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Nucleon properties are investigated in background electric fields. As the magnetic moments of baryons

affect their relativistic propagation in constant electric fields, electric polarizabilities cannot be determined

without knowledge of magnetic moments. This is analogous to the experimental situation, for which

determination of polarizabilities from the Compton amplitude requires subtraction of Born terms. With

the background field method, we devise combinations of nucleon correlation functions in constant electric

fields that isolate magnetic moments and electric polarizabilities. Using an ensemble of anisotropic gauge

configurations with dynamical clover fermions, we demonstrate how both observables can be determined

from lattice QCD simulations in background electric fields. We obtain results for the neutron and proton,

however, our study is currently limited to electrically neutral sea quarks. The value we extract for the

nucleon isovector magnetic moment is comparable to those obtained from measuring lattice three-point

functions at similar pion masses.
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I. INTRODUCTION

Understanding low-energy properties of hadrons di-
rectly from QCD remains a challenging endeavor. In this
low-energy regime, quark and gluon interactions must be
treated nonperturbatively, ultimately resulting in their con-
finement into hadrons. After three decades of dedicated
work, lattice QCD has evolved into a tool to address
quantitatively the nonperturbative dynamics underlying
hadrons and their interactions, see [1] for an overview.
Electromagnetic moments and multipole polarizabilities
are low-energy properties of hadrons with transparent
physical meaning. These properties characterize the distri-
bution of charge and magnetism within a hadron, and the
response of the charge and magnetism distributions to
external fields, respectively. Low-energy properties of had-
rons can be described using an effective theory of QCD,
based upon treating pseudoscalar mesons as the Goldstone
modes arising from spontaneous chiral symmetry break-
ing. A picture of hadrons emerges from chiral dynamics:
that of a hadronic core surrounded by a pseudoscalar
meson cloud. In part, the electromagnetic properties of
hadrons encode the distribution of charged mesons, and
the stiffness of the charged meson cloud. Chiral dynamics
consequently makes predictions for the form of electro-
magnetic observables. Confirming these predictions both

experimentally and from the lattice will be a milestone in
our understanding of nonperturbative QCD dynamics.
Computation of hadronic electromagnetic properties us-

ing lattice QCD can be accomplished in at least two differ-
ent ways. The current insertion method, see e.g. [2], can be
used to determine hadronic matrix elements of the electro-
magnetic current. This method is ideal for the computation
of electromagnetic form factors, but is limited in the ex-
traction of multipole moments due to the available lattice
momentum, which, for periodic boundary conditions, is
quantized in units of 2�=L, where L is the size of the
lattice.1 For current lattice sizes, the determination of
multipole moments relies on a long extrapolation to van-
ishing momentum transfer. For multipole polarizabilities,
the temporal extent of current lattices also makes direct
computation of the Compton scattering tensor infeasible.
Were lattices long enough to allow the computation of
matrix elements with two current insertions, the extraction
of polarizabilities would still require a long extrapolation
to zero momentum. Alternately, hadronic properties can be
determined using the background field method [5–7]. With
this method, one determines lattice two-point functions in
the presence of classical external fields. Observables are
then determined from the variation of these hadronic cor-
relators with the strength of the external field.
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1For isovector form factors, the restriction to quantized mo-
mentum transfer can be lifted by imposing isospin twisted
boundary conditions on the quark fields [3,4]. The only known
method to handle the isoscalar contribution is to increase the
lattice volume.
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In the current context, we focus our attention on prop-
erties of spin-half baryons in external electric fields.
Neutral hadrons in electric fields have been investigated
with lattice QCD using the quenched approximation at
pion masses greater than 500 MeV [8,9]. A recent calcu-
lation has explored neutron properties at lower pion masses
with electrically neutral sea quarks [10]. There has also
been a fully dynamical calculation for the neutron in an
electric field using a pion mass of 760 MeV [11]. In this
work, we treat the baryon spin in a relativistic manner, and
thereby demonstrate how to determine both nucleon mag-
netic moments and electric polarizabilities using lattice
QCD in background electric fields. In essence, our method
allows one to perform the subtraction of the nucleon pole
term arising from anomalous magnetic couplings. The
resulting polarizabilities consequently have the correct
physical interpretation, and correspond to those extracted
from experiment, as well as those derived from chiral
perturbation theory, for example. We consider both the
neutron and proton in this study. For the latter, we use
the relativistic generalization of the method proposed in
[12], which relies on matching QCD correlators onto those
derived from single-hadron effective actions. We have also
employed this method recently for pseudoscalar meson
electric polarizabilities [13]. A salient feature of these
computations is that they utilize a lattice action which is
periodic up to a gauge transformation with everywhere
constant electric fields, and thereby eliminate difficulties
arising from Dirichlet boundary conditions used in pre-
vious studies.2 Our calculations of nucleon magnetic mo-
ments and electric polarizabilities include effects from
dynamical quarks, however, they are restricted to electri-
cally neutral sea quarks.

We organize our presentation in the following manner.
First in Sec. II, we analytically determine the form of
baryon correlation functions in external electric fields.
We specialize to the case of a uniform electric field, and
derive results for both neutral and charged baryons. A key
observation of this section is that baryon electric polar-
izabilities cannot be determined without knowledge of
their magnetic moments. This is analogous to the experi-
mental situation, where Born terms must be subtracted to
extract polarizabilities from Compton scattering.
Appendix A is concerned with the physics underlying the
Born subtraction. In Sec. III, we provide the pertinent
details of our lattice computations, and implementation
of the background field. In Sec. IV, we present our analysis
of nucleon correlation functions calculated in background
electric fields using lattice QCD. For both the neutron and
proton, we demonstrate that the measured correlation func-
tions agree in form with the analytic expectations from the

hadronic theory, and that magnetic moments and electric
polarizabilities can be extracted from data. Appendix B is
devoted to the analysis of unpolarized neutron correlators,
from which consistent results are obtained. (These results,
however, do not permit the determination of the electric
polarizability—only a combination of the polarizability
and the square of the magnetic moment. The latter contri-
bution arises from Born-level couplings.) The technical
details concerning two-state fits are contained in
Appendix C. A brief conclusion in Sec. V ends our work.

II. SPIN-HALF CORRELATION FUNCTIONS

To extract properties of nucleons in background electric
fields, we must first understand the expected behavior of
their two-point correlation functions. In this section, we
determine baryon two-point functions using the single-
hadron effective action that arises from QCD in the ultra-
low-energy limit. The functional forms deduced for these
two-point functions can then be utilized to fit baryon
correlators computed with lattice QCD. From these fits,
one can deduce hadronic parameters, such as the magnetic
moments and electric polarizabilities.

To arrive at a uniform electric field of the form ~E ¼ Eẑ,
we use the Euclidean space vector potential

A� ¼ ð0; 0;�Ex4; 0Þ: (1)

While there are other gauge equivalent choices, we find
Eq. (1) particularly useful.3 The analytic continuation, E !
�iEM, is needed to recover Minkowski space results. As
our interests lie only with quantities perturbative in the
strength of the field, this analytic continuation can be
performed trivially, see [20]. A Euclidean formulation is
natural from the point of view of lattice gauge theory
simulations; moreover, the Euclidean formulation removes
instabilities due to nonperturbative effects, i.e. the
Schwinger mechanism [21]. With the vector potential
specified, we can determine the baryon two-point func-
tions. As neutral and charged baryons propagate differently
in electric fields, we handle each separately.

A. Neutral spin-half baryons

We consider first the case of a neutral spin-half particle
of mass M described by the field c ðxÞ. The Euclidean
space correlation function in the hadronic theory we denote
by G��ðx4; EÞ, which is given by

2Actions periodic up to a gauge transformation with every-
where constant magnetic fields have also been employed re-
cently to study magnetic moments of hadrons [14], and
modification of the QCD vacuum [15,16].

3On a torus, many of the gauge equivalent choices in infinite
volume are no longer equivalent, but differ by their holonomy.
External fields with nonvanishing holonomy lead to new inter-
actions that are finite volume artifacts [17–19]. As the current
study is restricted to one lattice volume, we postpone the inves-
tigation of finite volume effects to future work.
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G��ðx4; EÞ ¼
Z

dxh0jc �ðxÞ �c �ð0Þj0iE ; (2)

where the subscript denotes that the correlation function is
calculated in the background electric field. Integrating over
all space projects the correlator onto vanishing three-
momentum, which is a good quantum number. For lattice
QCD with spatially periodic boundary conditions, a sum
over lattice sites accomplishes the same thing.

The energy of the neutral particle, EðEÞ, depends on the
strength of the electric field. For weak fields, the energy has
the expansion

EðEÞ ¼ Mþ 1

2
4��EE2 þ . . . ; (3)

where �E is the electric polarizability, and the ellipsis
denotes higher-order terms in even powers of the field.
The quadratic Stark shift is positive due to our Euclidean
space treatment. The magnetic moment, �, is also impor-
tant, and this coupling is entirely anomalous. The single-
hadron effective action for a neutral spin-half particle takes
the form

SE ¼
Z

d4x �c ðxÞ
�
@6 þ EðEÞ ��ðEÞ

4M
���F��

�
c ðxÞ: (4)

This action describes the dynamics of the neutron in the
ultra-low-energy limit of QCD. The electromagnetic field-
strength tensor is F�� ¼ @�A� � @�A�. For a background

electric field, ���F�� ¼ 2 ~K � ~E, where ~K ¼ i ~��4 is the

generator of boosts in the spin-half representation of the
Lorentz group. The magnetic moment coupling has been
written as E-dependent. In small fields, �ðEÞ has a pertur-
bative expansion in even powers of the field, and satisfies
the zero-field limit, �ð0Þ ¼ �. Using the effective action
in Eq. (4) to determine the unpolarized two-point function,
we arrive at

Tr ½Gðx4; EÞ� ¼ ZðEÞ exp½�x4EeffðEÞ�; (5)

where the effective energy, EeffðEÞ, depends on the mag-
netic moment, and is given by

EeffðEÞ ¼ EðEÞ ��ðEÞ2E2

8M3

¼ Mþ 1

2
E2

�
4��E � �2

4M3

�
þ . . . : (6)

In the second line, we have retained terms in the effective
energy only up to second order in the electric field. There
are two distinct contributions at that order. The first is the
expected shift in energy due to the polarizability, while the
second is the analogue of the nucleon pole term arising

from Born-level couplings to the magnetic moment.
Appendix A details the physics underlying this Born-like
contribution. While the magnetic moment contribution
arises from a relativistic effect, the resulting shift in baryon
energy occurs at the same order as that due to the polar-
izability.4 Appendix B is devoted to the extraction of
EeffðEÞ, using unpolarized neutron correlation functions.
The correlator in Eq. (5), however, does not allow access to
the electric polarizability without knowledge of the mag-
netic moment. A background field analogue of the Born
subtraction is needed.
To extract both the magnetic moment and electric polar-

izability, we use the boost projection operators

P � ¼ 1

2
ð1� K3Þ; (7)

where K3 is the boost operator is the ẑ-direction. The
boost-projected correlation functions are given by

G�ðx4; EÞ � Tr½P�Gðx4; EÞ� (8)

¼ ZðEÞ
�
1� E�

2M2

�
exp½�x4EeffðEÞ�: (9)

With the additional electric field dependence present in the
amplitude, one can separate the electric polarizability from
the magnetic moment by simultaneously analyzing both
boost-projected correlators. The method we employ to
accomplish this will be detailed below.

B. Charged spin-half baryons

Consider now a spin-half baryon with charge Q. The
magnetic moment, �, is a sum of two terms, � ¼ Qþ ~�.
The piece proportional to the charge is the Dirac magnetic
moment, while that denoted by ~� is the anomalous mag-
netic moment. Including terms relevant for a uniform
external field, the relativistic single-particle action for a
charged baryon has the form

SE ¼
Z

d4x �c ðxÞ
�
6Dþ EðEÞ � ~�ðEÞ

4M
���F��

�
c ðxÞ;

(10)

where the electromagnetically gauge covariant derivative
is D� ¼ @� þ iQA�, and higher-order terms in the field

strength appear parametrically in the E-dependent cou-

4In the chiral limit, the contribution from the magnetic mo-
ment term is suppressed relative to the electric polarizability by a
factor of m�=M. This suppression, however, owes to the singular
behavior of the polarizability in that limit, namely �E � 1=m�.
Because our lattice pion mass is larger than physical, we will
make no assumption about the dominance of the polarizability
near the chiral limit.
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plings in Eq. (10). The parameter EðEÞ is the charged
particle’s rest energy, which has the weak field expansion
in Eq. (3). The anomalous magnetic moment coupling,
~�ðEÞ, has a weak field expansion in even powers of the
field, and satisfies the zero-field relation, ~�ð0Þ ¼ ~�. The
action in Eq. (10) describes the proton in the ultra-low-
energy regime of QCD.

As with the neutral baryons, it is beneficial to consider
boost-projected correlation functions. For charged bary-
ons, these have the form

G�ðx4; EÞ ¼ ZðEÞ
�
1� ~�E

2M2

�
Dðx4; EeffðEÞ2 �QE; EÞ;

(11)

where the function Dðx4; E2; EÞ is the relativistic propaga-
tor function [20]

Dðx4; E2; EÞ ¼
Z 1

0
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QE

2� sinhðQEsÞ

s

� exp

�
� 1

2
QEx24 cothðQEsÞ � 1

2
E2s

�
:

(12)

When the charge is set to zero, we recover the neutral
baryon correlation functions in Eq. (9). As one can see,
to determine charged baryon electric polarizabilities, we
must also deduce their anomalous magnetic moments. This
can be achieved utilizing both boost-projected correlation
functions. These fits are more complicated than for neutral
hadrons; however, the function in Eq. (12) also describes
the propagation of a charged scalar in an electric field, and
our previous study demonstrated that such fits can be
carried out [13].

III. LATTICE DETAILS

To demonstrate our method for extracting nucleon mag-
netic moments and electric polarizabilities from lattice
two-point functions, we have employed an ensemble of
anisotropic gauge configurations with (2þ 1)-flavors of
dynamical clover fermions, see Table I. These gauge con-
figurations were generated by the Hadron Spectrum
Collaboration using the same lattice action and computa-
tional methodologies used to generate the related ensem-
bles presented in [22,23]. The details of the action and
numerical procedures are discussed in detail by the Hadron
Spectrum Collaboration in these references. Our ensemble
consists of 200 lattices of size Ns

3 � Nt ¼ 203 � 128.
These lattices have been used in a high statistics study of
one, two, and three baryon systems [24–26], as well as in
our investigation of pseudoscalar mesons with background
electric fields [13]. After an initial 1000 thermalization
trajectories, the lattices were chosen from an ensemble of
7000 spaced either by 20 or 40 trajectories to minimize
autocorrelations. The lattice spacing in the spatial direc-
tions is as ¼ 0:123ð3Þ fm [22,23], with a nonperturbatively
tuned anisotropy parameter of � � as=at ¼ 3:5, where at
is the temporal lattice spacing. The finer temporal spacing
is a crucial feature for this study, as it allows us to fit
reliably more complicated functional forms for the time-
dependence of correlation functions. For this ensemble, the
renormalized strange quark mass is near the physical value,
while the renormalized light quark mass leads to a pion
mass of m� ¼ 390 MeV.
On each configuration, we compute at least 10 propa-

gators for each of the up, down, and strange quarks with
random spatial source locations, see Table I. Multiple
inversions were made efficient using the EigCG inverter
implemented in the Chroma lattice field theory library
[27]. Interpolating fields at the source are generated from
gauge-covariantly Gaussian-smeared quark fields [28,29]
on a stout-smeared [30] gauge field in order to optimize the
overlap onto the ground state in the absence of background
fields. Interpolating fields at the sink are constructed from

TABLE I. Summary of the lattice action, propagator inversions and background field strengths
used in this work. Further details of the lattice action can be found in Refs. [22,23] with Ns ! 20
for this work. To implement the background electric field, the field strengths used were written to
17-digit precision (here given to just three of four significant digits), given by Eq. (15). For each
background field strength, either 10 or 20 spatially random source locations were used to
compute up, down and strange quark propagators on each of 200 lattice ensembles, spaced either
20 or 40 Monte-Carlo time trajectories apart.

Ns Nt atml atms m� mK

20 128 �0:0840 �0:0743 390 MeV 546 MeV

n ¼ 0 n ¼ �1 n ¼ �2 n ¼ �3 n ¼ �4

jeatasEj 0.00000 0.00736 0.01472 0.02209 0.02945

Nsrc � Ncfg 20� 200 20� 200 10� 200 10� 200 10� 200
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local quark fields. Each propagator is located with source
time at ðx4Þsrc ¼ 0. Randomization of the source time
location, while improving the statistical sampling, would
complicate the determination of charged baryon correla-
tion functions, as their two-point functions are no longer
time-translationally invariant. The correlator given in
Eq. (11) is generally a function of the sink time-slice and
not simply a function of the source-sink separation. The
full dependence on source time is given in [20].

To implement the background field on the lattice, we
modify the SUð3Þ color gauge links, U�ðxÞ, for each quark
flavor by multiplying by the color-singlet Abelian links,

UðEÞ
� ðxÞ, for the external field, namely

U�ðxÞ ! U�ðxÞUðEÞ
� ðxÞUðEÞ?

� ðxÞ; (13)

whereUðEÞ
� ðxÞ ¼ exp½iqA�ðxÞ�, with q as the quark electric

charge in units of e > 0, and the vector potential is chosen
to be: A�ðxÞ ¼ ð0; 0;�Elattx4; 0Þ, as in Eq. (1). The addi-

tional transverse links are given by

UðEÞ?
� ðxÞ ¼ exp½iqElattNtx3	�4	x4;Nt�1�: (14)

These additional links together with the quantization con-
dition for a torus [31]

E latt ¼ 2�n

jqdjNtNs

; (15)

ensure that the flux through every elementary plaquette is
qdElatt for down quarks, and quElatt for up quarks [32,33].
In the quantization condition, qd ¼ �1=3 is the electric
charge of the down quark, and n must take on integer
values. The use of nonquantized fields has been investi-
gated in [34], where it was found that boundary gradients
in the field strength can lead to energy shifts in the bulk of
the lattice as large as the sought-after shifts due to the
polarizabilities. As the gauge field multiplication in
Eq. (13) is carried out on preexisting gauge configurations,
the sea quarks remain electrically neutral. This approxi-
mation is imposed because of computational restrictions.

Using Eq. (13), we computed propagators for nine val-
ues of the field strength, n, corresponding to the integer
appearing in the quantization condition, Eq. (15). We use
n ¼ 0, which corresponds to a vanishing external field, as
well as n ¼ �1; . . . ;�4. In physical units, the electric field
strength E is given in terms of Elatt in Eq. (15) by

E ¼ ðeatasÞ�1Elatt ¼ 3:4ð2Þ � n� 1023 V=m: (16)

The uncertainty quoted is due scale setting, specifically
twice the uncertainty in the lattice spacing. These fields are
considerably larger than those that can be realized in the
laboratory; however, they are the proper order of magni-

tude to deform hadrons,�GV=fm. The expansion parame-
ter governing the deformation of a hadron’s pion cloud is
given by [20]: ðeE=m2

�Þ2 ¼ 0:18n2. From the size of this
parameter, we anticipate the need to include terms beyond
quadratic order in the electric field expansion of hadron
energies. In our analysis, we include terms up to quartic
order. Larger lattices with their smaller allowed field
strengths will be required for better control over systematic
uncertainty relating to the electric field expansion of
observables.

IV. LATTICE RESULTS

Nucleon two-point functions were obtained for each
source location on a given configuration. Results for mul-
tiple source locations on each configuration were then
source averaged, yielding lattice correlation functions we
denote by g�ðx4; nÞi. Here i labels the configuration, and�
refers to the boost projection. This procedure was repeated
for each value of the external field. We have performed
multiple differing procedures to analyze the data, of which
we detail only one method thoroughly in the text.
Consistent results were obtained from the other
procedures.
To enforce invariance under parity transformations, for

which E ! �E, we took the geometric mean of correlators
calculated at n and�n on each configuration.5 Specifically
from the set of g�ðx4; nÞi, we form

g�ðx4; nÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðx4; nÞig�ðx4;�nÞi

q
; (17)

for n 	 0. This reduces the nine field values to five,
corresponding to the integers n ¼ 0; . . . ; 4. This ensemble
of correlation functions was then used to generate 200
bootstrap ensembles. For the ensemble averaged correla-
tion functions, we use the same notation but without a
configuration label, namely g�ðx4; nÞ. Fits to the boot-
strapped ensemble are performed as described below.
Fits to correlation functions in the vanishing electric

field are often guided by effective mass plots. Ordinarily
one looks for a plateau in the effective mass, MeffðtÞ, to
ascertain when the excited state contributions have
dropped out of the correlator. For the boost-projected
correlation functions, we define two different effective
masses

M�
effðtÞ ¼ � log

g�ðtþ 1; nÞ
g�ðt; nÞ : (18)

The situation is quite simple for the case of the vanishing
electric field; thus we handle this case first.

5Consistent results were obtained by performing the analysis
on the arithmetic mean of correlators.
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When the external field vanishes, the two effective
masses are identical, Mþ

effðtÞ ¼ M�
effðtÞ � MeffðtÞ, and the

standard analysis applies. In Fig. 1, we show the effective
mass plot for the nucleon in the vanishing electric field.
Statistical noise dominates the correlator beyond the win-
dow of time depicted (this is particularly true for the largest
field strengths, see, for example, Fig. 2 below). As we are
limited in statistics, we perform a two-state fit to extract the
mass of the ground state. The fit function, Gðt; n ¼ 0Þ, has
the form

G ðt; 0Þ ¼ Zð0Þ expð�tMÞ þ Z0ð0Þ expð�tM0Þ; (19)

where the parameters Zð0Þ, and M arise from the ground
state, while the primed parameters account for excited state
contamination. We use a correlated chi-squared analysis to
fit the time dependence of the bootstrap ensemble of
correlation functions. As the amplitude parameters Zð0Þ,
and Z0ð0Þ enter the fit function linearly, we utilize variable
projection (see Appendix C) to reduce the number of fit
parameters from four down to two. The fit to the zero field
nucleon correlation function has also been shown in the
figure. The fit window has been determined by comparing
single and double effective masses, see [24,35,36] for de-
tails on the latter. For simplicity we choose a fit window
that can be used for all values of the electric field. This
restricts us to tmax=at & 30, and we take tmax=at ¼ 28. For
the largest field strengths, the maximum fit time cannot be
extended too far beyond this time. As a two-state fit is
required, we set tmin=at as small as possible to include the
most data. We take tmin=at ¼ 5, as data a few time steps
earlier are not well described by a two-state fit. In our final
results, we will estimate the systematic uncertainty due to
the choice of fit window by varying the minimum and
maximum fit times. The ground-state mass we extract
from the two-state fit is consistent with the high statistics
study [24].

A. Neutron

For nonvanishing electric fields, fit functions for the
neutron and proton differ considerably. For the neutron,
the fit function is similar in form to the zero-field case,
however, there are two distinct fit functions corresponding
to the boost projectors P�, namely

G�ðt; nÞ ¼ ZðnÞ½1��lattðnÞElatt=�� exp½�tEðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�lattðnÞElatt=�Þ2

q
�

þ Z0ðnÞ½1��0lattðnÞElatt=�� exp½�tE0ðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�0lattðnÞElatt=�Þ2

q
�: (20)

The unprimed parameters are those of the ground state,
while the primed parameters account for excited state
contributions. Notice both fit functions are identical to
Eq. (19) for the vanishing electric field. For a fixed nonzero
value of the electric field strength, there are six fit parame-
ters, three for the ground state: ZðnÞ, EðnÞ, �lattðnÞ, and
similarly three for the excited state contribution.6 To per-
form the fits, variable projection is again utilized to remove
the overall amplitudes, ZðnÞ and Z0ðnÞ, see Appendix C.
This reduces the number of fit parameters from six down to
four. To determine the remaining four parameters, we

perform simultaneous fits to both boost-projected correla-
tors for each value of the external field.7 In principle, such
fits should take into account correlations between the
boost-projected correlators. We find, however, that the
off-diagonal correlations between boost-projected correla-
tors are an order of magnitude smaller than the diagonal
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FIG. 1 (color online). Effective mass plot for the nucleon in
vanishing electric field (n ¼ 0). The effective mass of the two-
state fit to the lattice correlation function is the curved (yellow)
band shown, where the error band reflects only the uncertainty in
the ground-state energy. The flat (red) band also shown is the
value of the extracted ground-state energy with its uncertainty.
For long times, the effective mass should approach the flat band.

6In principle, the amplitude ZðnÞ may be different for the
differing boost projections, Gþðt; nÞ and G�ðt; nÞ. Any such
difference, however, is purely statistical in origin, and a suitable
number of measurements should produce a common amplitude
for the boost-projected correlators within uncertainties.

7A simultaneous fit is not required. Alternatively one can
separately fit the two boost-projected correlation functions, and
combine these results to determine energies and magnetic mo-
ments. In pursuing this alternate procedure, we find that fits to
the plus-projected correlation functions are always better than
fits to the minus-projected correlation functions. For small field
strengths, the difference is insignificant; however, for the largest
field strength, the fit to the minus-projected correlation function
is poor. We do not presently know the origin of this effect. Using
a simultaneous fit to both boost-projected correlators mitigates
(but does not remove) the problem with the largest field strength.
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FIG. 2 (color online). Effective mass plots for the boost-projected neutron correlation functions. For each value of the electric field
strength, n, the curved (yellow) bands show the result of the simultaneous two-state fit to both boost-projected correlation functions
using Eq. (20). The width of the band reflects the uncertainty in the extracted ground-state energy, EðnÞ. The flat (red) band shows the
extracted value of EðnÞ with the uncertainty.

EXTRACTING NUCLEON MAGNETIC MOMENTS AND . . . PHYSICAL REVIEW D 81, 054502 (2010)

054502-7



ones. Including the correlations into the fit produces results
that agree within our quoted uncertainties; thus, we treat
the boost-projected correlators as uncorrelated, and fit
them to the function in Eq. (20) taking into account corre-
lations in time. Further details are given in Appendix C. In
Fig. 2, we show the effective mass plots for the boost-
projected neutron correlation functions. Along with these
plots, we show the effective masses resulting from the
simultaneous fit to both boost-projected correlators.
Details of the fits to correlation functions, and the extracted
parameters are collected in Table II. With the measure-
ments that we have, we begin to loose the signal around
time slice t=at ¼ 30, and our central fits have tmax=at ¼ 28
in all cases. We will estimate the systematic due to the
choice of fit window by varying the minimum and maxi-
mum fit times. For the largest value of the field strength, E,
the confidence of the fit is frankly poor, and so we are
careful about using this data point. For the largest field
strength, moreover, it is possible that our fit function,
Eq. (20), does not describe the correlator at late times;
but, the statistical resolution does not allow us to do any
better.

The correlation function fits are carried out on each
bootstrap ensemble. In particular, we arrive at an ensemble
of ground-state energies and ground-state magnetic cou-
plings for each magnitude of the electric field E, or equiv-
alently the corresponding integer n. These ensembles we
generically denote by fOiðnÞg, where i indexes the boot-
strap ensemble, i ¼ 1; . . .N, and O represents either the

ground-state energy E, or magnetic coupling �. As the
ensembles of configurations for different field strengths are
generated from the same underlying lattice configurations,
correlations between the energies for different field
strengths will be significant and we account for these. On
the bootstrap ensemble of energies and magnetic cou-
plings, we perform electric-field correlated fits to the func-
tion OðnÞ, where for the case of the ground-state energy,
OðnÞ ¼ EðnÞ, with

EðnÞ ¼ Mþ �latt
E ðElattÞ2 � ��latt

EEEðElattÞ4; (21)

and for the case of the ground-state magnetic coupling,
OðnÞ ¼ �ðnÞ, with

�lattðnÞ ¼ �latt þ ��latt
E ðElattÞ2 þ ��latt

EEEðElattÞ4: (22)

With the ensemble average quantities denoted by �OðnÞ ¼
1
N

P
iOiðnÞ, we minimize the correlated chi-squared,

namely


2 ¼ X
n;n0

½ �OðnÞ �OðnÞ�C�1
n;n0 ½ �Oðn0Þ �Oðn0Þ�; (23)

with the field-strength correlation matrix, Cn;n0 , given by

Cn;n0 ¼ 1

N � 1

XN
i¼1

½ �OðnÞ �OiðnÞ�½ �Oðn0Þ �Oiðn0Þ�: (24)

Because all fit parameters enter the fit functions OðnÞ
linearly, the chi-squared minimization can be done analyti-
cally. Fits to the energy function are carried out on the
bootstrap ensemble, resulting fit parameters are averaged,
and the uncertainties from fitting and bootstrapping are
added in quadrature. The same is done for the magnetic
moment function, as defined in Eq. (22). We find that the
best fits result from taking ��latt

E ¼ 0, and results quoted for
the neutron use this constraint. Furthermore we perform
two different field-correlated fits as follows: (I) a fit to all
five field strengths using Eqs. (21) and (22), (II) the same fit
function but excluding the largest field strength for which
the quality of fit to the correlation functions is poor.
Finally, to estimate the systematic due to the choice of fit
window, we performed uncorrelated fits to the electric field
dependence of neutron energies determined on adjacent fit
windows. We chose the fit windows obtained by varying
the start and end times by one unit in either direction
(which makes nine total). On each of these fit windows,
we determined the electric polarizability and magnetic
moment. The systematic uncertainty on these observables
due to the fit window is estimated as the standard deviation
of the extracted observables over the various adjacent
windows. Details of the correlated electric field fits and
extracted parameters are tabulated in Table II.
From the extracted parameters, we can investigate the

electric field dependence of the energies and magnetic
moment couplings. This is done in Fig. 3, where we plot
the field strength dependence of these quantities. The plots,

TABLE II. Summary of fit results for neutron two-point func-
tions using the time window: 5 
 t=at 
 28. All quoted values
are averages over the bootstrap ensemble, and are given in
dimensionless lattice units. The conversion to physical units is
detailed in the text. For the fits, 
2=d is the minimized value for
chi-squared per degree of freedom, and 1� P is the integrated
chi-squared from the minimum value to infinity. The first half of
the table summarizes the time-correlated fits to the energies and
magnetic couplings in each field using Eq. (20), while the second
half summarizes the field-correlated fits using Eqs. (21) and (22).
The two differing fits to the latter are denoted by I and II, and are
described in the text. The second uncertainty on polarizabilities
and magnetic moments is an estimate of the systematic due to
the choice of fit window.

N n atEðnÞ �lattðnÞ 
2=d 1� P

0 0.2056(22) - 0.55 0.96

1 0.2074(16) �51ð6Þ 0.70 0.93

2 0.2142(16) �52ð3Þ 0.91 0.65

3 0.2240(15) �50ð2Þ 1.1 0.24

4 0.2375(15) �47ð1Þ 1.5 0.02

N atM �latt
E 
2=d 1� P �latt 
2=d 1� P

I 0.206(2) 40(9)(2) 0.3 0.9 �52ð2Þð1Þ 0.6 0.7

II 0.205(2) 42(19)(2) 0.3 0.9 �52ð3Þð1Þ 0.7 0.6
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moreover, show the results of the two fits (I and II) to the
electric field dependence. The values of the extracted
parameters are consistent with naı̈ve expectations and it
is useful to convert to physical units. Comparing the fit
function in Eq. (20) to the correlator in physical units,
Eq. (9), we have

� ¼ 2eðatMÞ3
atMN

�latt ¼ 0:0313ð7Þ ��latt; (25)

with the physical magnetic moment, �, given in units of
nuclear magnetons, �N ¼ e

2MN
, where MN is the physical

mass of the nucleon, and the uncertainty arises from scale
setting.8 For the magnetic moment of the neutron in units
of nuclear magnetons, we thus find

�conn
n ðm� ¼ 390 MeVÞ ¼ �1:63ð10Þð4Þð5Þ½�N�:

We have appended a superscript to reflect that our compu-
tation includes only connected contributions. The three
uncertainties quoted are from: (i) statistics and fitting,
(ii) the systematic due to the fit window, and
(iii) conversion to units of physical nuclear magnetons.
For (i), we take the largest value of the uncertainty from
the two fits to the field-strength dependence (which both

gave the same value for �latt). There are additional sources
of systematic uncertainty that we have not accounted for,
namely, the effects of finite lattice spacing and finite lattice
volume.
To convert the lattice electric polarizability to physical

units, we compare the fit function in lattice units, Eq. (21),
to the energy in physical units, Eq. (3), and find

�E ¼ e2

2�
ata

2
s�

latt
E ¼ 0:0776ð58Þ � �latt

E � 10�4 fm3;

(26)

where the uncertainty arises from scale setting, and is
specifically 3 times the uncertainty in the lattice spacing.
For the neutron electric polarizability, we thus find

�n conn
E ðm� ¼ 390 MeVÞ ¼ 3:3ð1:5Þð2Þð3Þ � 10�4 fm3;

where we use the central value from fit II. The three
uncertainties quoted are from: (i) statistics and fitting,
(ii) the systematic due to the fit window, and
(iii) conversion to physical units.

B. Proton

For the proton, we perform a similar analysis. Fits to
proton correlation functions are carried out using a two-
state fit function. This allows us to remove excited state
contamination. We perform simultaneous time-correlated
fits to both boost-projected proton correlation functions
using the fit function
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FIG. 3 (color online). Electric field-strength dependence of extracted neutron parameters. The two different field-correlated fits [I
(left panels) and II (right panels)] are described in the text. The bands in the plots reflect the total uncertainty.

8Without a factor of atM=atMN , the magnetic moment would
be given in units of lattice nuclear magnetons, �latt

N ¼ e
2M , with

M as the lattice value of the nucleon mass. With these units, there
is no uncertainty from scale setting, however, they introduce
additional pion mass dependence of the extracted moment.
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FIG. 4 (color online). Effective mass plots for the boost-projected proton correlation functions. For each value of the electric field
strength, n, the curved upper (yellow) bands show the result of the simultaneous two-state fit to both boost-projected correlation
functions using Eq. (27). The width of the upper band reflects the uncertainty in the extracted ground-state rest energy, EðnÞ. The
curved lower (gray) band shows the contribution to the fit from only the ground state, while the flat (red) band shows just the extracted
value of EðnÞ with its uncertainty.
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G�ðt; nÞ ¼ ZðnÞ
�
1� ~�lattðnÞ E

latt

�

�
D

�
t; EðnÞ2

�
1�

�
~�lattðnÞ E

latt

�

�
2
�
� Elatt

�
;
Elatt

�

�

þ Z0ðnÞ
�
1� ~�0lattðnÞ E

latt

�

�
D

�
t; E0ðnÞ2

�
1�

�
~�0lattðnÞ E

latt

�

�
2
�
� Elatt

�
;
Elatt

�

�
; (27)

with Dðx; E2; EÞ as the relativistic propagator function
given in Eq. (12). As the overall amplitudes ZðnÞ and
Z0ðnÞ enter the fit function linearly, we utilize variable
projection to eliminate them from the simultaneous fits,
see Appendix C. For each value of the electric field E (or
equivalently the integer n), there are then four parameters
in the fit: the ground-state rest energy, EðnÞ, the ground-
state anomalous magnetic coupling, ~�ðnÞ, as well the rest
energy and anomalous magnetic coupling for the excited
state. Note that we force the proton charge to have the
value Q ¼ 1. Because we have an improved current, we
expect only Oða2Þ differences from the continuum value.
In Fig. 4, we show the effective mass plots for the boost-
projected proton correlation functions. Along with these
plots, we show the effective masses resulting from the
simultaneous fit to both boost-projected correlators using
Eq. (27). Details of the fits to proton correlation functions,
and the extracted parameters from the fits are collected in
Table III. In all cases, the central fits are performed with
tmax=at ¼ 28, and we estimate the systematic due to the
choice of fit window by varying the minimum and maxi-
mum fit times. For the largest value of the field strength, E,
it is possible that our fit function, Eq. (27), does not
describe the data at times beyond tmax. The statistical
resolution in this regime, however, does not allow us to
do any better.

We perform fits to proton correlations functions on the
entire bootstrap ensemble. This enables us to form an
ensemble of extracted parameters for each value of the
field strength, In particular, we consider the ensemble of
extracted ground-state rest energies, fEiðnÞg, and ground-
state anomalous magnetic moments, f ~�iðnÞg. Collectively

we denote these ensembles by OiðnÞ, with the ensemble

average denoted by �OðnÞ. Electric field-correlated fits are
performed using the fit functions in Eqs. (21) and (22). For
the latter it is the electric field dependence of the anoma-
lous couplings that is being fit. Furthermore, we extract the
anomalous magnetic moment using the constraint ��latt

EEE ¼
0, which results in better fits. For both observables, we
perform the fit using all the data (fit I), and excluding
results for the largest field strength (fit II). Results of the
fits are collected in Table III. The electric field-strength
dependence of the extracted rest energies and anomalous
magnetic couplings are shown in Fig. 5. Also depicted are
the field-correlated fits to these quantities. The values of
the extracted parameters are again consistent with naı̈ve
expectations. For the magnetic moment of the proton,
converting to units of nuclear magnetons using Eq. (25)
yields

�conn
p ðm� ¼ 390 MeVÞ ¼ 2:63ð13Þð1Þð4Þ½�N�:

We have appended a superscript to reflect that our compu-
tation includes only connected contributions; we have also
added in the Dirac contribution, assuming Q ¼ 1. The
three uncertainties quoted are as before: (i) statistics and
fitting, (ii) the systematic due to the fit window, and
(iii) conversion to physical units. For (i), we take the
central value and uncertainty from fit II. For the proton
electric polarizability, converting the results of fit II to
physical units using Eq. (26) yields

�p conn
E ðm� ¼ 390 MeVÞ ¼ 2:4ð1:9Þð3Þð2Þ � 10�4 fm3;

where the first uncertainty is from statistics and fitting, the
second is the systematic due to the fit window, and the last
uncertainty arises from scale setting.
Finally let us compare results for the neutron and proton.

Within the uncertainty, the connected part of the isoscalar
anomalous magnetic moment is consistent with zero. To
compare with experiment, we require additional contribu-
tions from disconnected diagrams that we have not deter-
mined. The isovector combination of moments, however,
does not have disconnected contributions due to strong
isospin symmetry. For the nucleon isovector magnetic mo-
ment, we find

�Vðm� ¼ 390 MeVÞ ¼ 4:3ð2Þð1Þð1Þ½�N�:

While this value is smaller than the physical moment,
chiral corrections drive the magnetic moment downward
at masses above the physical value [37,38]. Studies at

TABLE III. Summary of fit results for proton two-point func-
tions using the time window: 5 
 t=at 
 28. Tabulated entries
are as in Table II, with the exception that we have denoted the
magnetic couplings as anomalous using tildes.

P n atEðnÞ ~�lattðnÞ 
2=d 1� P

0 0.2052(24) - 0.61 0.93

1 0.2072(17) 53(6) 0.65 0.97

2 0.2118(22) 48(3) 0.81 0.80

3 0.2198(26) 46(2) 0.86 0.74

4 0.2293(29) 41(1) 1.5 0.02

P atM �latt
E 
2=d 1� P ~�latt 
2=d 1� P

I 0.205(2) 32(13)(1) 0.14 0.98 52(3)(1) 1.3 0.3

II 0.205(2) 31(25)(4) 0.16 0.96 52(4)(1) 1.7 0.2
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additional pion masses are necessary to extrapolate to the
physical point. The value we obtain, moreover, is compa-
rable to values extracted from the current insertion method
at similar values of the pion mass, see [39].

For the electric polarizabilities, our results show both
isovector and isoscalar components, however, the latter is
the dominant one. This is also seen experimentally and
from chiral perturbation theory. The smaller isovector
component,

�V
Eðm� ¼ 390 MeVÞ ¼ �0:9ð2:5Þð3Þð4Þ � 10�4 fm3;

receives smaller chiral corrections, and is less sensitive to
the electric charges of the sea (but not independent). While
values for the electric polarizabilities of the neutron and
proton are smaller than experiment, chiral perturbation
theory suggests large corrections as one nears the chiral
limit [40–43]. Additionally including contributions from
sea quark electric charges will drive both polarizabilities
upwards, as can be seen from partially quenched chiral
perturbation theory [12]. It will be interesting to carry out
simulations at additional quark masses and with electri-
cally charged sea quarks to observe this behavior.

V. CONCLUSION

Above, we investigate the relativistic propagation of
spin-half particles in classical electric fields. The presence
of magnetic moments affects the behavior of two-point
correlation functions, and we use this observation to devise
a method to determine magnetic moments and electric

polarizabilities from lattice QCD simulated in background
electric fields. Using anisotropic gauge configurations with
dynamical clover fermions, we perform such computa-
tions. In Appendix B, we obtain results for the neutron
using upolarized lattice correlation functions. Such results,
however, do not allow one to determine the electric polar-
izability—only a combination of the electric polarizability
and the square of the magnetic moment. The separation of
these terms (which is analogous to accounting for Born-
level contributions in the Compton scattering amplitude,
see Appendix A) requires treatment of baryon spin, which
is afforded by studying boost-projected correlators. Our
analysis of boost-projected lattice correlation functions
demonstrates that nucleon magnetic moments and electric
polarizabilities can be extracted from lattice calculations in
background electric fields. This applies to both the neutron
and proton.
There are a number of possible refinements of our

computation that would reduce the systematic uncertain-
ties. Currently, our calculations are limited to electrically
neutral sea quarks, and there is a need to remedy this
situation. Furthermore, studies on larger volumes will not
only reduce finite volume effects, but allow the implemen-
tation of smaller values of the quantized external field
strength. Calculations at various values of the quark mass
will allow for chiral extrapolations to make contact with
the physical QCD point. We intend to carry out this work in
the future. Finally, our approach can be used to study the
magnetic moments and electric polarizabilities of the re-
maining members of the baryon octet.
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FIG. 5 (color online). Electric field-strength dependence of extracted proton parameters. Plots are as in Fig. 3.
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APPENDIX A: MOTION-INDUCED ELECTRIC
DIPOLE MOMENTS

Motion-induced electric dipole moments underlie the
Born-like terms encountered above. These Born couplings
are magnetic in origin, and their subtraction is required to
arrive at physical electric polarizabilities. Born subtrac-
tions are carried out when analyzing experimental data,
calculating polarizabilities from chiral perturbation theory;
and, unique to this work, determining electric polarizabil-
ities from lattice QCD. Here we remind the reader of the
physics underlying the Born subtraction. For simplicity, we
consider the neutron in an external electric field. For the
proton, there are additional Born couplings to the total
charge. In momentum space, such terms can be subtracted;
whereas in coordinate space, these terms must be treated to
all orders in the field strength. This is accomplished by the
relativistic proton propagator in Eq. (11).

One way to see that the Born term must be subtracted is
to consider the electric dipole operator, ~pE. Consider the
Minkowski space Hamiltonian derived from the Euclidean
effective action for the neutron that appears in Eq. (4). The

Minkowski space electric field we denote by ~EM. Without
subtracting the magnetic moment contribution, the electric
dipole operator picks up an additional contribution

~p E ¼ @H

@ ~EM

¼ �4��E
~EM � �

2M
~K; (A1)

that does not vanish when the electric field is turned off.
This extra contribution is a motion-induced effect as can be
seen from neutron matrix elements. For a neutron moving
nonrelativistically,

h ~pEi � hNð ~vÞj ~pEjNð ~vÞi

¼ �4��E
~EM þ�h ~�i

2M
� ~vþ . . . ; (A2)

we see that the additional term corresponds to a motion-
induced dipole moment [44]. In the external field, the
electric dipole moment contributes to the total energy in
the form

hEi ¼ ~EM �
Z EM

0
h ~pE0 idE0

M

¼ � 1

2
4��E

~E2
M þ�h ~�i

2M
� ð ~v� ~EMÞ: (A3)

The second term is readily identified as the interaction
energy of the magnetic moment with the magnetic field

seen in the neutron’s rest frame: h ~mi � ~B, with ~m ¼ � ~�
2M , and

~B ¼ ~v� ~EM. This explains why one sees a motion-
induced electric dipole moment in the frame in which
neutron moves with velocity ~v.
Without neutron motion, contributions from the motion-

induced electric dipole moment naı̈vely vanish. At second
order, however, the motion-induced dipole can interact
with itself via neutron propagation. We must employ a
limiting procedure to handle the nucleon pole. In a quan-
tum mechanical notation, the shift due to an intermediate-
state neutron with energy k0 ¼ Mþ 1

2M ~v2 has the form

�E ¼ hNð~0Þj �

2M
~K � ~EMjNð ~vÞi 1

M� k0

� hNð ~vÞj �

2M
~K � ~EMjNð~0Þi: (A4)

The off-diagonal matrix elements in the nonrelativistic
limit evaluate to half the value of the diagonal matrix
elements in that limit. We can thus write the energy shift as

�E ¼ 1

4
~m � ð ~v� ~EMÞ 1

0� 1
2M ~v2

~m � ð ~v� ~EMÞ: (A5)

In the limit of zero velocity, a nonvanishing contribution
from the motion-induced electric dipole moment emerges.
This contribution is the same as that derived in Eq. (6).

APPENDIX B: ANALYSIS OF UNPOLARIZED
NEUTRON CORRELATION FUNCTIONS

Here we present the analysis of unpolarized neutron
correlation functions. On each configuration, for each
value of the electric field strength, we form the unpolar-
ized, source-averaged lattice correlation function,
�gðx4; nÞi. Parity invariance is enforced by taking the geo-
metric mean of correlators obtained for a given field value
and its negative. Specifically we form

�gðx4; nÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx4; nÞi �gðx4;�nÞi

q
; (B1)

for n 	 0. This ensemble of unpolarized correlators was
then used to generate 200 bootstrap ensembles for n ¼
0; . . . ; 4. The average unpolarized correlator is similarly
denoted but without the subscript referring to configuration
number, namely, by �gðx4; nÞ. The standard effective mass is
then formed

MeffðtÞ ¼ � log
�gðtþ 1; nÞ
�gðt; nÞ ; (B2)
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and is used to guide spectroscopic analysis of the unpolar-
ized correlators.

For a given value of the electric field, E, or equivalently
the integer n, we extract the effective energy, EeffðnÞ given
in Eq. (6), using a two-state fit function of the form

�Gðt; nÞ ¼ ZðnÞ exp½�tEeffðnÞ� þ Z0ðnÞ exp½�tE0
effðnÞ�:

(B3)

Notice without the boost projection, we cannot disentangle
the magnetic moment contribution. While there are four
parameters to fit in Eq. (B3), we utilize variable projection
to eliminate the amplitudes ZðnÞ and Z0ðnÞ, leaving just
two parameters: the effective energy of the ground and
excited states. Time-correlated fits are performed, with
results shown in Fig. 6. Fit details and extracted parameters
are collected in Table IV. The electric field strength depen-
dence of the extracted energies is shown in Fig. 7.

Fits are carried out on the entire bootstrap ensemble
enabling us to form an ensemble of extracted effective
energies of the ground state, fEeff;iðnÞg. The average of

this ensemble we denote �EeffðnÞ. Using the fit function

EeffðnÞ ¼ MþAlatt
E ðElattÞ2 þBlatt

E ðElattÞ4; (B4)

electric field-correlated fits are performed using Eq. (23).
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FIG. 6 (color online). Effective mass plots for unpolarized neutron correlation functions. For each value of the electric field strength,
the curved (yellow) band shows the result of the two-state fit to unpolarized correlation functions using Eq. (B3). The width of the
curved band accounts for the uncertainty in the extracted ground-state effective energy, EeffðnÞ. The flat (red) band shown corresponds
to the extracted value of EeffðnÞ with the uncertainty.

TABLE IV. Summary of fit results for unpolarized neutron
two-point functions using the time window: 5 
 t=at 
 28.
All quoted values are averages over the bootstrap ensemble,
and are given in dimensionless lattice units. The quantityAlatt

E is
the pseudopolarizability defined in Eq. (B5). For the fits, 
2=d is
the minimized chi-squared per degree of freedom, and 1� P is
the chi-squared integrated from the minimum value to infinity.
The first half of the table summarizes the time-correlated fits to
the effective energies in each field using Eq. (B3), while the
second half summarizes the field-correlated fits using Eq. (B4).
The two differing fits to the latter are denoted by I and II, and are
described in the text. The second uncertainty on the pseudopo-
larizability is an estimate of the systematic due to the choice of
fit window as explained in the text.

N n atEeffðnÞ 
2=d 1� P

0 0.2041(23) 0.50 0.97

1 0.2058(21) 0.67 0.88

2 0.2082(23) 0.97 0.50

3 0.2130(21) 0.70 0.85

4 0.2204(21) 0.70 0.85

N atM Alatt
E 
2=d 1� P

I 0.205(2) 17(11)(1) 0.53 0.75

II 0.204(2) 20(25)(3) 0.52 0.72
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We perform two fits: a fit using all the data (fit I), and a fit
that excludes results for the largest field strength (fit II).
Results of the fits are collected in Table IV. The coefficient
of the term quadratic in the field strength is not physically
the electric polarizability because it includes Born-level
contributions from the magnetic moment. For this reason,
we call this coefficient the pseudopolarizability. In our
choice of lattice units, the pseudopolarizability is given by

A latt
E ¼ �latt

E � atM

2�2
ð�lattÞ2; (B5)

with � as the anisotropy factor. The systematic due to the fit
window is estimated by performing uncorrelated fits on the
adjacent fit windows obtained by varying the start and end
times by one unit.

The extracted value for the pseudopolarizability is
roughly half the size of the electric polarizability, see
Table II. Because of the sign of the magnetic moment
contribution, we expect the pseudopolarizability to be
less than the electric polarizability. The values of the
magnetic moment and electric polarizability extracted
from boost-projected correlators can be used to find a value
for the pseudopolarizability. Using the results of Table II in
Eq. (B5), we find

I : Alatt
E ¼ 17ð9Þð2Þ; and II: Alatt

E ¼ 19ð19Þð2Þ;
(B6)

for the two field-correlated fits. These values are concord-
ant with those found in Table IV from analyzing the
unpolarized neutron correlators.

Finally, we note that unpolarized proton correlation
functions in principle allow one access to both the mag-
netic moment and electric polarizability. This can be seen
from the explicit form for the proton two-point function
derived in the effective hadronic theory. The functional
form, however, leads to fits that are challenging to perform.
Valuable simplifications are afforded by boost-projected
correlators.

APPENDIX C: VARIABLE PROJECTION AND
TWO-STATE FITS

In the main text, we perform a number a two-state fits to
lattice correlation functions. A feature common to the fit
functions is that the amplitudes for the two states enter
linearly. One can use variable projection (see [35] for
references) to eliminate these linear parameters from the
fit. Here we summarize the method employed for time-
correlated fits to the lattice data. We focus on the case of
simultaneous fits to the boost-projected correlators,
g�ðt; nÞ. For ease, we will drop the field-strength depen-
dence. The reader should keep in mind we perform the fits
for each value, n, of the external field.
Let us write the fit functions G�ðtÞ in the form

G �ðtÞ ¼ Zf�ðtÞ þ Z0f0�ðtÞ: (C1)

This form is general enough to accommodate the expected
form of both neutron and proton boost-projected correla-
tion functions in Eqs. (20) and (27), respectively. Using the
correlation matrices, C�ðt; t0Þ, defined by

C �ðt; t0Þ ¼ 1

N � 1

XN
i¼1

½g�ðtÞ � g�ðtÞi�½g�ðt0Þ � g�ðt0Þi�;

(C2)

we consider the time-correlated 
2, defined by


2 ¼ Xtmax

t;t0¼tmin

½ðgþðtÞ � ZfþðtÞ � Z0f0þðtÞÞC�1þ ðt; t0Þ

� ðgþðt0Þ � Zfþðt0Þ � Z0f0þðt0ÞÞ
þ ðg�ðtÞ � Zf�ðtÞ � Z0f0�ðtÞÞC�1� ðt; t0Þ
� ðg�ðt0Þ � Zf�ðt0Þ � Z0f0�ðt0ÞÞ�: (C3)

Minimizing this 
2 function gives the simultaneous fit to
both boost-projected correlators. In this example, we
have neglected off-diagonal correlations for simplicity.
Furthermore, in our analysis, we find the off-diagonal
correlation elements are an order of magnitude smaller

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.200

0.205

0.210

0.215

0.220

0.225

at as e

a t
E

N: I

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.200

0.205

0.210

0.215

0.220

0.225

at as e

a t
E

N: II

FIG. 7 (color online). Electric field-strength dependence of the neutron effective energy. The two different field-correlated fits (I and
II) are described in the text, and the bands show the total uncertainty.
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than the diagonal ones, and their inclusion does not change
our results outside the quoted uncertainties.

To reduce the number of fit parameters in Eq. (C3), we
minimize with respect to the amplitudes Z and Z0 analyti-
cally. Setting @
2=@Z ¼ @
2=@Z0 ¼ 0, we find

Z ¼ �A� �B

��� �2
; Z0 ¼ �B� �A

��� �2
; (C4)

with

A ¼ Xtmax

t;t0¼tmin

½fþðtÞC�1þ ðt; t0Þgþðt0Þ þ f�ðtÞC�1� ðt; t0Þg�ðt0Þ�;

B ¼ Xtmax

t;t0¼tmin

½f0þðtÞC�1þ ðt; t0Þgþðt0Þ þ f0�ðtÞC�1� ðt; t0Þg�ðt0Þ�;

C ¼ Xtmax

t;t0¼tmin

½gþðtÞC�1þ ðt; t0Þgþðt0Þ þ g�ðtÞC�1� ðt; t0Þg�ðt0Þ�;

� ¼ Xtmax

t;t0¼tmin

½fþðtÞC�1þ ðt; t0Þfþðt0Þ þ f�ðtÞC�1� ðt; t0Þf�ðt0Þ�;

� ¼ Xtmax

t;t0¼tmin

½fþðtÞC�1þ ðt; t0Þf0þðt0Þ þ f�ðtÞC�1� ðt; t0Þf0�ðt0Þ�;

� ¼ Xtmax

t;t0¼tmin

½f0þðtÞC�1þ ðt; t0Þf0þðt0Þ þ f0�ðtÞC�1� ðt; t0Þf0�ðt0Þ�:

(C5)

To perform the fit, one then minimizes Eq. (C3) using Z
and Z0 given in Eq. (C4). To determine the final uncertainty
of parameters, the full 
2 is used.
Aside from the boost-projected correlators, we also

perform two-state fits to zero-field correlators, and unpo-
larized correlators, using Eqs. (19) and (B3), respectively.
Unlike the simultaneous fits, there is only one correlator,
gðtÞ, to fit for these cases. Writing the fit function asGðtÞ ¼
ZfðtÞ þ Z0f0ðtÞ, it is trivial to derive the variable projection
for these cases from the above result. One merely removes
the plus subscripts, and drops all terms associated with the
minus functions.
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