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Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single

ensemble of anisotropic-clover gauge-field configurations at a pion mass of m� � 390 MeV, a spatial

volume of L3 � ð2:5 fmÞ3, and a spatial lattice spacing of b� 0:123 fm. Lüscher’s method is used to

extract nucleon-nucleon, hyperon-nucleon, and hyperon-hyperon scattering phase shifts at one momentum

from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3=2 N�

interactions are found to be highly spin dependent, and the interaction in the 3S1 channel is found to

be strong. In contrast, the N� interactions are found to be spin independent, within the uncertainties of the

calculation, consistent with the absence of one-pion exchange. The only channel for which a negative

energy shift is found is ��, indicating that the �� interaction is attractive, as anticipated from model-

dependent discussions regarding the H dibaryon. The nucleon-nucleon (NN) scattering lengths are found

to be small, clearly indicating the absence of any fine-tuning in the NN sector at this pion mass. This is

consistent with our previous lattice QCD calculation of NN interactions. The behavior of the signal-to-

noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields

the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for

which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract

quantitative information about multibaryon systems.

DOI: 10.1103/PhysRevD.81.054505 PACS numbers: 12.38.Gc

I. INTRODUCTION

The strong interactions among baryons are key to every
aspect of our existence. The two- and higher-body inter-
actions among protons and neutrons conspire to produce
the spectrum of nuclei and the complicated chains of
nuclear reactions that allow for the production of the
elements forming the periodic table at the earliest times
of our Universe, in the stellar environments that follow, and
in reactors and our laboratories. Decades of experimental
effort have provided a very precise set of measurements of
the nucleon-nucleon scattering cross sections over a wide
range of energies [1], and these cross sections have in turn
given rise to the modern nuclear forces. These experimen-
tally determined two-body forces, encoded by potentials
such as AV18 [2] and the chiral potentials [3], when sup-
plemented with three-body interactions, now provide the
cornerstone of our theoretical description of nuclei [4] and
their interactions. The two-nucleon forces are observed to
be significantly more important than the three-nucleon
forces, which, in turn, are significantly more important
than the four-nucleon forces. Present-day calculations are

sufficiently precise that the inclusion of three-nucleon
forces is required in order to post-dict the structure of light
nuclei [5,6]. Given the relatively small contributions of the
three-nucleon and higher-body interactions to light nuclei,
where reliable calculations are presently possible, there is
considerable uncertainty with regard to their form. This
leads to enhanced uncertainties in the calculation of sys-
tems for which there is little or no experimental guidance,
such as moderate to high-density neutron-rich environ-
ments, and more generally, nuclear environments at den-
sities exceeding that of nuclear matter.
In dense nuclear systems it is not only the multinucleon

forces that are difficult to quantify as non-nucleonic ob-
jects may play an important role. In a core-collapse super-
nova, it is the nuclear equation of state (NEOS) that
ultimately dictates whether the system collapses into a
neutron star or forms a black hole. This, in turn, is deter-
mined by the composition and structure of the hadronic
matter in the core of the supernova, which is at (baryon
number) densities that are a few times that of nuclear
matter. At such densities, the strange quark may play a
pivotal role through the formation of a charged kaon
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condensate made possible by the strength of attractive
kaon-nucleon interactions. It may also become energeti-
cally favorable for the matter to contain strange baryons,
such as the �� or �, because of their interactions with
nucleons. In either case, it is the two-body interactions
between the strange hadrons and the nucleons, and also
between themselves, that largely determine the composi-
tion of the hadronic matter at core-collapse densities, and
ultimately the fate of the collapsing supernova [7].
Unfortunately, experimental determinations of the interac-
tions of strange hadrons are very challenging due to their
weak decays, and existing cross-section measurements are
not precise enough to provide meaningful constraints on
the NEOS at core-collapse densities. So, while it is the
interactions between three nucleons that currently limit the
precision with which properties of material composed of
neutrons and protons can be calculated, it is the two-body
interactions involving strange hadrons that currently pro-
vide the most serious limitation to reliable calculations at
densities that exceed that of nuclear matter.

One of the major objectives of lattice QCD (LQCD) is to
calculate the properties and interactions of nucleons and,
more generally, systems comprised of multiple hadrons.
Precise exploration of the simplest multihadron systems
has recently become possible with significant advances in
computational resources, as well as through algorithmic
and theoretical developments (for a recent review, see
Ref. [8]). The I ¼ 2 two-pion system, �þ�þ, is the sim-
plest of such multihadron systems to calculate in LQCD,
and current computational resources have allowed for a
�1% level determination of the �þ�þ scattering length
[9–11]. Further, systems comprised of up to 12 �þ’s
[12,13] and systems comprised of up to 12 Kþ’s [14]
have been explored, allowing a determination of the
three-�þ and three-Kþ interactions as well as aspects of
pion and kaon condensates.

In general, a determination of the two-particle scattering
amplitude, or multibody interactions, with LQCD requires
calculating the energy eigenvalues of the appropriate two-
hadron system in the finite volume [15–17]. The energy
differences between the multiparticle energy levels in the
finite volume and the sum of the particle masses deter-
mines the scattering amplitude at the corresponding en-
ergy. Processes of interest to low-energy nuclear physics
occur in the MeV energy regime, while the masses of the
baryons and nuclei are in the GeV regime. As a result, very
precise (high-statistics) measurements must be performed
in order to reliably extract useful constraints on two- and
higher-body interactions from a lattice calculation.

In contrast to mesonic systems, lattice QCD calculations
in the baryon sector are complicated by the statistical
behavior of the correlation functions [18]. We performed
the first unquenched LQCD calculation of nucleon-
nucleon (NN) [19] and hyperon-nucleon (YN) [20] scat-
tering lengths, and found that the NN scattering lengths

appear to be of natural size at larger pion masses, and are
set by the range of the interaction. Consequently, an in-
crease in the magnitude of the scattering length as the pion
mass is reduced down to its physical value is anticipated.
Further, we have recently performed the first lattice QCD
calculation of scattering in various meson-baryon channels
[21] using the mixed-action scheme of domain-wall va-
lence quarks on the MILC Collaboration staggered sea
[22].
Recently, we performed a high-statistics calculation of a

number of single-hadron correlation functions [23] and
also the first calculations of three-baryon systems [24] on
an ensemble of the anisotropic gauge-field configurations
generated by the Hadron Spectrum Collaboration [25,26].
This ensemble has a pion mass of m� � 390 MeV, a
spatial lattice spacing of bs ¼ 0:1227� 0:0008 fm, an
anisotropy � ¼ bs=bt ¼ 3:500� 0:032, and a lattice vol-
ume of L3 � T ¼ 203 � 128. The goal of those studies
was to ‘‘jump’’ an order of magnitude in the number of
measurements performed to estimate correlation functions,
and to explore the ‘‘new territory’’ that subsequently
emerged. The baryon masses were extracted with fully
quantified uncertainties at the & 0:2% level from the
0:28� 106 measurements performed on 1194 gauge-field
configurations. With a somewhat smaller statistical sam-
ple, the binding energies of the pnn (triton � 3He by the
isospin symmetry of the LQCD calculation) and ‘‘�0�0n’’
three-baryon systems were investigated and in the latter
case, determined with an uncertainty of �3 MeV=baryon.
Subsequently, a study of the 3He (ppn) and 4He (ppnn)
systems in quenched QCD at a large quark mass appeared
[27]. A number of important and surprising observations
were made in those works [23,24,27] that have modified
how we foresee moving toward calculating the properties
of light nuclei.
One of the most important aspects of our previous work

was the detailed study of the signal-to-noise ratio in the
single-baryon correlation functions. The signal-to-noise
ratio was found to be approximately independent of time
for a significant number of time slices [23,24] prior to
evolving toward the expected exponential degradation
[18]. This window of time slices is understood in terms
of the suppression of contributions from purely mesonic
states in the correlation function that determines the vari-
ance of the single-baryon correlation function. Given that
the signal-to-noise ratio for a system containing more than
one baryon is expected to scale (approximately) as the
product of the signal-to-noise ratio’s of the individual
baryons (neglecting their interactions), this window of
time slices suggests that calculations of the energy levels
of systems containing a number of baryons in this lattice
volume with these interpolating operators is possible. In
this work we present the baryon-baryon scattering phase
shifts that have been measured in our high-statistics aniso-
tropic clover-quark calculation.
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Our analysis and results are presented in the following
manner. In Sec. II, we introduce the details of the formal-
ism used in extracting phase shifts from our LQCD calcu-
lations. Section III briefly reviews our single-baryon results
before we present our extractions of two-baryon interac-
tions in Sec. IV. Section V details our analysis of statistical
scaling and noise in the various correlation functions while
Sec. VI is a concluding discussion.

II. LATTICE QCD CALCULATIONS

A. Lüscher method for extracting scattering
parameters

In this work, the finite volume scaling method
(Lüscher’s method) [15–17] is employed to extract the
two-particle scattering amplitudes below inelastic thresh-
olds at a given energy. In the situation where only a single
scattering channel is kinematically allowed, the deviation
of the energy eigenvalues of the two-hadron system in the
lattice volume from the sum of the single-hadron masses is
related to the scattering phase shift, �. For energy eigen-
values above kinematic thresholds where multiple chan-
nels contribute, a coupled-channels analysis is required as
a single phase shift does not parametrize the S matrix. The
energy shift for two particles A and B, �E ¼ EAB � EA �
EB, can be determined from the correlation functions for
systems containing one and two hadrons. For baryon-
baryon systems, correlation functions of the form

CB;�ðp; tÞ ¼
X

x

eip�x��
�hB�ðx; tÞ �B�ðx0; 0Þi;

CB1;B2;�ðp1;p2; tÞ ¼
X

x1;x2

eip1�x1eip2�x2

� ��1�2

�1�2
hB1;�1

ðx1; tÞB2;�2
ðx2; tÞ

� �B1;�1
ðx0; 0Þ �B2;�2

ðx0; 0Þi; (1)

are used, whereB denotes a baryon interpolating operator,
�ðiÞ and �ðiÞ are Dirac indices, and the � are spin tensors

that typically project onto particular parity and/or angular
momentum states. The baryon octet interpolating operators
are of the form

p�ðx; tÞ ¼ �ijkui�ðx; tÞðujTðx; tÞC�5d
kðx; tÞÞ;

��ðx; tÞ ¼ �ijksi�ðx; tÞðujTðx; tÞC�5d
kðx; tÞÞ;

�þ
� ðx; tÞ ¼ �ijkui�ðx; tÞðujTðx; tÞC�5s

kðx; tÞÞ;
�0

�ðx; tÞ ¼ �ijksi�ðx; tÞðujTðx; tÞC�5s
kðx; tÞÞ;

(2)

where C is the charge-conjugation matrix and ijk are color
indices. Other hadrons in the lowest-lying octet can be
obtained from the appropriate combinations of quark fla-
vors. The parentheses in the interpolating operators indi-
cate contraction of spin indices into a spin-0 ‘‘diquark.’’ It
is worth pointing out that the overlap of the composite
operator B1;�1

ðx1; tÞB2;�2
ðx2; tÞ onto two-baryon states is

not simply the product of individual baryon ‘‘Z factors,’’

but depends explicitly upon x1 � x2, with a correlation
length set by the pion mass. This fact precludes a determi-
nation of interpolator-independent baryon-baryon poten-
tials from lattice QCD calculations [28].
Away from the time slice on which the source is placed

(in this case t ¼ 0) these correlation functions behave as

CH A
ðp; tÞ ¼ X

n

ZðiÞ
n;AðpÞZðfÞ

n;AðpÞe�EðAÞ
n ðpÞt; (3)

CH AH B
ðp;�p; tÞ ¼ X

n

ZðiÞ
n;ABðpÞZðfÞ

n;ABðpÞe�EðABÞ
n ð0Þt; (4)

with EðAÞ
0 ð0Þ ¼ mA and the EðABÞ

n ð0Þ are the energy eigen-

values of the two-particle system (we only present calcu-
lations of two-baryon systems for which the center of mass
is at rest) in the lattice volume. At large times, the ratio

CH AH B
ðp;�p; tÞ

CH A
ð0; tÞCH B

ð0; tÞ !t!1 ~ZðiÞ
0;ABðpÞ~ZðfÞ

0;ABðpÞe��EðABÞ
0

ð0Þt (5)

decays as a single exponential in time with the energy shift,

�EðABÞ
0 ð0Þ. In what follows, only the case p ¼ 0 is consid-

ered. The energy shifts

�EðABÞ
n � �EðABÞ

n ð0Þ � EðABÞ
n ð0Þ �mA �mB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2n þm2

A

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2n þm2

B

q
�mA �mB

¼ q2n
2�AB

þ � � � (6)

[where �AB ¼ mAmB=ðmA þmBÞ is the reduced mass of
the two-particle system] determine squared momenta, q2n
(which can be either positive or negative). Below inelastic
thresholds, these are related to the real part of the inverse
scattering amplitude via1

qn cot�ðqnÞ ¼ 1

�L
S

�
q2n

�
L

2�

�
2
�
; (8)

where

1Calculations performed on anisotropic lattices, such as those
used in this work, require a modified energy-momentum relation,
and as a result Eq. (6) becomes

�EðABÞ
n � EðABÞ

n �mA �mB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2n=�

2
A þm2

A

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2n=�

2
B þm2

B

q
�mA �mB; (7)

where �A;B are the anisotropy factors for particle A and particle
B, respectively, determined from the appropriate energy-
momentum dispersion relation. The masses and energy splitting
are given in terms of temporal lattice units and qn is given in
spatial lattice units. In the present work we find that the various
�A agree within uncertainties and have used �A ¼ �B ¼ � for all
scattering processes.
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SðxÞ ¼ lim
�!1

Xjjj<�

j

1

jjj2 � x
� 4��; (9)

thereby implicitly determining the value of the phase shift

at the energy �EðABÞ
n (or center of mass momentum qn),

�ðqnÞ. Thus, the function p cot�ðpÞ, that determines the
low-energy elastic-scattering cross section, AðpÞ /
ðp cot�ðpÞ � ipÞ�1, is determined at the energy �EðABÞ

n .
For a scattering process for which the exchange of a

single pion [one-pion exchange (OPE)] is allowed by spin
and isospin considerations, the function p cot�ðpÞ is a
analytic function of jpj2 for jpj � m�=2 (determined by
the t channel cut in the scattering amplitude). In this kine-
matic regime, p cot�ðpÞ has a series expansion (the
effective-range expansion) of the form

p cot�ðpÞ ¼ � 1

a
þ 1

2
r0jpj2 þ � � � ; (10)

where a is the scattering length (with the nuclear physics
sign convention) and r0 is the effective range. While the
magnitude of the effective range (and higher terms) is set
by the pion mass, the scattering length is unconstrained.
For scattering processes where OPE is not allowed, the
lower limit of the cut in the t channel and the location of
inelastic threshold set the radius of convergence of the
effective-range expansion of p cot�ðpÞ.

B. Expectations at finite temporal extent

For baryon-baryon correlation functions computed from
quark propagators that are antiperiodic in the time direc-
tion, and using the sources of Eq. (2), the correlation
functions contain contributions from hadronic states prop-
agating forward and backward in time. They are expected
to have the form

CBB;�þð0; 0; tÞ ¼ Z1e
�EBBt þ Z2e

�EB0B0 ðT�tÞ

þ Z3e
�EBte�EB0 ðT�tÞ þ Z4e

�EBBðT�tÞ

þ Z5e
�EB0B0 t þ � � � ; (11)

where EBB is the energy of the two-baryon state, EB is the
ground-state baryon energy of positive parity, EB0 is the
energy of the ground-state negative-parity baryon or
meson-baryon scattering state, and the ellipsis denotes
contributions from higher excited states of the same quan-
tum numbers. The exponent of the first term in Eq. (11) is
the primary object of our study and the other contributions
are viewed as ‘‘pollutants.’’

Since the interpolating operators for the baryons that
give rise to the baryon-baryon correlation functions are
individually projected with the positive-energy projectors,
�� ¼ ð1� �0Þ=2, the Z factors of the forward-
and backward-propagating states of the same energy in
Eq. (11) are not related, for example, it is possible that
Z4 � Z1. Indeed, since the sink separately projects the

parity of each baryon (along with its momentum), the
amplitude of the two backward propagating baryons is
suppressed by the lattice volume relative to the two for-
ward propagating baryons. This is a significant suppres-
sion, and we expect to see more energetic states, such as
B0B0, dominating the correlation function at large times
near the boundary.

C. Computational overview

In the present study, we have employed a single en-
semble of 203 � 128 gauge-field configurations generated
with a nf ¼ 2þ 1 flavor, anisotropic-clover quark action,

with a spatial lattice spacing of b ¼ 0:1227ð8Þ fm and a
pion massm� � 390 MeV, that have been produced by the
Hadron Spectrum Collaboration [25,26]. The technical
details of the propagators computed on this ensemble are
presented in Ref. [23] and we do not repeat them here. In
the current calculation, the number of measurements has
been increased to an average of 364 randomly distributed
measurements on each of 1195 configurations (a total of
�0:435� 106 measurements). For correlators from each
source point, two types of sink interpolating operators
are used [23] and the resulting correlation functions are
referred to as ‘‘smeared-point’’ (SP) and ‘‘smeared-
smeared’’ (SS). The measurements on each configuration
are averaged, and then these averaged measurements are
typically blocked (averaged) in sets of ten neighboring
configurations (100 trajectories) to account for residual
correlations (see Ref. [23] for a detailed study of correla-
tions between different sources and configurations).
The methods used to determine quantities of interest

from the measured correlation functions are discussed in
detail in Refs. [23,24], and we present no more than an
overview here. One method of extraction is a direct analy-
sis of ‘‘effective plots.’’ Linear combinations of the SP and
SS correlation functions associated with each baryon and
baryon-baryon state are formed to eliminate the contribu-
tion from excited states, as discussed in Ref. [23]. Effective
mass plots are formed from these correlation functions and
ratios of correlation functions to extract the energy and
energy splitting, respectively.2 Time intervals over which
the effective mass appears constant are identified, and the
energy is extracted from a correlated 	2-squared minimi-
zation with the covariance matrix determined with the

2Linear combinations of SP and SS correlation functions are
formed that extend the plateau of the ground state found from a
matrix-Prony analysis [24] to earlier times. The effect of choos-
ing a slightly different linear combination is taken into account
by the systematic error. While we find that the best candidate for
the ground-state level is not ambiguous in any of the two-baryon
correlation functions, there is always the possibility that the
‘‘true’’ ground state becomes dominant in the region where it
is likely that there are significant contributions from backward-
propagating states which contaminate the signal. Eliminating
this possibility requires better statistical precision and/or mea-
surements on lattices with a longer time extent.
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jackknife or bootstrap procedure. A fitting-systematic un-
certainty is assigned from the range of extracted energies
determined by varying the location and size of the fitting
interval over a reasonable range. A given energy splitting
and its uncertainty is converted into a value of q2n and its
uncertainty using Eq. (6), or a direct fit to an effective-q2n
plot is performed, which is then translated into qn cot�ðqnÞ
and its associated uncertainty using Eq. (8). There are a
number of ways to perform this last stage of the analysis.
One way is to use the jackknife or bootstrap procedure to
determine the uncertainty in qn cot�ðqnÞ directly.
However, this is complicated by the fact that SðxÞ in
Eq. (8) is a singular function. An alternate method is to
determine the value of q2n and its associated uncertainty
from the two-baryon energy splitting from Eq. (6), and
then to propagate the central value and uncertainties
through Eq. (8) to determine qn cot�ðqnÞ. We present
results using the latter method.

Results from this methodology are consistent with those
from multiexponential fits to the correlation functions and

with various matrix-Prony [24] based analyses. In the
following, we present results from a single analysis, ensur-
ing that the systematic uncertainties are sufficient to main-
tain agreement with analyses using these other methods.

III. SINGLE BARYONS

The interaction between baryons is extracted from the
difference between the energy levels of the two-baryon
system in the lattice volume and the individual baryon
masses. The masses of the baryons were extracted in a
previous work [23], but it is useful to show the masses here,
particularly due to the substantial increase in the number of
measurements that have been performed. The baryon
masses are extracted from correlated 	2 minimizing fits
to the generalized effective mass plots (GEMPs) obtained
from each correlation function, CiðtÞ, defined to be

Meff;tJ ðtÞ ¼
1

tJ
log

�
CðtÞ

Cðtþ tJÞ
�
: (12)

0 10 20 30 40 50 60
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M

N

0 10 20 30 40 50 60
0.220

0.221

0.222

0.223

0.224

0.225

t bt

M

0 10 20 30 40 50 60
0.225

0.226

0.227

0.228

0.229

0.230
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0.244

t bt

M

FIG. 1 (color online). The single-baryon GEMPs (with tJ ¼ 3) resulting from the linear combination of SS and SP correlation
functions that eliminates contributions from excited states. The fit values of the masses along with the statistical uncertainty, and the
systematic and statistical uncertainties combined in quadrature, are shown.

TABLE I. Extracted single-hadron masses. A lattice spacing of bs ¼ 0:1227� 0:0008 fm and an anisotropy factor of �s ¼ 3:500�
0:032 is used to convert from temporal lattice units (t.l.u.) to MeV. The first two uncertainties are the statistical and systematic
uncertainty of the extraction in temporal lattice units, while the third uncertainty quoted for quantities in physical units is the combined
lattice spacing and anisotropy uncertainty.

Hadron M (t.l.u.) M (MeV) 	=dof Fitting interval

� 0.069 36(12)(05) 390.39(0.67)(0.28)(4.38) 0.73 21 ! 41
K 0.097 016(99)(33) 546.06(0.56)(0.19)(6.13) 1.01 29 ! 49

N 0.206 82(34)(30) 1164.1(1.9)(1.7)(13.1) 1.16 21 ! 40
� 0.222 46(27)(27) 1252.1(1.5)(1.5)(14.1) 0.97 13 ! 38
� 0.227 52(32)(29) 1280.6(1.7)(1.6)(14.3) 1.46 21 ! 40
� 0.241 01(27)(27) 1356.5(1.5)(1.5)(15.2) 1.06 16 ! 40
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The GEMPs from the single-baryon correlation functions
are presented in Fig. 1. The extracted baryon masses that
are fit to the plateau regions of the GEMPs are shown along
with the statistical uncertainty, and the systematic and
statistical uncertainties combined in quadrature. The re-
sults of the fitting along with the fitting intervals are given
in Table I.

The statistical and fitting-systematic uncertainties are
below 0.2% for each of the single-baryon states (although
the uncertainty in the temporal lattice spacing leads to a
larger uncertainty on the masses in physical units). The
baryon signal-to-noise ratio is essentially independent of
time in the fitting windows shown in Table I due to the
nature of the sources that generate the correlation function,
as discussed in Ref. [23]. It is only in these time intervals
(for this value of tJ) that reliable energy splittings between
the two-baryon and the single-baryon masses can be con-
structed from the ratio of the correlation functions given in
Eq. (5).

IV. BARYON-BARYON INTERACTIONS

The energy eigenstates in the finite lattice volume are
classified by their global quantum numbers: baryon num-
ber, isospin, third component of isospin, strangeness, total
momentum, and behavior under hypercubic transforma-
tions. Six quark operators that are simple products of
three-quark baryon operators are used as sources for the
baryon-baryon correlation functions. As a consequence,
the baryon content of the interpolating operator is used to
define the operator, e.g. n�ð3S1Þ, but this operator will, in
principle, couple to all states in the volume with the
quantum numbers B ¼ 2, I ¼ 1

2 , Iz ¼ � 1
2 , s ¼ �1, and

2sþ1LJ ¼ 3S1 þ � � � , where the ellipsis denotes states with
higher total angular momentum that also project onto the
A1 irreducible representation of the cubic group.3 Both SS
and SP correlation functions have been calculated for the
nine baryon-baryon channels shown in Table II.

If the calculations were performed on gauge-field con-
figurations of infinite extent in the time direction, so that
only forward propagation could occur, some of the chan-
nels in Table II could be analyzed by considering contri-
butions from a single scattering channel, e.g. NN, ����,
����, n��, as we expect a single, well-separated ground
state for these quantum numbers. However, other channels
may require a multichannel analysis, e.g. n�,��. The n�
source will produce low-lying states in the lattice volume

that are predominately linear combinations of the n�, n�0,
and p�� two-baryon states. The �� source will produce
low-lying states in the lattice volume that are predomi-
nately linear combinations of the ��, ��;0��;0, and N�
two-baryon states.

A. Nucleon-nucleon interactions

Perhaps the most studied and best understood of the two-
hadron systems are the proton-proton and proton-neutron.
At low energies, only two combinations of spin and isospin
are possible, a spin-triplet isosinglet npð3S1Þ and a spin-

singlet isotriplet ppð1S0Þ. At the physical pion mass, the

scattering lengths in these channels are unnaturally large
and the 3S1 channel contains a shallow bound state, the

deuteron, with a binding energy of �2:22 MeV. These
large scattering lengths and the shallow bound state arise
because the coefficient of the momentum-independent
four-nucleon operator in the low-energy effective field
theory has a nontrivial ultraviolet fixed point for the physi-
cal light-quark masses. An interesting line of investigation
is the study of the scattering lengths as a function of the
quark masses to ascertain the sensitivity of this fine-tuning
to the QCD parameters [29–31]. The fine-tuning is not
expected to persist away from the physical masses and
we expect our present (unphysical) calculations to yield
scattering lengths that are natural sized.
The GEMP obtained from the proton-proton correlation

functions is shown in Fig. 2, and Fig. 3 shows the analo-
gous plots for the neutron-proton correlation function.
After the initial plateau region, the GEMPs show a slight
downward fluctuation at time slice �29, which we believe
is statistical in nature.4 Figure 4 shows the effective jkj2
plot5 for both the proton-proton and neutron-proton chan-

TABLE II. Baryon-baryon channels examined in this work.

Channel I jIzj s

pp (1S0) 1 1 0

np (3S1) 0 0 0

n� (1S0)
1
2

1
2 �1

n� (3S1)
1
2

1
2 �1

n�� (1S0)
3
2

3
2 �1

n�� (3S1)
3
2

3
2 �1

���� (1S0) 2 2 �2
�� (1S0) 0 0 �2

���� (1S0) 1 1 �4

3The spatial dimensions of the gauge-field configurations that
are used in this work are identical (i.e. isotropic), and as such the
eigenstates of the QCD Hamiltonian can be classified with
respect to their transformation properties under cubic transfor-
mations, Hð3Þ, a subgroup of the group of continuous three-
dimensional rotations, Oð3Þ. The two-baryon states that are
calculated in this work all belong to the Aþ

1 representation of
Hð3Þ, corresponding to combinations of states with angular
momentum L ¼ 0, 4, 6, . . ..

4This fluctuation appears in both the proton-proton and
neutron-proton GEMPs and in several of the other channels.
The fact that the feature appears in multiple correlation functions
is not a surprise as all the correlation functions are generated
from the same light-quark and strange-quark propagators.

5For the presentation of the results of the calculation we use
jkj2 to denote q2n, as the GEMPs do not isolate a particular
energy eigenvalue or eigenstate.
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nels. Both channels exhibit plateaus in jkj2. The plateau in
the neutron-proton channel is consistent with zero, while
the plateau in the proton-proton channel differs from zero

at the�1
 level. We conclude that at this value of the pion
mass, the interactions between nucleons produce a small
scattering length in both channels compared to the naive
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FIG. 2 (color online). The left panel is the proton-proton (1S0) GEMP with tJ ¼ 1, while the right panel shows the plateau region of
the left panel. The band in the right panel and the upper line in the left panel correspond to 2MN , while the lower two lines in the left
panel correspond to �2MN and �2ðMN þm�Þ, respectively.
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FIG. 3 (color online). The left panel is the neutron-proton (3S1) GEMP with tJ ¼ 1, while the right panel shows the plateau region of
the left panel. The band in the right panel and the upper line in the left panel correspond to 2MN , while the lower two lines in the left
panel correspond to �2MN and �2ðMN þm�Þ, respectively.
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FIG. 4 (color online). The left panel is the effective jkj2 plot for the proton-proton ð1S0Þ channel with tJ ¼ 1 and the fit to the
plateau. The right panel is for the neutron-proton (3S1) channel.
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estimate of m�1
� � 0:5 fm. The results of the analysis are

shown in Table III. Extracted lattice quantities are con-
verted to physical units using bs ¼ 0:1227ð8Þ fm; here the
lattice spacing uncertainty is subdominant. Motivated by
the fact that the pion mass dictates the range of the inter-
action between nucleons, we have shown m�=p cot�ðpÞ as
a function of jkj2=m2

� in Fig. 5.
A summary of lattice QCD calculations of NN scatter-

ing is shown in Fig. 6. Since the momenta at which the

phase shifts are measured are small, we present these
results as scattering lengths, implicitly assuming that
higher order coefficients in the effective-range expansion,
Eq. (10), are natural sized. The results calculated in this
work are consistent with those that we obtained using
mixed-action lattice QCD [19]. It is interesting to note
that the results of quenched calculations [32] yield scatter-
ing lengths that are consistent within uncertainties with the
fully dynamical nf ¼ 2þ 1 values.

B. Hyperon-nucleon interactions (s ¼ �1)

Lattice QCD calculations of the YN interactions are of
greater phenomenological importance than those of NN
interactions because of the limited experimental access to
hyperon systems in the laboratory and the possible role of
hyperons in nuclear astrophysics. We have calculated the
energy eigenvalues of systems with the quantum numbers
of n� and n�� in both spin channels.

1. n�� interactions (I ¼ 3
2 )

Interpolating operators with the quantum numbers of
n�� in either the 1S0 or

3S1 channels will couple to energy
eigenstates in the lattice volume with strangeness s ¼ �1
and isospin of I ¼ 3

2 , and the spectrum is not expected to

have more than one low-lying ground state. We expect to
be able to describe these systems with a single elastic-
scattering channel for the lattice volumes we are working
in as these are the only two-baryon states comprised of
octet baryons that have these quantum numbers.

TABLE III. Results for the pp (1S0) and np (3S1) channels.

Process jkj2=m2
� �E (MeV) �1=p cot� (fm) 	2=dof Fitting interval

pp 0.030(13)(20) 3.9(1.7)(2.6) 0:118þ0:044þ0:065
�0:049�0:077 1.6 20 ! 32

np 0.012(20)(33) 1.6(2.6)(4.3) 0:052þ0:07þ0:11
�0:09�0:15 1.96 19 ! 32
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FIG. 5 (color online). The inverse of the real part of the inverse
scattering amplitude normalized to the pion mass as a function of
the squared momentum in the center of mass normalized to the
pion mass. The solid curve corresponds to the inverse
S- function, defined in Eq. (8), from which ðk cot�Þ�1 is deter-
mined from jkj2. The inner uncertainty of each data point is
statistical and the outer uncertainty is the statistical and system-
atic uncertainty combined in quadrature.
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FIG. 6 (color online). A compilation of the scattering lengths for NN scattering in the 1S0 (left panel) and
3S1 (right panel) calculated

in lattice QCD and quenched lattice QCD. The data are from Refs. [19,32,33] and the current work. The vertical dashed lines
correspond to the physical pion masses.
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The GEMP for the n�� (1S0) is shown in Fig. 7 and

exhibits a clear plateau, as does the GEMP for the n�� 3S1
channel that is shown in Fig. 8. Figure 9 shows the effective

jkj2 plot for both the n�� (1S0) and n�� (3S1) channels.
The results of fitting the clear plateaus that are observed in
both channels are shown in Table IV, and Fig. 10 shows the
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FIG. 7 (color online). The left panel is the n�� (1S0) GEMP with tJ ¼ 1, while the right panel shows the plateau region of the left
panel. The band in the right panel and the upper line in the left panel correspond to M� þMN , while the lower two lines in the left
panel correspond to �ðM� þMNÞ and �ðM� þMN þ 2m�Þ, respectively.

0 20 40 60 80 100 120
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

t bt

E
n

3
S1

0 10 20 30 40 50 60
0.430

0.435

0.440

0.445

0.450

0.455

t bt

E
n

3
S1

FIG. 8 (color online). The left panel is the n�� (3S1) GEMP with tJ ¼ 1, while the right panel shows the plateau region of the left
panel. The band in the right panel and the upper line in the left panel correspond to M� þMN , while the lower two lines in the left
panel correspond to �ðM� þMNÞ and �ðM� þMN þ 2m�Þ, respectively.
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FIG. 9 (color online). The left panel is the effective jkj2 plot for the n�� (1S0) channel with tJ ¼ 1 and the fit to the plateau. The
right panel is for the n�� (3S1) channel.
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results presented in Table IV normalized to the pion
mass. The n�� (1S0) channel is observed to have an

interaction of natural size, and the energy that is measured
in the calculation lies within the regime of applicability of
the effective-range expansion. In contrast, the interaction
in the n�� (3S1) channel is seen to be large,

jm�=p cot�ðpÞj � 3, and is well outside the regime of
applicability of the effective-range expansion. At this mo-
menta, the n�� (3S1) is strongly interacting in a way that is
consistent with an attractive interaction that supports a
bound state (which we find no direct evidence for in this
calculation), or a repulsive interaction of unnaturally large
range. These two scenarios cannot be resolved with calcu-
lations in a single volume, but ongoing calculations in
different volumes will resolve this ambiguity. This result
is perhaps the most important result of this present work.
One concludes from this calculation that the n�� interac-
tion is strongly spin dependent.

2. The coupled N�-N� channel (I ¼ 1
2 )

The strangeness s ¼ �1, isospin- 12 energy eigenstates in

the lattice volume will, in general, couple to both the N�
and N� channels. Therefore, the calculated N� correla-

tion functions will receive contributions from all such
eigenstates in the volume. However, as M� �M� ¼
0:0051 t:l:u: (temporal lattice units) is a significant mass
splitting, we expect that a single-channel analysis is appli-
cable in this system and proceed accordingly. Nevertheless,
calculation of the isospin- 12 N� correlation function and

the crossed correlation function resulting from a N�
source and a N� sink would likely improve this analysis.
The GEMPs for the n� (1S0) and n� (3S1) correlation

functions are shown in Figs. 11 and 12, respectively, and in
both cases a clear plateau is visible. Figure 13 shows the
effective jkj2 plot for both the n� (1S0) and n� (3S1)
channels and clear plateaus are again observed in both
channels. The results of fitting to the plateau region of
the effective jkj2 plots are reported in Table IV, and are
displayed in Fig. 10. The energy splittings are both found to
be �E� 0:002 t:l:u, and are therefore smaller than the
expected splitting between the energy eigenstates resulting
from the N�-N� mixing (M� �M� ¼ 0:0051 t:l:u:). It
therefore seems likely that, a posteriori, the single-channel
analysis used here is applicable. The extracted squared
momenta and hence scattering amplitudes in the two spin
channels are the same within uncertainties. This indicates
that the spin-dependent interactions in these channels are
very small. If the extracted states are predominately N�,
then this result is expected because of the fact that the long-
range spin-dependent interaction resulting from OPE is
absent (as the � is an isosinglet). Further, the extracted
squared momenta are consistent with those found in the
n�� (1S0) channel.

3. Compilation of measurements

After the pioneering quenched calculations of YN scat-
tering by Fukugita et al. [33], and the first fully dynamical
nf ¼ 2þ 1 calculations [20], more refined quenched cal-

culations have been performed along with one nf ¼ 2þ 1

calculation [34]. All of the results for s ¼ �1 YN scatter-
ing that have been obtained from lattice QCD calculations
are shown in Table V. As the measurements have been
performed at different pion masses and in different lattice
volumes, resulting in different center-of-mass energies, it
is difficult to present these results in a single diagram. The
present measurements and the mixed-action measurements
[20] were both on lattices with spatial volumes of V �
ð2:5 fmÞ3, and with a lattice spacing of b� 0:125 fm and

TABLE IV. Results for the strangeness s ¼ �1 hyperon-nucleon channels.

Process jkj2=m2
� �E (MeV) �1=p cot� (fm) 	2=dof Fitting interval

n�� (1S0) 0.122(12)(19) 15.3(1.5)(2.3) 0:361þ0:025þ0:038
�0:026�0:040 2.06 20 ! 35

n�� (3S1) 0.551(17)(19) 67.9(2.1)(2.3) 1:47þ0:11þ0:12
�0:09�0:11 0.91 19 ! 36

n� (1S0) 0.093(12)(19) 11.8(1.6)(2.3) 0:297þ0:036þ0:051
�0:046�0:075 1.69 20 ! 35

n� (3S1) 0.094(15)(15) 11.9(1.9)(1.9) 0:299þ0:033þ0:033
�0:036�0:036 1.05 20 ! 35
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FIG. 10 (color online). The inverse of the real part of the
inverse scattering amplitude normalized to the pion mass as a
function of the squared momentum in the center of mass of the
baryons normalized to the pion mass. The solid curve corre-
sponds to the inverse S function, defined in Eq. (8), from which
ðk cot�Þ�1 is determined from jkj2. The inner uncertainty of
each data point is statistical and the outer uncertainty is the
statistical and systematic uncertainty combined in quadrature.
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FIG. 11 (color online). The left panel is the n� (1S0) GEMP with tJ ¼ 1, while the right panel shows the plateau region of the left
panel. The band in the right panel and the upper line in the left panel correspond to M� þMN , while the lower two lines in the left
panel correspond to �ðM� þMNÞ and �ðM� þMN þ 2m�Þ, respectively.
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FIG. 12 (color online). The left panel is the n� (3S1) GEMP with tJ ¼ 1, while the right panel shows the plateau region of the left
panel. The band in the right panel and the upper line in the left panel correspond to M� þMN , while the lower two lines in the left
panel correspond to �ðM� þMNÞ and �ðM� þMN þ 2m�Þ, respectively.
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FIG. 13 (color online). The left panel is the effective jkj2 plot for the n� (1S0) channel with tJ ¼ 1 and the fit to the plateau. The
right panel is for the n� (3S1) channel.
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so a direct comparison is possible for this subset of
measurements.

C. Hyperon-hyperon interactions (s ¼ �2)

Lattice QCD calculations of hyperon-hyperon interac-
tions are important as they can provide guidance to the
experimental programs in hypernuclear physics. They can
also improve upon the current understanding of the stabil-
ity of the core of supernovae if it becomes energetically
favorable to have strange baryons present. To this end we
have calculated the correlation functions resulting from
�� and ���� sources and sinks. The ���� channel
has Iz ¼ �2 and, as such, a single, isolated ground state is
expected which can be used to determine the ���� scat-
tering phase shift with a single-channel analysis. In con-

trast, the correlation function produced by the�� source is
expected to exhibit two nearly degenerate states as 2M� ¼
0:444 92 t:l:u: and M� þMN ¼ 0:447 83 t:l:u:. Further,
the �þ�� state is likely to be close by, 2M� ¼
0:455 04 t:l:u:. An operator of the form ��p would help
to resolve the states, but we have not calculated this
correlation function, nor the possible mixed correlation
functions. Further, we have not explored the isospin-1
channels, such as the N���� coupled channels, but
we would expect to find very-closely spaced energy eigen-
states for the pion mass used in this calculation, making
clean extractions very difficult. In particular, M�� þ
Mn ¼ 0:449 t:l:u while M� þM�� ¼ 0:452 t:l:u.
Quenched calculations of the p�0 scattering length have
been presented in Ref. [35].

TABLE V. A compilation of results for strangeness ¼ �1 hyperon-nucleon scattering from lattice QCD. The columns labeled as
‘‘Valence’’ and ‘‘Sea’’ list the action used for the valence and sea quarks. Dots indicate a quenched calculation.

Process m� (MeV) jkj (MeV) �1=p cot� (fm) Valence Sea Reference

n� 1S0 296(3) 50ð26Þi �0:11ð7Þ Clover Clover [34]

n� 1S0 354(6) 255(26) 1.04(28) Domain wall Staggered [20]

n� 1S0 390.4(4.4) 119(14) 0.297(76) Clover Clover Present work

n� 1S0 465(1) 22ð3Þi �0:09ð3Þ Clover � � � [34]

n� 1S0 493(8) 197(24) 0.63(12) Domain wall Staggered [20]

n� 1S0 514(1) 17ð3Þi �0:07ð3Þ Clover � � � [34]

n� 3S1 296(3) 40ð24Þi �0:07ð7Þ Clover Clover [34]

n� 3S1 354(6) 168(65) 0.50(27) Domain wall Staggered [20]

n� 3S1 390.4(4.4) 119(14) 0.299(49) Clover Clover Present work

n� 3S1 465(1) 24ð3Þi �0:11ð3Þ Clover � � � [34]

n� 3S1 514(1) 20ð2Þi �0:09ð2Þ Clover � � � [34]

n�� 1S0 390.4(4.4) 136(12) 0.361(46) Clover Clover Present work

n�� 1S0 493(8) 179(30) 0.57(14) Domain wall Staggered [20]

n�� 3S1 390.4(4.4) 289.8(6.8) 1.47(16) Clover Clover Present work

n�� 3S1 493(8) 261(37) 1.19(53) Domain wall Staggered [20]

n�� 3S1 592(10) 226(30) 0.85(22) Domain wall Staggered [20]
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FIG. 14 (color online). The left panel is the �� GEMP with tJ ¼ 3, while the right panel shows the plateau region of the left panel.
The band in the right panel and the upper line in the left panel correspond to 2M�, while the lower two lines in the left panel
correspond to �2M� and �2ðM� þm�Þ, respectively.
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1. �� interactions (I ¼ 0)

The low-lying eigenstates that couple to a �� source
and sink are, in principle, linear combinations of all two-
baryon states with s ¼ �2 and I ¼ 0, namely, ��, ��,
N� and their excitations. The GEMP for the �� channel
(for a particular combination of SP and SS correlation
functions) is shown in Fig. 14, in which a clear plateau is
observed. The effective jkj2 plot shown in Fig. 15 also
shows a clear plateau that is negative shifted in energy,
unambiguously indicating an attractive interaction. The
energy of this state is the lowest, and the plateau is the
longest, for any combination of SS and SP correlation
functions that could be constructed. Other combinations
of correlation functions suggest states at higher energies,
consistent with expectations of nearby states; however,
with the current data, no definitive statements can be
made. The splittings between the asymptotic states, ��
and N� are such that at measured (very small)�� center-
of-mass momentum a single-channel analysis can be per-
formed to define the �� elastic-scattering amplitude, the
results of which are shown in Table VI, and shown graphi-
cally in Fig. 16.

The �� channel is the only channel in which a nega-
tively shifted energy splitting is observed. However, with-
out performing measurements on additional lattice
volumes, it is presently not possible to determine if this
negative energy shift indicates the presence of a bound
state (theH dibaryon [36,37]) or if it is simply a continuum
state that is negatively shifted due to an attractive interac-
tion. The location of the state on the ‘‘S-function’’ curve

suggests that it is in fact a continuum state [8], but further
measurements are required to properly explore this excit-
ing possibility.

2. ���� interactions (I ¼ 2)

Because of its quantum numbers, s ¼ �2 and I ¼ 2, the
���� channel is not expected to have other states near the
ground state in the lattice volume as there are no other
states comprised of two octet baryons with these quantum
numbers. The GEMP associated with the ���� correla-
tion function is shown in Fig. 17 and the resulting effective
jkj2 plot is shown in Fig. 18. The results obtained by fitting
to the effective jkj2 plot are shown in Table VI, and
presented graphically in Fig. 16. The somewhat large value
of 	2=dof ¼ 2:6 is due to the downward fluctuation near
time slice t ¼ 29 in Fig. 18, which we assume to be
statistical in nature. A smaller fitting interval would yield
approximately the same scattering phase shift, but with a
substantially smaller 	2=dof.

D. Hyperon-hyperon interactions (s ¼ �4)

Baryon-baryon interactions in the strangeness�4 sector
have no obvious phenomenological implications. How-
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FIG. 15 (color online). The effective jkj2 plot for the ��
channel with tJ ¼ 3 and the fit to the plateau.

TABLE VI. Results for the strangeness ¼ �2 and strangeness ¼ �4 hyperon-hyperon channels.

Process jkj2=m2
� �E (MeV) �1=p cot� (fm) 	2=dof Fitting interval

�� �0:033ð09Þð11Þ �4:1ð1:2Þð1:4Þ �0:188þ0:062þ0:072
�0:072�0:085 1.38 20 ! 35

���� 0.215(11)(18) 25.5(1.3)(2.1) 0:534þ0:019þ0:032
�0:019�0:032 2.6 20 ! 36

���� 0.0247(94)(77) 2.8(1.1)(0.9) 0:101þ0:032þ0:026
�0:036�0:029 1.56 21 ! 34
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FIG. 16 (color online). The inverse of the real part of the
inverse scattering amplitude normalized to the pion mass as a
function of the squared momentum in the center of mass of the
baryons normalized to the pion mass. The solid curve corre-
sponds to the inverse S function, defined in Eq. (8), from which
ðk cot�Þ�1 is determined from jkj2. The inner uncertainty of
each data point is statistical and the outer uncertainty is the
statistical and systematic uncertainty combined in quadrature.
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ever, it is found that systems containing heavier quarks,
such as the � or �, have better-behaved correlation func-
tions in lattice QCD calculations. As lattice QCD calcu-
lations of hadronic interactions are still in their infancy, it is
useful to explore such systems to better understand aspects
of the methodology that we employ.
The only s ¼ �4 systems of two octet baryons are the

I ¼ 0, 1 �� combinations and here we focus on I ¼ 1
(����). The low-lying states in the lattice volume that
couple to the���� interpolating operator are expected to
be describable in terms of a single-channel elastic-
scattering amplitude as there are no other states composed
of two octet baryons that can couple to them. The GEMPs
for this channel are shown in Fig. 19, and the resulting
effective jkj2 plot is shown in Fig. 20. The results obtained
by fitting to the effective jkj2 plot are shown in Table VI,
and presented graphically in Fig. 16, normalized to the
pion mass. The effective jkj2 plot shows the downward
fluctuation seen in other correlators at time slice t ¼ 29,
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FIG. 17 (color online). The left panel is the ���� GEMP with tJ ¼ 1, while the right panel shows the plateau region of the left
panel. The band in the right panel and the upper line in the left panel correspond to 2M�, while the lower two lines in the left panel
correspond to �2M� and �2ðM� þm�Þ, respectively.
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FIG. 18 (color online). The effective jkj2 plot for the ����
channel with tJ ¼ 1 and the fit to the plateau.
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FIG. 19 (color online). The left panel is the ���� GEMP with tJ ¼ 1, while the right panel shows the plateau region of the left
panel. The band in the right panel and the upper line in the left panel correspond to 2M�, while the lower two lines in the left panel
correspond to �2M� and �2ðM� þm�Þ, respectively.
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and the resulting fit is consistent with zero at the 2
 level.
We conclude that the ���� interactions at this value of
the pion mass are quite weak.

V. STATISTICAL SCALING AND NOISE IN
CORRELATION FUNCTIONS

The precision of lattice QCD calculations of any quan-
tity is limited by the statistical noise in the relevant corre-
lation functions. Until recently [23,24], the lore has been
(based on general arguments by Lepage [18]) that the
signal-to-noise ratios in (multi-)baryon correlation func-
tions degrade exponentially with time and with the number
of baryons in the system. In Refs. [23,24], we showed that,
while this behavior is observed at large times, at intermedi-
ate times the signal-to-noise ratio does not degrade expo-
nentially, and in fact it is found to be independent of time
for a significant number of time slices (the ‘‘golden win-
dow’’) for the sources that are used. Further, in this window
of time slices, the signal-to-noise ratio is essentially inde-
pendent of the number of baryons in the system.

After reviewing Lepage’s arguments regarding the gen-
eral behavior of signal-to-noise ratio, and their general-
ization to the temporal boundary conditions that are used in
the present work, a thorough exploration of the noise in the
various correlators of the two-baryon sector is presented.

A. Aspects of the noise correlation functions and the
signal-to-noise ratio

On gauge-field configurations with infinite temporal
extent, correlation functions of one or more baryons ex-
hibit statistical noise at large times that increases exponen-
tially with Euclidean time [18]. In the case of a source that
has the quantum numbers of a single positive parity nu-
cleon, the correlation function has the form

h�NðtÞi ¼
X

x

���
þ h0jN�ðx; tÞ �N�ð0; 0Þj0i ! ZNe

�MNt;

(13)

where N�ðx; tÞ is an interpolating field (composed of three
quark operators) that has nonvanishing overlap with the
nucleon, �þ is a positive-energy projector, and the angle
brackets indicate statistical averaging over measurements
on an ensemble of configurations. The variance of this
correlation function is given by

N
2 � h�yNðtÞ�NðtÞi � h�NðtÞi2
¼ X

x;y

���þ ���y
þ h0jN�ðx; tÞ �N�ðy; tÞN�ð0; 0Þ �N�ð0; 0Þj0i

� h�NðtÞi2 ! ZN �Ne
�2MNt � Z2

Ne
�2MNt

þ Z3�e
�3m�t þ � � � !t!1

Z3�e
�3m�t; (14)

where all interaction energies have been neglected, and N
is the number of (independent) measurements (distinct
from the nucleon field operator N). At large times, the
noise-to-signal ratio consequently behaves as [18]




�x
¼ 
ðtÞ

h�ðtÞi �
1
ffiffiffiffi
N

p e½MN�ð3=2Þm�	t: (15)

More generally, for a system of A nucleons, the noise-to-
signal ratio behaves as




�x
� 1

ffiffiffiffi
N

p eA½MN�ð3=2Þm�	t (16)

at large times.
As we discussed in Ref. [24], the various Z factors, such

as Z3�, depend upon the details of the sources and sinks
interpolators that are used. For the present calculations, the
projection onto zero-momentum final state nucleons intro-

duces a 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Volume

p
suppression of the amplitudes of the

various components (except for N �N) in addition to color
and spin rearrangement suppressions that exists indepen-
dent of the spatial structure of the source. As a conse-
quence, an interval of time slices exists at short times (the
golden window) in which the variance of the correlation
function is dominated by the terms in Eq. (14) that behave
as�e�2MNt. In this window, the signal-to-noise ratio of the
single-baryon correlation function is independent of time.
Further, the signal-to-noise ratio does not degrade expo-
nentially faster in multibaryon correlation functions than in
single-baryon correlation functions in the golden window
[24].
The finite temporal extent introduces backward-

propagating states (thermal states) into the correlation
functions which lead to exponentially worse signal-to-
noise ratios at large times [23,24]. These contributions
are suppressed by at least expðm�TÞ, however, in the
present work (where m�T � 9), these effects cause com-
plications. We note that the impact of these states can be
mitigated by working at larger temporal extents and ex-
ponentially large computational resources are not required
to remove this effect.
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FIG. 20 (color online). The effective jkj2 plot for the ����
channel with tJ ¼ 3 and the fit to the plateau.
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With the high statistics that have been accumulated in
the present work, the behavior of the signal-to-noise ratio
can be carefully examined. It is useful to form the effective
noise-to-signal plot [23], in analogy with the GEMPs. On
each time slice, the quantity,

S ðtÞ ¼ 
ðtÞ
�xðtÞ ; (17)

is formed, from which the energy governing the exponen-
tial behavior (the signal-to-noise energy scale) can be
extracted via

Esðt; tJÞ ¼ 1

tJ
log

�
Sðtþ tJÞ

SðtÞ
�
: (18)

For a correlation function that is dominated by a single
state with a corresponding variance correlation function
dominated by a single energy scale, the quantity Esðt; tJÞ
will be independent of both t and tJ.

B. Measured signal-to-noise ratios in the one-
and two-nucleon sectors

In the single nucleon sector, we expect that the energy
scales Es � 0, MN � 3

2m�, and others, contribute to the

signal-to-noise ratio. At times when the nucleon correla-

tion function is in the ground state, and the variance
correlation function is dominated by the nucleon-
antinucleon state, Es ¼ 0 should dominate the signal-to-
noise ratio. At large times the variance correlation function
is dominated by the 3-pion state and Es ¼ MN � 3

2m�

should dominate. This is modified by the finite temporal
direction [23] as the hadrons produced by the sources of the
correlation function and the variance correlation function
can propagate forward and backward in time. The mea-
sured energy scale of the signal-to-noise ratio of the single
nucleon correlation function is shown in Fig. 21. It exhibits
behavior that is consistent with expectations and exceeds
the long-time behavior expected from the Lepage argu-
ment at approximately time slice t ¼ 50 due to the tem-
poral boundary conditions.
On configurations with infinite temporal extent, the

proton-proton correlation function is of the form (neglect-
ing interactions between the hadrons)

h�NNðtÞi ¼
X

x;y

�����
þ h0jN�ðx; tÞN�ðy; tÞ �N�ð0; 0Þ �N�ð0; 0Þj0i

! ZNNe
�2MNt þ � � � ; (19)

and the variance correlation function has the form

N
2 � h�yNNðtÞ�NNðtÞi � h�NNðtÞi2
¼ X

x;y;z;w

�
���c
þ �

�
��y
þ h0jN�ðx; tÞN�ðy; tÞ �N�ðz; tÞ �N
ðw; tÞ �N�ð0; 0Þ �Nc ð0; 0ÞN�ð0; 0ÞN� ð0; 0Þj0i � h�NNðtÞi2

! ZNN �N �Ne
�4MNt � Z2

NNe
�4MNt þ Z3�N �Ne

�ð2MNþ3m�Þt þ Z6�e
�6m�t þ � � � ! Z6�e

�6m�t: (20)

Therefore, we anticipate finding energy scales of approxi-
mately Es ¼ 0,MN � 3

2m�, and 2MN � 3m� in the signal-
to-noise ratio on gauge-field configurations of infinite tem-
poral extent. The temporal boundary conditions imposed in

the present calculation introduce additional energy scales
due to the backward-propagating states.
Figure 22 shows the energy scale associated with the

signal-to-noise ratio for the ratio of correlation functions
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FIG. 21 (color online). The energy scale of the signal-to-noise ratio in the nucleon (left panel) and proton-proton (right panel)
correlation functions, as defined in Eq. (18), with tJ ¼ 6. The horizontal lines in the left panel correspond to Es ¼ 0, MN � 3
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that provides the energy splitting between two interacting
protons and two isolated protons from which the p cot�ðpÞ
is extracted. It is clear that the energy scale of the energy
splitting is significantly less than for the individual ener-
gies and is consistent with zero throughout much of the
golden window of time slices. This indicates that the
signal-to-noise ratio associated with the energy splitting
in the proton-proton sector, and hence the scattering pa-
rameters and bound-state energies, are time independent
for the sources and sinks used here, and therefore do not
degrade exponentially with time. This is an exceptionally
important result, as it means that the extraction of NN, and
more generally, multinucleon interactions, does not require
an exponentially large number of measurements for each
relevant correlation function. Further exploration and dis-
cussion of this point can be found in our work on three-
baryon systems [24].

C. Measured signal-to-noise ratios in the N� sector

The discussion of the behavior of the signal-to-noise
ratio in the YN sector parallels that in the multinucleon
sector in Sec. VB. An important difference is the presence
of the strange quark, and the associated strange hadrons.
The lowest energy scale contributing to the signal-to-noise
ratio (beyond Es ¼ 0) is Es ¼ MN � 3

2m�, and so it is

expected that the degradation of the signal-to-noise ratio
will be similar to that found in the NN correlations func-
tions. It is found that the associated energy scale in the
n�� (3S1) channel, as shown in Fig. 23, is somewhat less

thanMN � 3
2m� over a number of time slices, and starts to

exceed this value for time slices greater than t * 20.
The energy scale associated with the signal-to-noise

ratio in the difference in energy between N� interacting
in the 3S1 channel and MN þM� is shown in Fig. 24. The

energy scale seems to be somewhat larger than in the NN
sector, and is nonzero throughout the golden window. The
interaction is strong in this channel, and therefore a non-
zero value of Es in the plateau region is not surprising.

D. Measured signal-to-noise ratios in the one and two�
sectors

The signal-to-noise ratio in the �� sector is noticeably
better than in the NN and the YN sectors. The energy
scales associated with the � and ���� correlation func-
tions are shown in Fig. 25. The lowest energy scale con-
tributing to the signal-to-noise ratio in the single �
correlation function (beyond Es ¼ 0) isEs ¼ M� �mK �
1
2m
. It is clear from the left panel in Fig. 25 that the scale

is much lower than this until time slice t� 50. The situ-
ation is similar in the���� correlation function in which
the energy scale associated with the signal-to-noise ratio is
found to be much less than the anticipated Es ¼ M� �
mK � 1

2m
 (beyond Es ¼ 0) until time slice t� 40.
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FIG. 22 (color online). The energy scale of the signal-to-noise
ratio, as defined in Eq. (18), in the ratio of correlation functions
that produces the shift in energy between two interacting protons
and two isolated protons, with tJ ¼ 6. The horizontal lines
correspond to Es ¼ 0, MN � 3

2m�, and 2MN � 3m�.

0 10 20 30 40 50 60
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

t bt

b t
E

S
t

0 10 20 30 40 50 60
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

t bt

b t
E

S
t

N
3
S 1

FIG. 23 (color online). The energy scale of the signal-to-noise ratio in the � (left panel) and the n�� (3S1) (right panel) correlation
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Further, as shown in Fig. 26, the energy scale associated
with the energy splitting between the���� state and two
isolated ��’s is very small, and consistent with zero, for
many time slices below t & 35, and increases slowly be-
yond this.

It is likely that the improved signal-to-noise behavior in
the �� sector is due to a reduced overlap of the source
onto the multimeson intermediate states in the variance
correlation function compared to purely baryonic inter-
mediate states. Such a reduction is expected based on the
fact that the volume occupied by multiple �’s is smaller
than that of multiple nucleons, and serves to extend the
golden window beyond its range in nucleon correlation
functions.

E. Scaling of correlation functions, energy levels, and
scattering phase shifts

In generating the 0:435� 106 measurements on this
ensemble of gauge-field configurations, we have per-
formed an average of 364 measurements on each of the
1195 configurations. The scaling of the statistical and
(fitting) systematic uncertainties in the single-hadron
masses as a function of the number of measurements and
number of gauge-field configurations in this ensemble was
detailed in Ref. [23]. While the pion mass extraction was
found to saturate as the number of measurements per
configuration increased, the single-baryon mass extrac-
tions did not saturate and scaled in a way that is approxi-
mately consistent with each measurement on the
configuration being statistically independent. It is impor-
tant to determine the scaling of uncertainties associated
with scattering parameters determined in this lattice QCD
calculation because this scaling dictates the distribution of
computational resources between the production of gauge-
field configurations and the measurements performed per
configuration. The �� channel provides a clean illustra-
tion of the scaling that is observed in the two-baryon sector.
The fit to the blue circles in Fig. 27 shows the scaling of the
statistical uncertainty of the extracted value of q20 from the

lowest level in the �� correlation function. The points
correspond to the inverse of the variance of q20 as a function
of the number of sources per configuration, Nsrc, on 1155
gauge-field configurations. The straight line corresponds to
the fit 1=
2 ¼ AN�

src, with � ¼ 0:94� 0:04. The fit to the
purple squares in Fig. 27 shows the scaling of the statistical
and fitting-systematic uncertainties of the extracted value
of q20 from the lowest level in the �� correlation function

combined in quadrature. The straight line fit gives � ¼
1:11� 0:02. It is clear that both the statistical, and the
combined statistical and systematic uncertainties, are scal-
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FIG. 24 (color online). The energy scale of the signal-to-noise
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ing as �1=
ffiffiffiffiffiffiffiffi
Nsrc

p
, consistent with statistically independent

measurements even up to approximately 400 measure-
ments per configuration.

To emphasize the impact of the uncertainties on the
extracted scattering parameters, and, in particular, the
need for high-statistics measurements of the scattering
processes, Fig. 28 shows the extracted values of
ðp cot�Þ�1 for �� scattering versus the extracted value
of jkj2 for different numbers of measurements per configu-
ration, each with 1155 gauge-field configurations. With
just 10 measurements per configuration the uncertainty in
p cot� is large enough so that it is not possible to determine
if the interaction is attractive or repulsive. This remains the
case even for 100 measurements per configuration. It is
only when the number of measurements per configuration

approaches�400 that the interaction can be determined to
be attractive, but only with �2
 significance.
Within uncertainties, the same scaling behavior is ob-

served in all of the two-baryon channels. It appears that
further measurements could be performed on this ensemble
of gauge-field configurations that would continue to reduce
the uncertainties in the two-baryon correlation functions.
This statement is also valid for the single-baryon correla-
tion functions which do not show signs of saturation.

VI. DISCUSSION

We have calculated nucleon-nucleon, hyperon-nucleon,
and hyperon-hyperon interactions, with a high-statistics
lattice QCD calculation on anisotropic improved-clover
gauge-field configurations at a pion mass of m� �
390 MeV. A summary of the scattering information that
has been extracted from the measurements is presented in
Figs. 29 and 30.
The phase shifts that we have obtained in the NN sector

are small, and essentially consistent with zero. As a result
we have been able to set a tight limit on the scattering
lengths in both the 3S1 and

1S0 channels (without extrapo-
lation in jkj2), as shown in Fig. 6. These limits are con-
sistent with our previous calculations of the scattering
lengths in these channels [19], but significantly more
precise.
Precise measurements in the YN sector (strangeness ¼

�1) have been obtained. The interaction in the n�� (3S1)
channel is found to be strong, but we are unable to deter-
mine if the interaction is attractive or repulsive until further
measurements in different lattice volumes are performed.
Such calculations are in progress. The measured momen-
tum is far outside of the region for which an effective-range
expansion is convergent (jkj<m�=2), and consequently
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ratio, as defined in Eq. (18), in the ratio of correlation functions
that produces the shift in energy between interacting ��’s and
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extracted value of q20, defined in Eq. (6), for the �� system as a

function of the number of measurements per configuration. The
vertical axis is in units of 1=MeV4.

Nsrc 365

Nsrc 100

Nsrc 50

Nsrc 20

Nsrc 10

0.2 0.1 0.0 0.1 0.2
1.0

0.5

0.0

0.5

1.0

1.5

k 2 m2

m
k

co
t

k

FIG. 28 (color online). The extracted values of the inverse of
the real part of the inverse of the �� scattering amplitude versus
the extracted value of jkj2, defined in Eq. (6). The measured
values correspond to different numbers of measurements per
configuration.

HIGH STATISTICS . . .. III. BARYON-BARYON . . . PHYSICAL REVIEW D 81, 054505 (2010)

054505-19



arguments concerning the naturalness or unnaturalness of
the scattering amplitude are not possible. In contrast, the
measured momentum in the n�� (1S0) channel is within
the region for which an effective-range expansion is con-
vergent and the scattering length and effective range are
either of natural size, or there are strong cancellations in
the effective-range expansion. It is clear that the n��
interactions are strongly spin dependent, as is expected
from the long-distance contribution from one-pion ex-
change. On the other hand, the 1S0 and 3S1 n� energy

shifts are very similar, and as such we conclude that the
interactions are essentially spin independent, as would be
expected from channels without one-pion exchange.

The measurement of a negatively shifted energy level in
the �� channel (strangeness ¼ �2) indicates (at the sta-
tistical precision of the measurement) that the �� inter-
action is attractive. This is the only baryon-baryon channel
for which we have measured a negative energy shift. This
is an exciting measurement as it confirms that the channel
in which the H dibaryon [36,37] would arise is attractive.
The present measurement suggest that the state does not
correspond to a bound state in the infinite-volume limit at
this pion mass (m� � 390 MeV), but one can readily
imagine that a bound state could arise at a lighter pion
mass.
The present work clearly demonstrates that, with suffi-

cient computational resources, lattice QCD can be used to
extract baryon-baryon scattering amplitudes as a function
of momentum, and hence constrain the interactions be-
tween baryons. As has been discussed extensively in the
literature [8,28], it is not possible to directly extract the
hadron-hadron potential (unless one or more of the quarks
in each hadron is infinitely heavy), but effective interac-
tions that reproduce the measured scattering amplitudes
can be constructed and used in the calculation of other
quantities of interest, in the same way that the modern NN
potentials are constructed to reproduce the experimentally
measured NN scattering cross sections.
The detailed exploration of the behavior of the signal-to-

noise ratio in the baryon-baryon correlation functions,
made possible by the very large number of measurements
that have been performed, has been exceptionally illumi-
nating. The importance of the golden window of time slices
in which the signal-to-noise ratio is essentially independent
of time cannot be overstated. This window allows for
precise determinations of the energy splitting between
interacting baryons and isolated baryons, and in this win-
dow, the signal-to-noise ratio does not scale with baryon
number, making precise measurements in multibaryon
systems feasible as discussed in Ref. [24].
This calculation is the first part of a thorough analysis of

baryon-baryon scattering at this pion mass. Calculations in
lattice volumes that are both larger and smaller than the
present lattice volume are under way and will provide
measurements of the scattering amplitude at two additional
momenta. In most channels, this will allow for a determi-
nation of the scattering parameters (scattering lengths and
effective-range parameters) at this pion mass. However, it
is important to keep in mind that all of these measurements
will be at a single lattice spacing, bs � 0:123 fm. In order
to make precise statements, even at this larger pion mass,
measurements at smaller lattice spacings will be required.
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[17] M. Lüscher, Nucl. Phys. B354, 531 (1991).
[18] G. P. Lepage, ‘‘The Analysis of Algorithms for Lattice

Field Theory,’’ TASI’89 Summer School, Boulder, CO,

1989. Published in Boulder ASI 1989, pp. 97–120

(QCD161:T45:1989).
[19] S. R. Beane, P. F. Bedaque, K. Orginos, and M. J. Savage

(NPLQCD Collaboration), Phys. Rev. Lett. 97, 012001
(2006).

[20] S. R. Beane, P. F. Bedaque, T. C. Luu, K. Orginos, E.

Pallante, A. Parreno, and M. J. Savage (NPLQCD

Collaboration), Nucl. Phys. A794, 62 (2007).
[21] A. Torok et al., arXiv:0907.1913.
[22] C. Bernard et al. (MILC Collaboration), Phys. Rev. D 64,

054506 (2001).
[23] S. R. Beane et al., Phys. Rev. D 79, 114502 (2009).
[24] S. R. Beane et al., Phys. Rev. D 80, 074501 (2009).
[25] R. G. Edwards, B. Joo, and H.W. Lin, Phys. Rev. D 78,

054501 (2008).
[26] H.W. Lin et al. (Hadron Spectrum Collaboration), Phys.

Rev. D 79, 034502 (2009).
[27] T. Yamazaki, Y. Kuramashi, and A. Ukawa,

arXiv:0912.1383.
[28] W. Detmold, K. Orginos, and M. J. Savage, Phys. Rev. D

76, 114503 (2007).
[29] S. R. Beane and M. J. Savage, Nucl. Phys. A713, 148

(2003).
[30] S. R. Beane and M. J. Savage, Nucl. Phys. A717, 91

(2003).
[31] E. Epelbaum, U. G. Meissner, and W. Gloeckle, Nucl.

Phys. A714, 535 (2003).
[32] S. Aoki, T. Hatsuda, and N. Ishii, Comp. Sci. Disc. 1,

015009 (2008).
[33] M. Fukugita, Y. Kuramashi, M. Okawa, H. Mino, and A.

Ukawa, Phys. Rev. D 52, 3003 (1995).

HIGH STATISTICS . . .. III. BARYON-BARYON . . . PHYSICAL REVIEW D 81, 054505 (2010)

054505-21



[34] H. Nemura, N. Ishii, S. Aoki, and T. Hatsuda (PACS-CS
Collaboration), Proc. Sci., LATTICE2008 (2008) 156
[arXiv:0902.1251].

[35] H. Nemura, N. Ishii, S. Aoki, and T. Hatsuda, Phys. Lett. B
673, 136 (2009).

[36] R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977); 38, 617(E)
(1977).

[37] S. Bashinsky and R. L. Jaffe, Nucl. Phys. A625, 167
(1997).

[38] R. G. Edwards and B. Joo (SciDAC Collaboration), Nucl.
Phys. B, Proc. Suppl. 140, 832 (2005).

[39] A. Stathopoulos and K. Orginos, arXiv:0707.0131.

SILAS R. BEANE et al. PHYSICAL REVIEW D 81, 054505 (2010)

054505-22


