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We study the scaling behavior and finite (physical) volume effects as well as the Gribov copy

dependence of the SUð2Þ Landau gauge gluon propagator on the lattice. Our physical lattice sizes range

from ð3:0 fmÞ4 to ð7:3 fmÞ4. Considering lattices with decreasing lattice spacing but fixed physical volume

we confirm (nonperturbative) multiplicative renormalizability and the approach to the continuum limit for

the renormalized gluon propagator DrenðpÞ at momenta jpj * 0:6 GeV. The finite-volume effects and

Gribov copy influence turn out small in this region. On the contrary, in the deeper infrared we found the

Gribov copy influence strong and finite-volume effects, which still require special attention. The gluon

propagator does not seem to be consistent with a simple polelike behavior �ðp2 þm2
gÞ�1 for momenta

jpj & 0:6 GeV. Instead, a Gaussian-type fit works very well in this region. From its width—for a physical

volume ð5:0 fmÞ4- we estimate a corresponding infrared (mass) scale to be mIR � 0:7 GeV.
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I. INTRODUCTION

The Landau (or Lorenz) gauge gluon and ghost propa-
gators in pure Yang-Mills theories or in full QCD have
attracted much interest for many years.

One reason for this interest is that the behavior of these
propagators in the infrared (IR) region has been related to
gluon and quark confinement [1–3]. In particular,
Zwanziger has argued that the gluon propagator should
vanish in the IR limit [2,4,5], while the ghost dressing
function should become singular.

Another reason for this interest is connected with the
importance of the momentum dependence of both propa-
gators, especially in the (deep) IR-region, for the phenome-
nological analysis of experimental data. Many years ago
Parisi and Petronzio [6] have pointed out that nonzero
effective gluon mass (or dynamically generated gluon
mass) mg is important to resolve some discrepancies in

low-energy tests of QCD, as, e.g., ratios of widths of J=c .
Since then a number of papers has been dedicated to
phenomenological studies of such processes as J=c !
�X, � ! �0 transition, nonleptonic B meson decays,
etc., where a nonzero value of the effective gluon mass
mg plays a crucial role (for an incomplete list of references

see, e.g., the recent papers [7,8]).
Let us note that in order to obtain a reliable value of mg

one needs to know the continuum gluon propagator DðpÞ

in the deep infrared region.1 The definition of the mass mg

is based on the hypothesis of a polelike behavior, i.e.
�1=ðp2 þm2

gÞ, of the gluon propagator at small momenta.

In this case the effective gluon mass defines the infrared
mass scale mIR.
Gauge-variant QCD Green functions may serve also as

input to bound state equations as Bethe-Salpeter or
Faddeev equations for hadron phenomenology [9–11].
Moreover, at large momenta they should allow a determi-
nation of phenomenologically relevant parameters such as
�MS or condensates hA2i, h �c c i by fitting lattice data to

continuum expressions obtained from operator product
expansion and perturbation theory [12,13] in a certain
MOM scheme [14,15].
The search for intertwined asymptotic gluon and ghost

propagator solutions of Dyson-Schwinger (DS) and func-
tional renormalization group (FRG) equations showed the
existence of infrared solutions exhibiting a powerlike scal-
ing behavior [9,16–23]. However, as has been pointed out
in [24–27], there are also regular so-called decoupling
solutions providing an IR-finite limit of both the gluon
propagator and the ghost dressing function. In [28] it has
been argued, that it seems to be a question of IR boundary
conditions posed on the ghost dressing function, what kind

1Throughout this paper we define the deep infrared region as
jpj � 0:6 Gev (see also Sec. VI).
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of solution one has to select. It should be noticed that both
kinds of solutions can support quark confinement [29].

On the lattice, over the last decade extensive studies of
the Landau gauge gluon and ghost propagators have been
carried out [30–40]. In the meantime lattice computations
have reached lattice volumes even with a linear extension
Oð10 fmÞ in order to discriminate between the above men-
tioned IR solutions. In this way lattice QCD has been found
to support the decoupling solution [41–45]. This is true as
long as one relies on finite-box periodic boundary condi-
tions and on a gauge condition requiring the Landau gauge
functional to take extrema as close as possible to the global
extremum.

The Gribov copy influence still remains a serious prob-
lem in the lattice calculations, at least, in the deep IR-
region. The gauge condition we employ require the Landau
gauge functional to take extrema as close as possible to the
global extremum.2 This choice is supported by the follow-
ing facts:

(i) a consistent nonperturbative gauge fixing procedure
proposed by Parrinello-Jona-Lasinio and Zwanziger
(PJLZ-approach) [50,51] presumes that the choice of
a unique representative of the gauge orbit should be
through the global extremum of the chosen gauge
fixing functional;

(ii) in the case of lattice compact Uð1Þ gauge theory in
the weak coupling (Coulomb) phase some of the
gauge copies produce a photon propagator with a
decay behavior inconsistent with the expected zero-
mass behavior [52–54]. The choice of the global
extremum (see also [55]) permits to avoid such
copies and to obtain the physical-massless-photon
propagator.

For all practical purposes the system of DS and/or FRG
equations has to be truncated. The details of truncation
influence the behavior of the Green functions especially in
the nonperturbative momentum range around 1 GeV,
where the Landau gauge gluon dressing function exhibits
a pronounced maximum. Therefore, reliable results from
first principles to compare with are highly welcome. On the
lattice, for finite volumes such results can be obtained and
directly compared with finite-volume DS and FRG results
[56,57]. To our knowledge, on the lattice a systematic
continuum limit determination of the Landau gluon and
ghost propagators for various fixed physical volumes is still
missing. Such an evaluation has to make sure that Gribov
copy effects, lattice artifacts, and multiplicative renorma-
lizability are sufficiently under control.

Here we present such a study for SUð2Þ pure gauge
theory as a continuation of our investigation in [44]. For
gauge fixing we rely on the Landau gauge with a gauge
condition requiring the gauge fixing functional to take
extrema as close as possible to the global extremum. For

this aim we employ the simulated annealing algorithm
[44,58,59] in combination with nonperiodic Zð2Þ gauge
transformations (‘‘Zð2Þ-flips’’) [60]. With respect to the
latter we search within all 24 ¼ 16 global Zð2Þ Polyakov
loop sectors. We concentrate on the gluon propagator and
will present data for three different physical volumes up to
�ð7:3 fmÞ4. As done in a preliminary manner in [37] we
check for multiplicative renormalizability and provide re-
sults for the renormalized propagator and dressing func-
tion, respectively, which can be considered already to be
continuum ones. In Sec. II we introduce the observables to
be computed. In Sec. III some details of the simulation are
given, whereas in Sec. IV we discuss the effect of improved
gauge fixing. In Sec. V we present our numerical results.
Sec. VI is dedicated to the discussion of the deep infrared
region and to the definition of an alternative infrared
(mass) scale mIR. Conclusions will be drawn in Sec. VII.

II. THE GLUON PROPAGATOR: DEFINITIONS

In order to generate Monte Carlo ensembles of non-
gauge-fixed SUð2Þ gauge field configurations we use the
standard plaquette Wilson action

S ¼ �
X
x

X
�>�

�
1� 1

2
TrðUx�Uxþ�;�U

y
xþ�;�U

y
x�Þ

�
;

� ¼ 4=g20:

(1)

g0 denotes the bare coupling constant, Ux� 2 SUð2Þ are
the link variables. The latter transform under local gauge
transformations gx as follows

Ux��
g
Ug

x� ¼ gyxUx�gxþ�; gx 2 SUð2Þ: (2)

The standard definition [61] for the dimensionless lattice
gauge vector potential Axþ�̂=2;� is

A xþ�̂=2;� ¼ 1

2i
ðUx� �Uy

x�Þ � Aa
xþ�̂=2;�

�a

2
: (3)

This definition, which is not unique, can influence the
propagator results in the IR region, where the continuum
limit is hard to control.
In lattice gauge theory the usual choice of the Landau

gauge condition is [61]

ð@AÞx ¼
X4
�¼1

ðAxþ�̂=2;� �Ax��̂=2;�Þ ¼ 0; (4)

which is equivalent to finding a local extremum of the
gauge functional

FUðgÞ ¼ 1

4V

X
x�

1

2
TrUg

x�; (5)

with respect to gauge transformations gx. V ¼ L4 denotes
the lattice volume. The manifold consisting of Gribov
copies providing local maxima of the functional (5) and2For recent alternative attempts see [46–49].
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a semipositive Faddeev-Popov operator is called the
Gribov region�, while that of the global maxima is called
the fundamental modular region (FMR) � � �. Our
gauge fixing procedure is aimed to approach �.

The (unrenormalized) gluon propagator D and its dress-
ing function Z are then defined (for p � 0) by

Dab
��ðpÞ ¼ a2

g20
h ~Aa

�ðkÞ ~Ab
�ð�kÞi ¼

�
��� �

p�p�

p2

�
�abDðpÞ;

(6)

ZðpÞ ¼ DðpÞp2; (7)

where ~AðkÞ represents the Fourier transform of the gauge
potentials defined by Eq. (3) after having fixed the gauge. a
denotes the lattice spacing. The physical momenta p are
given by p� ¼ ð2=aÞ sinð�k�=LÞ, k� 2 ð�L=2; L=2�. For
p � 0, one determines DðpÞ according to Eq. (6)

DðpÞ ¼ 1

9

X3
a¼1

X4
�¼1

Daa
��ðpÞ; (8)

whereas the ‘‘zero-momentum propagator’’ Dðp ¼ 0Þ is
defined as

Dð0Þ ¼ 1

12

X3
a¼1

X4
�¼1

Daa
��ðp ¼ 0Þ: (9)

III. DETAILS OF THE SIMULATION

We have performed Monte Carlo (MC) simulations at
various �-values between � ¼ 2:2 and � ¼ 2:55 for vari-
ous lattice sizes L. Consecutive configurations (considered
to be statistically independent) were separated by 100
sweeps, each sweep consisting of one local heatbath update
followed by L=2 microcanonical updates. In Table I we
provide the full information about the field ensembles used
in this investigation.

For gauge fixing we employ the Zð2Þ flip operation as
discussed in [60]. For completeness we repeat the main
information. The method consists in flipping all link var-
iables Ux� attached and orthogonal to a 3d plane by multi-

plying them with �1 2 Zð2Þ. Such global flips are
equivalent to nonperiodic gauge transformations and rep-
resent an exact symmetry of the pure gauge action consid-
ered here. The Polyakov loops in the direction of the
chosen links and averaged over the 3d plane obviously
change their sign. Therefore, the flip operations combine
the 24 distinct gauge orbits (or Polyakov loop sectors) of
strictly periodic gauge transformations into one larger
gauge orbit.
The second ingredient is the simulated annealing (SA)

method, which has been found computationally more effi-
cient than the only use of standard overrelaxation (OR)
[59,60,64]. The SA algorithm generates gauge transforma-
tions gðxÞ by MC iterations with a statistical weight pro-
portional to expð4VFU½g�=TÞ. The ‘‘temperature’’ T is an
auxiliary parameter which is gradually decreased in order
to maximize the gauge functional FU½g�. In the beginning,
T has to be chosen sufficiently large in order to allow
traversing the configuration space of gðxÞ fields in large
steps. As in Ref. [60] we have chosen Tinit ¼ 1:5. After
each quasiequilibrium sweep, including both heatbath and
microcanonical updates, T has been decreased with equal
step size. The final SA temperature has been fixed such that
during the consecutively applied OR algorithm the viola-
tion of the transversality condition

max
x;a

��������
X4
�¼1

ðAa
xþ�̂=2;� � Aa

x��̂=2;�Þ
��������<�lor (10)

decreases in a more or less monotonous manner for the
majority of gauge fixing trials until the condition (10)
becomes satisfied with a unique �lor ¼ 10�7. A monoto-
nous OR behavior is reasonably satisfied for a final lower
SA temperature value Tfinal ¼ 0:01 [64]. The number of
temperature steps has been chosen to be 1000 for the
smaller lattice sizes and increased to 2000 for the lattice
size 304 and bigger. The finalizing OR algorithm using the
standard Los Alamos type overrelaxation with the parame-
ter value ! ¼ 1:7 requires typically a number of iterations
varying from Oð102Þ to Oð103Þ.
In what follows we call the combined algorithm employ-

ing SA (with finalizing OR) and Zð2Þ flips the ‘‘FSA’’
algorithm. By repeated starts of the FSA algorithm we
search in each Zð2Þ Polyakov loop sector several times
for the best (‘‘bc’’) copy. The total number of copies per
configuration Ncopy generated for each �-value and lattice

size is indicated in Table I. In order to demonstrate the
Gribov copy effect we can compare with the results ob-
tained from the randomly chosen first (‘‘fc’’) copy.
Some more details to speed up the gauge fixing proce-

dure are described in [44].

TABLE I. Values of �, lattice sizes, number of measurements
and number of gauge copies used throughout this paper. Lattice
spacing is fixed by taking

ffiffiffiffi
�

p ¼ 440 Mev. For the values of the
lattice spacing see [62,63] (1 GeV�1 ’ 0:197 fm).

� a�1 [GeV] a [fm] L aL [fm] Nmeas Ncopy

2.20 0.938 0.210 14 2.94 400 48

2.30 1.192 0.165 18 2.97 200 48

2.40 1.654 0.119 26 3.09 200 48

2.50 2.310 0.085 36 3.06 400 80

2.55 2.767 0.071 42 2.98 200 80

2.20 0.938 0.210 24 5.04 400 48

2.30 1.192 0.165 30 4.95 400 48

2.40 1.654 0.119 42 5.00 200 80

2.30 1.192 0.165 44 7.26 200 80
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IV. INFLUENCE OF GRIBOV COPIES ON THE
GLUON PROPAGATOR

Our efficient gauge fixing procedure changes signifi-
cantly the momentum dependence of the gluon propagator
DðpÞ in the IR-region in comparison with the result of the
standard overrelaxation method.

In Fig. 1 we compare our bc FSA results for the un-
renormalized gluon propagator DðpÞ calculated on a 444

lattice with those of the standard fc OR method obtained
for an 804 lattice in Ref. [65]; all data produced for
� ¼ 2:3.3 One can see that our bc FSA data points lie
essentially below those of the fc OR method for momenta
jpj & 0:7 GeV. Thus, we observe that the ORmethod with
one gauge copy produces unreliable results for this range
of momenta. Note that our lattice size is approximately
twice as small as that in Ref. [65].

In the same figure we compare also with the fc SA results
(no flips taken into account but much longer SA schedule
applied) obtained for an 804 lattice in Ref. [66]. The data
look consistent for the momentum region jpj * 0:3 GeV.
At smaller momenta, e.g., at jpj & 0:3 GeV the fc SA data
points show the tendency to lie at somewhat lower values.
The reason for this difference can be attributed to finite-
volume effects (our lattice size is much smaller) or to
uncertainties due to the lower statistics in [66]. In any
case we confirm that the Zð2Þ flips have the tendency to
lower finite-size effects [60].

Let us define the Gribov copy sensitivity parameter�ðpÞ
as a normalized difference of the fc and bc gluon propa-
gators

�ðpÞ ¼ DfcðpÞ �DbcðpÞ
DbcðpÞ ; (11)

where the numerator has been obtained by averaging the
differences between fc SA and bc FSA propagators calcu-
lated for every configuration and normalized with the bc
(averaged) propagator.

In Figs. 2–4 we show the momentum dependence of the
Gribov copy sensitivity parameter �ðpÞ for different latti-
ces with physical sizes aL ’ 3 fm, aL ’ 5 fm and aL ’
7:3 fm, respectively.

Evidently, the Gribov copy effect is rather strong in the
deep IR-region. It does not disappear with rising �, i.e.
with the lattice spacing a becoming smaller. However, the
effect decreases rapidly for rising momentum. Moreover, it
is encouraging to see that the influence of Gribov copies for
fixed momentum demonstrates clear tendency to decrease
with increasing physical size aL. Thus, with our gauge
fixing procedure we do not find any Gribov copy effect for
momenta p * 0:6 GeV on lattices with aL ’ 3 fm, while
on lattices with aL ’ 7:3 fm the gluon propagator for all
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FIG. 1. Comparison of data obtained for bc FSA gauge fixing
with those obtained with the standard fc OR—method and the fc
SA algorithm (all for � ¼ 2:30).
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FIG. 3. The momentum dependence of �ðpÞ for various latti-
ces with physical size aL ’ 5 fm.
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FIG. 2. The momentum dependence of the Gribov copy sensi-
tivity parameter �ðpÞ for various lattices with physical size aL ’
3 fm.

3Only momenta p * 0:2 GeV are shown for data from [65],
note also that we are using a slightly different value for the
lattice spacing than in [65].
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momenta p * 0:4 Gev is free of Gribov copy effect. This
tendency is in accordance with a conjecture by Zwanziger
in [67] and was seen already for smaller lattice sizes in
[68].

Let us finally note that the above observations are valid
for our FSA gauge fixing method (employed with rather
large number of gauge copies), which is proved to be much
more powerful than, e.g., standard OR method. Of course,
we cannot exclude that other even more efficient gauge
fixing methods can be invented which might bring us even
closer to the global extremum of the gauge functional. But
we are convinced that this will not change the conclusions
given here.

We would like to emphasize that the supposition to find
the Gribov copies as close as possible to the global extre-
mum of the Landau gauge functional differs substantially
from the recent claim to study those Gribov copies maxi-
mally enhancing the infrared asymptotics of the ghost
dressing function [47]. In as far these two different strat-
egies really provide the different decoupling and scaling
solutions, respectively, for the gluon and ghost propagators
within the thermodynamic limit remains an interesting
question.

V. NUMERICAL GLUON PROPAGATOR RESULTS

In order to suppress lattice artifacts from the beginning
we followed Ref. [32] and selected the allowed lattice
momenta as surviving the cylinder cut

X
�

k2� � 1

4

�X
�

k�

�
2 � 3: (12)

Moreover, we have applied the ‘‘	-cut’’ [69] p� � ð2=aÞ	
for every component, in order to keep close to a linear
behavior of the lattice momenta p� ¼ ð2�k�Þ=ðaLÞ, k� 2
ð�L=2; L=2�. We have chosen	 ¼ 0:5. Obviously, this cut
influences large momenta only.

We define the renormalized propagator DrenðpÞ accord-
ing to the momentum subtraction schemes (MOM) by

Drenðp;�Þ ¼ Zrenð�; 1=aÞDðp; 1=aÞ (13)

Drenðp ¼ �Þ ¼ 1=�2: (14)

In practice we have fitted the bare propagators Dðp; 1=aÞ
with an appropriate function (see Eq. (15) below) and then
used the fits for renormalizing DðpÞ. But it has to be seen,
that multiplicative renormalizability really holds in the
nonperturbative regime. For this it is sufficient to prove,
that ratios of the renormalized (or unrenormalized) propa-
gators obtained from different cutoff values 1=að�Þ will
not depend on p at least within a certain momentum
interval pmin, pmax, where pmax should be the maximal
momentum surviving all the cuts applied.
In what follows the subtraction momentum has always

been chosen to be � ¼ 2:2 GeV. In Fig. 5 we show the
momentum dependence of the renormalized gluon propa-
gator DrenðpÞ at comparatively large momenta (jpj *
1 GeV) for five different lattice spacings but with (approxi-
mately) the same physical size aL ’ 3 fm (for exact values
see Table I). Evidently, in this momentum range the finite-
spacing effects are rather small, at least for inverse bare
coupling values 4=g20 � �> 2:2.
In Fig. 6 for the same data set, we show the IR region

only, whereas Fig. 7 presents the momentum dependence
of the renormalized gluon dressing function ZrenðpÞ ¼
p2DrenðpÞ for the same lattice spacings as in Figs. 5 and
6. In both cases we see that there are quite strong deviations
at least for � ¼ 2:2. The early turnover of the gluon
propagator DrenðpÞ to an IR flattening is much less pro-
nounced for higher �-values.
Our data for the larger volume of about ð5 fmÞ4 demon-

strate the behavior very similar to that of the volume
ð3 fmÞ4. Also in this case we find that the continuum limit
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FIG. 4. The momentum dependence of �ðpÞ on a lattice with
physical size aL ’ 7:3 fm.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

|p|;  Gev

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
re

n(p
);

  G
ev

-2

β=2.20;  14
4

β=2.30;  18
4

β=2.40;  26
4

β=2.50;  36
4

β=2.55;  42
4

aL=3 fmaL=3 fmaL=3 fmaL=3 fm

FIG. 5. The momentum dependence of the gluon propagator
DrenðpÞ for five different lattice spacings and jpj * 1 GeV. The
physical linear box size is aL ’ 3 fm.
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is fastly reached for � � 2:3 in the whole momentum
range, whereas for � ¼ 2:2 lattice artifact deviations oc-
cur, which become particularly strong in the infrared re-
gion jpj & 1 GeV. As an illustration, in Fig. 8 we show the
IR region for three lattices for the volume ð5 fmÞ4.
In order to estimate finite-volume effects we compare

our bc FSA data for the propagatorDrenðpÞ obtained for the
same �-values but different aL. In Fig. 9 we show the
momentum dependence of the renormalized gluon propa-
gators DrenðpÞ for two different physical sizes aL at � ¼
2:4, and in Fig. 10 DrenðpÞ is presented for three different
volumes at the somewhat stronger coupling � ¼ 2:3. One
can see that finite-volume effects are present only for the
zero and minimal nonzero momenta and in the latter case
they are rather small. Moreover, the IR flattening becomes
visible only for the largest volume aL ’ 7 fm.
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FIG. 7. The momentum dependence of the renormalized dress-
ing function ZrenðpÞ for five different lattice spacings. The
physical linear box size is aL ’ 3 fm.
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FIG. 8. The momentum dependence of the renormalized gluon
propagator DrenðpÞ for three different lattice spacings and jpj &
1 GeV. The physical linear box size is aL ’ 5 fm.
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FIG. 9. The momentum dependence of the renormalized gluon
propagator DrenðpÞ at fixed � ¼ 2:4 for two different physical
volumes.
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FIG. 6. The same as in Fig. 5 but for jpj & 1 GeV.
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Evidently, our data for the zero-momentum propagator
Drenðp ¼ 0Þ show a clear tendency to decrease with in-
creasing physical size aL. However, it remains difficult to
speculate about the infinite-volume limit of Drenð0Þ.

In the literature one can find quite a few functional forms
suggested to describe the gluon propagator in the IR-
region, most of them of purely phenomenological origin,
see e.g. [32]. For � � 2:2 we have fitted the momentum
dependence of the gluon propagator with an ansatz describ-
ing a massive behavior in the infrared

DrenðpÞ ¼ a1
p2 þm2

þ a2
ðp2 þm2Þ2 þ

a3
ðp2 þm2Þ4 ; (15)

a1, a2, a3 and m are fit parameters.
The fitting curves allow to compare quite easily the

propagators obtained on different volumes. As an example,
in Fig. 11 we show the fit results obtained for p * 0:6 GeV
for a physical volume ð5:0 fmÞ4. The fit parameters for all
three volumes are provided in Table II.

In Fig. 12 we compare the data together with the corre-
sponding fit curves obtained at � ¼ 2:3 for the three
physical volumes. We see that in the range shown p �
0:6 GeV finite-size effects are small at least for physical
linear lattice sizes aL � 5 fm. Finally we check the multi-
plicative renormalizability by presenting the data for the
gluon propagator ratio

R ¼ Drenðp;�;LÞ=Dfit
ren ðp;� ¼ 2:55;L ¼ 42Þ (16)

in Fig. 13. The relative deviations are below 3% such that
we can say multiplicative renormalizability is safe for � �
2:4 and for the momentum range p � 0:6 GeV. For � ¼
2:3 (not shown in the figure) the relative deviations are also
below 3% for slightly shifted momentum range p �
0:65 GeV.

TABLE II. Values of the fit parameters in physical units (with
dimension ½a1� ¼ GeV0, ½a2� ¼ GeV2, ½a3� ¼ GeV6, ½m� ¼
GeV), and the corresponding 
2

df.

� L a1 a2 a3 m 
2
df

2.20 14 0.62 4.58 49.5 1.38 5.0

2.30 18 0.61 4.03 54.5 1.37 3.8

2.40 26 0.56 4.31 50.8 1.35 1.5

2.50 36 0.55 4.30 39.5 1.30 1.5

2.55 42 0.56 4.34 45.0 1.34 1.2

2.20 24 1.02 1.33 128.4 1.53 3.6

2.30 30 0.59 4.19 61.0 1.39 2.6

2.40 42 0.55 4.39 53.9 1.37 0.5

2.30 44 0.67 3.65 72.2 1.41 1.6
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FIG. 12. The renormalized dressing functions ZrenðpÞ at � ¼
2:3. The data and the corresponding fits are shown for linear box
sizes aL ’ 3, 5, 7 fm.
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VI. DEEP INFRARED REGION AND INFRARED
MASS SCALE

In the previous section we discussed our fits of the
propagator in the range 0:6 & p & 3 GeV. An even more
phenomenologically interesting range is the deep infrared
region jpj & 0:6 GeV. As it was discussed in Sec. I the
infrared mass scale is an important parameter for phe-
nomenological analyses. Lattice results in principle can
provide model independent information on this subject.
Our results obtained in this region for aL ¼ 5 fm and � ¼
2:3 and 2.4 exhibit only a weak dependence on the lattice
spacing (see Fig. 8). Moreover, the finite-size dependence
of Dð0Þ seems to be moderate at � ¼ 2:4 (compare with
Figs. 9 and 10). Therefore, let us speculate that our results
for momenta below 0.6 GeV for � ¼ 2:4 and aL ¼ 5 fm
are already close to the continuum and to the large-volume
limit and that multiplicative renormalization can be as-
sumed, too. Under these assumptions we have fitted our
results at p & 0:6 GeV separately. We used two fitting
functions to fit our data in this range of momenta. The first
one is just the pole-type propagator providing an effective
gluon mass scale mg for p ! 0

DpoleðpÞ ¼ A

p2 þm2
g

: (17)

The other one is of the form of a Gaussian

DgaussðpÞ ¼ Be�ðp�p0Þ2=m2
IR : (18)

A,mg, B, p0,mIR are fit parameters. The results obtained

for � ¼ 2:4 and aL ¼ 5 fm are compared in Fig. 14.
One can see that the pole-type momentum dependence

given in Eq. (17) is not suitable for fitting the gluon
propagator in the considered range of momenta. This is
supported by the large value of the 
2=ndf parameter value
which was found to be about 14 if p ¼ 0 is included and
about 7 if this point is excluded. Therefore, the definition

of an effective gluon mass mg via the tree-level Eq. (17)

turns out to be problematic.
On the contrary, the Gaussian-type momentum depen-

dence given in Eq. (18) nicely fits the data for the gluon
propagator in the range p & 0:6 GeV with 
2=ndf about
0.7 (0.5) with p ¼ 0 included (excluded). Therefore, the
Gaussian functional form allows to define an infrared
(mass) scale mIR. The numerical fit result is mIR ¼
0:69ð3Þ MeV for p ¼ 0 taken into account in the fit and
0.68(4) MeV, if p ¼ 0 is ignored.
It is also interesting to note that our data suggest the

existence of a maximum of the gluon propagator at a
nonzero-momentum p0. We have already observed this
for SUð2Þ in four dimensions in our previous work [44],
where we studied the propagator on large lattices at � ¼
2:2, i.e. rather far from the scaling region. Our new results
reported for � ¼ 2:3 and 2.4 (see Figs. 9 and 10) show that
the maximum seems to persist in the continuum limit. The
mere existence of the maximum already contradicts a
simple effective gluon mass prescription �1=ðp2 þm2

gÞ.
With our fit function Eq. (18) we obtain p0 ¼
180ð15Þ MeV, if the point p ¼ 0 is included in the fit
and 194(29) MeV, if p ¼ 0 is ignored. Thus, the inclusion
of Dð0Þ into the fit changes the value of p0 only within
error bars.

VII. CONCLUSIONS

In this work we investigated numerically the renormal-
ized Landau gauge gluon propagator DrenðpÞ in the pure
gauge SUð2Þ lattice theory. The main goal of this study was
to study the approach to the continuum limit, especially in
the infrared region jpj & 1 GeV.
In order to disentangle finite-spacing from finite-volume

effects we calculated the propagators on lattices with
physical size aL equal approximately 3 fm at various
�-values in the range of � ¼ 2:2; . . . ; 2:55 and on lattices
with aL � 5 fm for � ¼ 2:2; . . . ; 2:4 (see Table I for de-
tails). Calculations were made also on aL � 7:3 fm latti-
ces at � ¼ 2:3. Our lattice volumes varied from L4 ¼ 144

to 444. For physical volumes ðaLÞ4 ’ ð3 fmÞ4 and ð5 fmÞ4,
we have checked the scaling behavior assuming the lattice
spacing a to depend on � as determined from the string
tension. The comparison of the renormalized propagators
calculated for different physical volumes then allowed to
estimate the influence of the finite (physical) volume in the
infrared regime.
Special attention has been paid to the dependence on the

choice of Gribov copies. In our previous papers [60,70] we
have seen that the finite-volume behavior of the gluon
propagator (and not only of the ghost propagator) is sensi-
tive to the way how the Landau gauge is fixed. We found
indications that by enlarging the gauge orbits by Zð2Þ-flip
operations and by applying the simulated annealing
method with consecutive overrelaxation (‘‘FSA’’ algo-
rithm) the volume dependence becomes suppressed.
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FIG. 14. The renormalized gluon propagator at � ¼ 2:4 on
aL ¼ 5 fm lattice together with the infrared fits according to
Eqs. (17) and (18).
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However, our former investigations went immediately to

largest accessible lattice volumes by employing coarse
lattices (� ¼ 2:2), such that the continuum limit remained

to be studied.
Our findings can be summarized as follows.
(1) In the region jpj * 0:6 GeV we observe very nice

agreement between renormalized propagators
DrenðpÞ obtained for different lattices with � �
2:4. For larger momenta scaling holds for even
smaller � values. In contrast, in the deep infrared
region (jpj & 0:6 GeV) the scaling violation is quite
strong, especially for � ¼ 2:2. However, with in-
creasing � finite-spacing effects rapidly decrease:

our data seem to ‘‘converge’’ to some limiting curve
of the renormalized propagator DrenðpÞ (compare,
e.g., propagators at � ¼ 2:2 and � ¼ 2:55), thus

indicating the approach to the continuum limit in
the fixed physical volume ðaLÞ4.

(2) Using our gauge fixing procedure we observed finite
(physical) volume effects only for zero and minimal
nonzero momenta. We made this observation for
� ¼ 2:2 in [44], here we confirm it for � ¼ 2:3
and 2.4 and thus it can be extended to the continuum
limit.

(3) In our previous papers [44,60] we calculated gluon
propagators on various lattices at � ¼ 2:2. We ob-
served the appearance of a maximum at a nonzero
value of the momentum p on lattices with compara-
tively large-volume (aL � 6:7 fm). Our new data

obtained at larger �-values do confirm this obser-
vation. Fitting the propagator calculated at � ¼ 2:4
by the fitting function Eq. (18) we obtained our best
estimation for the position of this maximum as p0 ¼
180ð15Þ MeV. This number might slightly change

in the continuum limit. Also we observed that the
zero-momentum gluon propagator Dð0Þ has a ten-
dency to decrease with growing lattice size L. We
did not try here to extrapolate its infinite-volume
value.

(4) The effective gluon mass mg has been employed as

an important parameter in various phenomenologi-
cal analyses. We fitted our results at p & 0:6 GeV
using our data for the gluon propagator at � ¼ 2:4
on lattices with aL � 5. It was found that the pole-
type momentum dependence given by Eq. (17) does

not provide an adequate description of our data at
small momenta, which makes it problematic to de-
fine this parameter from the Landau gauge gluon
propagator. On the contrary, a Gaussian-type behav-
ior given by Eq. (18) fits the data nicely. It allows to
define an alternative infrared (mass) scale mIR ¼
0:69ð3Þ GeV describing the approach to the infrared
limit. Its consequences for phenomenological appli-
cations remain to be seen.

(5) We confirm that the Gribov copy influence is very
strong in the deep infrared region. Comparing our bc
FSA results calculated on a 444 lattice with those of
the standard fc OR method obtained for an 804

lattice in Ref. [65] (see Fig. 1) we found that the
OR method with one gauge copy produces unreli-
able results for momenta jpj & 0:7 GeV. We con-
clude that fc OR method should be applied
exclusively to large-momentum studies.

Our FSA method provides systematically higher values
of the gauge fixing functional as compared to the standard
OR procedure. We studied the Gribov copy effect for this
method as well, generating up to 80 gauge copies for every
configuration. We found for fixed physical volume the
Gribov copy sensitivity parameter �ðpÞ only weakly to
depend on the lattice spacing a. Therefore, the quality of
the gauge fixing procedure in the study of gauge dependent
observables remains important, at least, in the deep
infrared.
At the same time the influence of Gribov copies dem-

onstrates clear tendency to decrease for fixed momentum
with increasing physical size aL. This tendency is in
accordance with a conjecture by Zwanziger in [67] and
was seen already for smaller lattice sizes in [68].
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BORNYAKOV, MITRJUSHKIN, AND MÜLLER-PREUSSKER PHYSICAL REVIEW D 81, 054503 (2010)

054503-10


