grant-in-Aid from the
Ministry of Education, Culture, Sports, Science and
Technology of Japan. The work is partially supported by
a Grant-in-Aid for Scientific Research by Monbu-
kagakusyo, No. 20340055.

APPENDIX: LINK-LINK CORRELATOR AND THE
COLOR-COULOMB POTENTIAL

In this Appendix, we present the best copy results for the
color-Coulomb potential in the color-singlet channel ob-
tained by measuring the correlator of the temporal links.
The necessary equations can be found in [15,17,23], and
various parameters of the gauge configurations are given in
Table IV.
The left panel of Fig. 9 shows the color-Coulomb po-

tential for the best and the first copies on the 244 lattice at

	 ¼ 6:0, and the right panel illustrates the ratio Vfc
c =Vbc

c of
the color-Coulomb potential as a function of the distance

on various lattice sizes at 	 ¼ 6:0. Vfc
c refers to the color-

Coulomb potential for the first copies and Vbc
c for the best

copies. We see that the first copies overestimate the color-
Coulomb potential. The deviation is a few percent while
the effects of Gribov copies increase with distance. The

ratio Vfc
c =Vbc

c decreases with increasing the lattice volume

TABLE IV. The lattice couplings, the lattice volumes, the
number of configurations used to calculate the color-Coulomb
potential. Ncp refers to the number of random gauge copies

generated for each time slice to investigate the Gribov copy
effects.

	 L4 a�1 [GeV] a [fm] V [fm4] # of confs. Ncp

6.00 124 2.118 0.0931 1:124 100 30

6.00 164 2.118 0.0931 1:494 100 30

6.00 204 2.118 0.0931 1:864 100 30

6.00 244 2.118 0.0931 2:234 100 30
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FIG. 9 (color online). (Left) The color-Coulomb potential in the color-singlet channel on the 244 lattice at 	 ¼ 6:0 for the first copies

and the best copies. (Right) The ratio Vfc
c =Vbc

c of the color-Coulomb potential on various lattice sizes at 	 ¼ 6:0.
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up to the 204 lattice, although we do not see such a
tendency on the 244 lattice. It should be noted that the
Gribov copy effects are milder than those on the color-
Coulomb potential obtained by the spectral sum of the FP
eigenmodes or by inverting the FP operator. Further studies
are requisite to elucidate why the FP eigenvalues are
tremendously affected by the Gribov copies but the corre-
lator of the temporal links are not.

We perform a two-parameter fit to extract the string
tension of the color-Coulomb potential,

VcðRÞ ¼ cþ KcR� �

12R
; (A1)

in the range 4 � R � 7 and find

c ¼ 0:502ð6Þ; Kc ¼ 0:1429ð18Þ;

2=NDF ¼ 0:082:

(A2)

The fitting without the Lüscher term, ��=12R, gives

c ¼ 0:399ð5Þ; Kc ¼ 0:1527ð17Þ;

2=NDF ¼ 0:146:

(A3)

The color-Coulomb string tension is about 3 times larger
than the Wilson string tension, KW ¼ a2�W ¼ 0:0513ð25Þ
[30], in agreement with the fact that the color-Coulomb
potential provides an upper bound for the static Wilson
potential.
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