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We study the three-quark static potential in perturbation theory in QCD. A complete next-to-leading

order calculation is performed in the singlet, octets, and decuplet channels and the potential exponentia-

tion is demonstrated. The mixing of the octet representations is calculated. At next-to-next-to-leading

order, the subset of diagrams producing three-body forces is identified in Coulomb gauge and its

contribution to the potential calculated. Combining it with the contribution of the two-body forces,

which may be extracted from the quark-antiquark static potential, we obtain the complete next-to-next-to-

leading order three-quark static potential in the color-singlet channel.
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I. INTRODUCTION

The interaction among heavy quarks has been explored
since the QCD inception as an important tool to learn about
the characteristics of the non-Abelian gauge dynamics in
general and the QCD low-energy behavior in particular
[1,2].

The Q �Q static potential is a very well-known quantity
for its crucial role in quarkonium phenomenology [3,4] and
for having been studied extensively by lattice gauge theo-
ries since their introduction [5]. The typical shape of the
color-singletQ �Q static potential, which is characterized by
a short-range Coulomb behavior and a long-range linear
rise, well represents the double nature of QCD as an
asymptotically free and infrared confined theory. Also
gluonic excitations of a static quark-antiquark pair have
been explored by lattice calculations both in the long
range, where they exhibit a stringy behavior like the
color-singlet potential, and in the short range where they
show a Coulomb-like behavior in one of the two possible
quark-antiquark color configurations: singlet or octet [5,6].

More recently, nonrelativistic effective field theories of
QCD have provided a new way to look at the quark-
antiquark potential and allowed, especially in the short
range, calculations with unprecedented precision [7].
Presently, the static quark-antiquark potential is com-
pletely known up to two loops [8,9]. Starting from three
loops the potential exhibits infrared divergences; these
have been calculated at leading order (LO) [10] and next-
to-leading order (NLO) [11], and resummed at leading
logarithmic [12] and next-to-leading logarithmic [13] ac-
curacy. The fermionic part of the three-loop finite contri-
bution has been calculated recently [14]. High-order
perturbative calculations show a remarkably good agree-
ment with the lattice determinations of the static quark-
antiquark energy up to a distance of about 0.2–0.3 fm
[13,15–17], which allows one to constrain the size of the
unknown higher-order contributions.

The static quark-antiquark energy may be extracted
from the large-time behavior of the static quark-antiquark

Wilson loop. Extremely accurate lattice determinations of
the static energy at short distances (the smallest distance
being about 0.08 fm) can be found in [18]. Also gluonic
excitations between static quark-antiquark sources have
been explored in the framework of effective field theories
[19] and by means of lattice calculations [6]. Again, high-
order perturbative calculations show agreement with accu-
rate short-range lattice data and allow for the precise ex-
traction of the so-called gluelump masses [20]. Short
distance studies of the quark-antiquark interaction tell us
about the interplay of perturbative and nonperturbative
contributions in QCD, in particular, that perturbative con-
tributions describe the data with a high accuracy up to
distances of 0.2–0.3 fm, while a confining string sets in
only at distances of about 0.5 fm [21], and that the operator
product expansion does not appear to be violated. It is only
natural to ask if these features are specific of quark-
antiquark systems, i.e. mesons, or may also show up,
and, in case, to which extent, in three-quark systems, i.e.
baryons.
The potential that describes the interaction of three

heavy quarks Q is much less known than the heavy Q �Q
potential, one of the reasons being the difficulty of pro-
ducing QQQ states and the consequent lack of experimen-
tal data. This has led to a wide use of phenomenological
models [22,23], sometimes based on strong-coupling ex-
pansion arguments and lattice evaluations of the three-
quark static Wilson loop; often a sum of two-body inter-
actions has been used.
A rigorous definition of the QQQ potential is provided

by the nonrelativistic effective field theory for QQQ states
formulated in [24] (QQq states have been considered in
[24,25]). This effective field theory is the three heavy-
quark version of potential nonrelativistic QCD
(pNRQCD), the effective field theory first introduced for
quarkonium in [19,26]. pNRQCD is constructed from
QCD as an expansion in the inverse of the heavy-quark
mass m and in the distances between the heavy quarks
(multipole expansion). At zeroth order in the multipole
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expansion, the equation of motion of pNRQCD is the
Schrödinger equation with the potentials given by the
Wilson coefficients of the six-fermion operators. The
Wilson coefficients are calculated by equating, i.e. match-
ing, amplitudes in QCD with amplitudes in pNRQCD
order by order in 1=m and in the multipole expansion. In
particular, the static potentials of the different color repre-
sentations are evaluated by matching to static Wilson loops
in QCD. At distances shorter than the inverse of the typical
hadronic scale, �QCD, the degrees of freedom of pNRQCD

are aQQQ color-singlet field, twoQQQ color-octet fields,
a QQQ color-decuplet field, light quarks and low-energy
gluons. The Wilson coefficients of the corresponding six-
fermion operators are the singlet, octet, and decuplet po-
tentials, respectively. They may be evaluated in perturba-
tion theory. To the best of our knowledge only the LO
expressions (excluding octet mixing) have been considered
so far. At distances larger than 1=�QCD, when confinement

sets in, the degrees of freedom of pNRQCD are only the
QQQ color-singlet field and the light hadrons. Gluonic
excitations of heavy-quark bound states cannot be resolved
at such distances because of the mass gap of order �QCD

that they develop with respect to the color-singlet state (cf.
with the lattice data in [27,28]). In this situation, the
matching to pNRQCD cannot be performed in perturbation
theory but must rely on nonperturbative methods. The
nonperturbative static, spin-dependent, and 1=m color-
singlet QQQ potentials have been expressed in terms of
Wilson loops in [24] (for earlier work see [29,30]). So far
only the static potential has been evaluated on the lattice.

Most of the existing lattice studies of the three-quark
static potential have explored the region of large interquark
distances [28,31–38]. As for the Q �Q case, the character-
istic signature of the long-range non-Abelian dynamics is
believed to be a linear ‘‘stringy’’ rising of the static inter-
action. Moreover, the general expectation for the baryonic
case is that, at least classically, the strings meet at the so-
called Fermat (or Torricelli) point, which has minimum
distance from the three sources (Y-shape configuration). If
this is the case, one should see a genuine three-body
interaction among the static quarks. In another model
[39], the long-range QQQ potential is simply the sum of
two-body potentials (�-shape configuration). Most of the
lattice calculations of the QQQ static potential have fo-
cused on distinguishing the Y configuration ( favored by
data) from the � configuration, despite the difference
between a � and a Y shape potential being rather small
and difficult to detect. Recently, however, some data have
accumulated that include short distances both at zero and
finite temperatures, and both for the lowest and for some
higher gluonic excitations [27,28,40]. This opens the pos-
sibility to address, also for the QQQ system, questions
about the short-range behavior of the static potential and its
gluonic excitations, and more specifically about the region
of validity of perturbation theory and about the crossover

region from perturbative to nonperturbative QCD. In gen-
eral, one expects this crossover to happen in a more spec-
tacular way than in the quark-antiquark case, due to the
overcoming of the long-range three-body forces over the
short-range two-body Coulomb forces.
In the paper, we focus on the potential between three

static quarks in the different color configurations and at
short distances. Surprisingly, very little is known about it
besides the LO expression. For all color configurations, we
will perform a complete NLO calculation showing explic-
itly how the exponentiation works at this order. For the
singlet and decuplet potentials, we will prove that the naive
extension of the NLO two-body result turns out to be
correct. For the octet potentials, we will need to account
for the mixing, which already sets in at LO. At next-to-
next-to leading order (NNLO) the first genuine three-body
contribution appears. We calculate it for the singlet and
decuplet color configurations. In the color-singlet case,
combining the three-body contribution with the two-body
one that can be extracted from the quark-antiquark static
potential, we will obtain the complete NNLO potential.
The plan of the paper is the following. In Sec. II, we

introduce the three-quark Wilson loop and define the po-
tential. In Sec. III, we derive its expression at order g2 for
the singlet, the octets, and the decuplet representations,
showing that the two octet representations mix. In Sec. IV,
we calculate the static potentials at order g4 and show how
exponentiation works at this order; a generalization of this
result to N quarks in SUðNÞ is provided in Sec. V. In
Sec. VI, we identify the first genuine three-body contribu-
tion to the potential that appears in perturbation theory at
order g6 and evaluate it in several geometrical configura-
tions. In Sec. VII, we derive the two-body color-singlet
contribution and hence provide the complete color-singlet
static potential at order g6. Section VIII is devoted to the
conclusions and a short outlook. Some technical details
may be found in the Appendixes.

II. THE THREE-QUARK STATIC POTENTIAL

In this section, we consider the perturbative static po-
tential of three heavy quarks. In the effective field theory
language of [24], the potentials in the different color
representations are the matching coefficients of the six-
fermion operators made of two singlet, two octet, or two
decuplet fields. The matching coefficients can be ordered
in powers of 1=m, the static potential corresponding to the
first term in the series. The perturbative expression of the
potential is expected to describe correctly the potential at
short distances r, for which �sð1=rÞ � 1 holds.
The static potential is computed by matching the appro-

priate Green’s function in QCD with static sources (Wilson
loop) to the corresponding Green’s function in pNRQCD
[7,19,24]. The Green’s function in pNRQCD describes the
propagation of a static QQQ state in the color representa-
tion C through a potential VC. Loop corrections due to
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gluons of energy and momentum of order �s=r contribute
at next-to-next-to-next-to-leading order (N3LO) and are
beyond the accuracy of this work. The matching condition
valid up to and including NNLO is, for TW ! 1,

h0jCuWCvyj0i ¼ ZCðrÞ expð�iVCðrÞTWÞ
� h0jSuvC ðTW=2;�TW=2Þj0i: (1)

The left-hand side stands for the expectation value of the
three-quark static Wilson loop: a possible choice is shown
in Fig. 1. The static quarks are located in x1, x2, and x3 and
propagate from the initial time �TW=2 to the final time
TW=2. The color tensors Cu and Cvy are inserted in the
Wilson loop in the center-of-mass coordinate R ¼ ðx1 þ
x2 þ x3Þ=3 at the final and initial times, respectively. j0i on
the left-hand (right-hand) side stands for the vacuum state
of QCD (pNRQCD). In the right-hand side, VC stands for
the static potential in the color representation C, ZC for a
normalization factor, SC for the Wilson loop CuWCvy with
all the quarks located in the center of mass, and r ¼
fr1; r2; r3g for the set of distances between the quarks,
defined as

r 1 ¼ x1 � x2; r2 ¼ x1 � x3; r3 ¼ x2 � x3;

(2)

only two of these three distances are independent: r1 þ
r3 ¼ r2. The explicit expressions of the three-quark static
Wilson loop shown in Fig. 1 and of SuvC are

CuWCvy ¼ Cuijk�ii0 ðR;x1; TW=2Þ�i0rðTW=2;�TW=2;x1Þ
��rlðx1;R;�TW=2Þ�jj0 ðR;x2; TW=2Þ
��j0sðTW=2;�TW=2;x2Þ�smðx2;R;�TW=2Þ
��kk0 ðR;x3; TW=2Þ�k0tðTW=2;�TW=2;x3Þ
��tnðx3;R;�TW=2ÞCvylmn; (3)

SuvC ¼ Cuijk�ilðTW=2;�TW=2;RÞ�jmðTW=2;�TW=2;RÞ
��knðTW=2;�TW=2;RÞCvylmn; (4)

where repeated indices are implicitly summed from 1 to 3.

The tensor Cu is inserted at X ¼ ðR; TW=2Þ, while its
conjugate Cvy is inserted at Y ¼ ðR;�TW=2Þ. The func-
tion� stands for a Wilson line: the spacelike Wilson line at
time t reads

�ðy;x; tÞ ¼ P exp

�
ig
Z 1

0
dsðy � xÞ �Aðxþ ðy � xÞs; tÞ

�
;

(5)

while the timelike Wilson line at position x reads

�ðtf; ti;xÞ ¼ P exp

�
ig
Z tf

ti

dtA0ðt;xÞ
�
: (6)

In both expressions, A� ¼ Aa
�T

a and P stands for the path

ordering of the matrices A� along the Wilson line. In

Eqs. (3) and (4), we have explicitly written the color
indices of the Wilson lines in the fundamental
representation.
Let us now specify the color representations Cu. AQQQ

state can be decomposed into the following representa-
tions:

3 � 3 � 3 ¼ 1 � 8 � 8 � 10; (7)

where the singlet representation is totally antisymmetric,
the decuplet is totally symmetric, and the two octets have
mixed symmetries. A generic representation Cu has three
color indices, i, j, k, running from 1 to 3 and is written in
detail as Cuijk. The labels u, v refer to the type of color

representations, specifically, when C and Cy are both in the
singlet representation, the indices u and v are suppressed;
when Cu and Cvy are both in the decuplet representation, u
and v range from 1 to 10; when Cu and Cvy are in the
antisymmetric or in the symmetric octet representations,
the indices u and v range from 1 to 8. The concrete choice
that we have operated for these rank-three tensors is given
in Appendix A. In the singlet and decuplet cases, Cu and
Cvy are real numbers. In the octet case, since the octets
mix, it is more convenient to consider Cu and Cvy as 2
component vectors; we will detail about this in the next
section.
The quantity h0jSuvC ðTW=2;�TW=2Þj0i is dimensionless.

In perturbation theory, it may depend on TW only logarith-
mically; therefore limTW!11=TW � lnh0jSuvC ðTW=2;

�TW=2Þj0i ¼ 0. Also limTW!11=TW � lnZCðrÞ ¼ 0, be-

cause ZCðrÞ does not depend on TW . Hence, the matching
condition (1) may be rewritten as

VCðrÞ ¼ lim
TW!1

i

TW

ln
h0jCuWCvyj0i
CumnoC

vy
mno

; (8)

where we have kept in the denominator a color tensor
normalization factor [cf. Eq. (A5)]. It is convenient to
define

FIG. 1. Static Wilson loop with edges x1 ¼ ðx1; TW=2Þ, x2 ¼
ðx2; TW=2Þ, x3 ¼ ðx3; TW=2Þ, y1 ¼ ðx1;�TW=2Þ, y2 ¼
ðx2;�TW=2Þ, y3 ¼ ðx3;�TW=2Þ and insertions of the tensors
Cuijk and Cv�lmn in X ¼ ðR; TW=2Þ and Y ¼ ðR;�TW=2Þ, respec-
tively.
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h0jCuWCvyj0i
CumnoC

vy
mno

¼ 1þMð0ÞðC; rÞ þMð1ÞðC; rÞ

þMð2ÞðC; rÞ þ � � � ; (9)

with the quantities MðnÞ encoding all contributions of
order g2nþ2 � �nþ1

s for a given color representation C.
Analogously we may write

VCðrÞ ¼ Vð0Þ
C ðrÞ þ Vð1Þ

C ðrÞ þ Vð2Þ
C ðrÞ þ � � � ; (10)

where VðnÞ
C ðrÞ encodes all contributions of order g2nþ2 to

the potential. From Eqs. (8)–(10), the order by order
matching conditions for the potential read

Vð0Þ
C ðrÞ ¼ lim

TW!1
i

TW

Mð0ÞðC; rÞ; (11)

Vð1Þ
C ðrÞ ¼ lim

TW!1
i

TW

�
Mð1ÞðC; rÞ � 1

2
Mð0Þ2ðC; rÞ

�
; (12)

Vð2Þ
C ðrÞ ¼ lim

TW!1
i

TW

�
Mð2ÞðC; rÞ �Mð0ÞðC; rÞMð1ÞðC; rÞ

þ 1

3
Mð0Þ3ðC; rÞ

�
;

� � � � � � : (13)

Note that the subtraction terms,Mð0Þ2 � T2
W ,M

ð0ÞMð1Þ �
T2
W , and Mð0Þ3 � T3

W , are divergent in the TW ! 1 limit.

They cancel against divergences in Mð1Þ and Mð2Þ.
Canceling the divergences may be interpreted as recon-
structing the exponential expð�iVCðrÞTWÞ in the matching
condition (1). For this reason, the procedure of verifying
the finiteness of the limits (12) and (13), . . . is often
referred to as verifying the potential exponentiation.

III. THE STATIC POTENTIAL AT LO

To set up the notation and to discuss the octet mixing, we
start by calculating the three-quark static potential at LO,

i.e. Vð0Þ
C . The calculation can be split into two steps: the

computation of the amplitudes and the calculation of the
color factors, which will differ for each potential.
Throughout the paper we choose the Coulomb gauge for
the calculation of the amplitudes, since it consistently
reduces the number of diagrams to be computed. Of
course, the calculated LO, NLO, and NNLO potentials
are gauge invariant.1

At order g2, the diagrams that contribute to the potential
are those shown in Fig. 2, in which a gluon is exchanged

between two quark lines, thus leaving the third quark line
untouched. In the following, we will call such a line a
spectator line. Since diagrams involving gluon exchanges
between quark lines and strings contribute only to the
normalization ZC,

2 we will adopt, in the following, a
simpler representation of the diagrams without end-point
strings (see e.g. Fig. 3). It is convenient to define

Mð0ÞðC; rÞ ¼ P
3
q¼1 M

ð0Þ
q ðC; rqÞ, where Mð0Þ

q ðC; rqÞ is the

amplitude of the one-gluon exchange between two of the
three sources: q ¼ 1 corresponds to the exchange between
the quark in x1 and the one in x2, q ¼ 2 corresponds to the
exchange between the quark in x1 and the one in x3, and
q ¼ 3 corresponds to the exchange between the quark in x2

and the one in x3.
3 The potential at order g2 then reads

Vð0Þ
C ðrÞ ¼ lim

TW!1
i

TW

X3
q¼1

Mð0Þ
q ðC; rqÞ ¼

X3
q¼1

fð0Þq ðCÞ �s

jrqj :

(14)

The color part of the amplitude has been factored in the

color coefficient fð0Þq ðCÞ. This coefficient is defined as

fð0Þq ðCÞ ¼ CujklT
qð0Þ
jj0kk0ll0C

vy
j0k0l0

CumnoC
vy
mno

; (15)

where T 1ð0Þ
jj0kk0ll0 ¼ Ta

jj0T
a
kk0�ll0 , T

2ð0Þ
jj0kk0ll0 ¼ Ta

jj0�kk0T
a
ll0 , and

T 3ð0Þ
jj0kk0ll0 ¼ �jj0T

a
kk0T

a
ll0 .

In the singlet case, C ¼ C� ¼ S [see Eq. (A1)], we have

fð0Þ1 ðSÞ ¼ fð0Þ2 ðSÞ ¼ fð0Þ3 ðSÞ ¼ �2
3; (16)

and the LO color-singlet static potential has the well-
known form:

Vð0Þ
s ðrÞ ¼ � 2

3
�s

�
1

jr1j þ
1

jr2j þ
1

jr3j
�
: (17)

We note that in the limit where one quark is put at infinite
distance the above potential should reproduce one of the
two quark-quark potentials, either the antisymmetric anti-

1Possible complications arising in the Coulomb gauge because
of the so-called Schwinger-Christ-Lee terms [41–43], which
involve �2

s -suppressed nonlocal interactions with transverse
gluons, affect the potential at next-to-next-to-next-to leading
order or smaller and are beyond the accuracy of the present
work.

2Our work is concerned with the static potential up to NNLO.
Up to this order, two-body diagrams involving gluon exchanges
with strings are of the same type as those encountered in the
evaluation of the quark-antiquark potential and do not contribute
to the potential by the same arguments used there [8,9,44] (a
more detailed discussion can be found in [45]). At NNLO order,
there is also a class of three-body diagrams involving gluon
exchanges with the strings. This class of diagrams has a trans-
verse gluon emitted from one string and three longitudinal
gluons coupled to it and to three different quark lines. These
diagrams vanish because either they involve triple-gluon vertices
with two transverse and one longitudinal gluon, but zero inflow-
ing energy (taking TW ! 1 is equivalent to set to zero the
energy flowing from the quark lines, see footnote 5), or they
involve quartic-gluon vertices with one transverse and three
longitudinal gluons.

3For a baryon of N quarks in SUðNÞ, there will be NðN � 1Þ=2
possible gluon exchanges, with (N � 2) spectator quarks.
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triplet one or the symmetric sextet one. Since the singlet is
antisymmetric one recovers indeed the antisymmetric trip-
let quark-quark potential [46]. Moreover, we observe that
the color-singlet quark-antiquark potential is twice each
quark-quark component of (17): we will generalize this
result in Sec. V.

In the decuplet case, Cu ¼ Cu� ¼ �u [see Eq. (A4)], we
have

fð0Þ1 ð�Þ ¼ fð0Þ2 ð�Þ ¼ fð0Þ3 ð�Þ ¼ 1
3; (18)

and the LO color-decuplet static potential reads

Vð0Þ
d ðrÞ ¼ 1

3
�s

�
1

jr1j þ
1

jr2j þ
1

jr3j
�
: (19)

We note that in the limit where one quark is put at infinite
distance the above potential reproduces the symmetric
sextet quark-quark potential [46].

In the octet case, the one-gluon exchange mixes the
symmetric and the antisymmetric octets, i.e. there is a
nonzero color amplitude with an initial symmetric octet
state and a final antisymmetric one and vice versa. It is,
therefore, convenient to define a potential VOðrÞ, which is a
2� 2 matrix, and a vector color representation:

C a ¼ Oa
ijk ¼

OAa
ijk

OSa
ijk

 !
:

A possible choice for the symmetric and antisymmetric

octet representationsOSa
ijk andO

Aa
ijk is in Eqs. (A3) and (A2)

respectively: in this choice, both representations are sym-
metric or antisymmetric in the first two indices i and j.
According to the definition (3), the third index, k, is
associated to the quark in x3; therefore we expect that
the diagrams responsible for the mixing are those involving
gluons attached to the third quark line, like the one shown

in Fig. 3. Indeed, by computingMð0Þ
q ðO; rqÞ it follows that

the three 2� 2 matrices fð0Þq ðOÞ are given by

fð0Þ1 ðOÞ ¼ � 2
3 0

0 1
3

 !
; fð0Þ2 ðOÞ ¼

1
12 �

ffiffi
3

p
4

�
ffiffi
3

p
4 � 5

12

0
@

1
A;

fð0Þ3 ðOÞ ¼
1
12

ffiffi
3

p
4ffiffi

3
p
4 � 5

12

0
@

1
A; (20)

where we see that fð0Þ1 ðOÞ is diagonal but fð0Þ2 ðOÞ and

fð0Þ3 ðOÞ are not. Hence, the LO color-octet static potential

reads

Vð0Þ
O ðrÞ ¼ �s

2
4 1

jr1j
� 2

3 0

0 1
3

 !
þ 1

jr2j
1
12 �

ffiffi
3

p
4

�
ffiffi
3

p
4 � 5

12

0
@

1
A

þ 1

jr3j
1
12

ffiffi
3

p
4ffiffi

3
p
4 � 5

12

0
@

1
A
3
5: (21)

The part of the potential proportional to 1=jr1j is diagonal
and its entries are equal to the 1=jr1j parts of the color-
singlet and color-decuplet potentials. This can be ex-
plained by observing that if the quark in x3 is put to infinity
the two octets disentangle and we are left with two, anti-
symmetric and symmetric, quark-quark potentials. The
parts of the potential proportional to 1=jr2j and 1=jr3j
have the same diagonal elements but opposite off-diagonal
ones: this means that they share the same eigenvalues but
have different eigenvectors. The eigenvalues are
ð�2=3; 1=3Þ with corresponding eigenvectors

FIG. 3. A diagram contributing to the mixing of the two octets
at LO. The three quark lines represent from above to below the
quarks in x1, x2, and x3, respectively.

FIG. 2. The three terms contributing to the static potential at order g2. Dashed lines are longitudinal gluons.
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��2=3 ¼
�
	OAffiffiffi

3
p ; OS

�
; �1=3 ¼ ð
 ffiffiffi

3
p

OA;OSÞ; (22)

where the upper sign refers to the matrix with positive off-
diagonal elements and the lower sign to the other one. If we
construct a matrix P such that PMP�1 is diagonal, where
M is one of the two nondiagonal matrices, the other being

M0, then neither PM0P�1 nor Pfð0Þ1 ðOÞP�1 are diagonal.

The diagonalization of the part of the potential propor-
tional to the distance 1=jr2j (1=jr3j) thus simply corre-
sponds to changing to a new octet representation
symmetric and antisymmetric in the indices i and k (j
and k). Note that by pulling at infinite distance the quark
in x2 or in x1 we are left with a matrix, which, after
diagonalization, reproduces again the two, antisymmetric
and symmetric, quark-quark potentials.

The fact that the two octets mix has, to our knowledge,
not been discussed in the literature so far. The octet QQQ
potential can be extracted from the lattice data in [40].
There, equilateral geometries (jr1j ¼ jr2j ¼ jr3j) have
been taken into account for which the off-diagonal ele-
ments cancel [see Eq. (21)].4 In general, off-diagonal
elements cancel in any isosceles geometry. Clearly, the
mixing needs instead to be properly accounted for in any
lattice simulation based on nonisosceles geometries.

IV. THE STATIC POTENTIAL AT NLO

The NLO, i.e. the order g4, contribution to the QQQ
potential in the different color representations is what we

have called Vð1Þ
C . Two classes of diagrams contribute: two-

body diagrams and three-body diagrams. These are shown
in Fig. 4.

Two-body diagrams are simply the quark-antiquark dia-
grams of order g4, which we know from the static quark-
antiquark potential, with the static antiquark propagator
replaced by a quark propagator and with the addition of a
spectator line. Their color factor is of course different but
the amplitude can be easily obtained from the Q �Q
equivalent.

Three-body diagrams such as the ones in Figs. 4(d) and
4(e) do not contain a spectator quark. We will show that
diagrams of type Fig. 4(d) only contribute to the exponen-
tiation of the LO potential, i.e. cancel in Eq. (12) against

�Mð0Þ2ðC; rÞ=2, whereas the ones of type Fig. 4(e), which
include also diagrams with two gluons attached to the same
quark line, vanish because they involve triple-gluon verti-
ces of only longitudinal gluons.

A. Calculation of Vð1Þ
C

We start by examining the two-body diagrams in
Coulomb gauge. These are shown in Figs. 4(a) and 4(b)

(the ladder and crossed diagrams), Fig. 4(c) (the Abelian
vertex correction), and Fig. 4(f) (the gluon self-energy
diagrams). In Coulomb gauge, the crossed diagram and
the Abelian vertex vanish. For instance, in position space
the crossed diagram is proportional to

Z TW=2

�TW=2
dx0

Z TW=2

�TW=2
dx00

Z TW=2

�TW=2
dy0

Z TW=2

�TW=2
dy00

� �ðx00 � x0Þ�ðy0 � y00Þ�ðx0 � y0Þ�ðx00 � y00Þ
¼
Z TW=2

�TW=2
dx0

Z TW=2

�TW=2
dx00�ðx00 � x0Þ�ðx0 � x00Þ ¼ 0;

where the thetas come from the static quark propagators
and the deltas from the longitudinal gluon propagators in
Coulomb gauge. A similar argument applies to the Abelian
vertex. In the case of the ladder diagram, the product of
deltas and thetas does not yield zero but T2

W=2; the com-
plete result is

Mð1Þ
q ðC; rqÞlad ¼ �g4fð1Þq ðCÞlad T

2
W

2

�Z d3q

ð2�Þ3
eiqrq

q2

�
2

¼ ��2
sf

ð1Þ
q ðCÞlad T

2
W

2

1

r2q
; (23)

where fð1Þq ðCÞlad is defined as (we chose k and k0 to label the
spectator line)

fð1Þq ðCÞlad ¼
CuijkT

a
irT

b
ri0T

a
jsT

b
sj0C

vy
i0j0k0�kk0

CumnoC
vy
mno

: (24)

In total, there are three ladder diagram contributions,

Mð1Þ
q ðC; rqÞlad, with q running from 1 to 3.

Let us consider now the three-body diagram in Fig. 4(d).

We call Mð1Þ
qq0 ðC; rq; rq0 Þ3body its contribution to Mð1ÞðC; rÞ,

which is given by

Mð1Þ
qq0 ðC;rq;rq0 Þ3body¼�g4fð1Þ

qq0 ðCÞ3body
Z TW=2

�TW=2
dx0

�
Z TW=2

�TW=2
dx00

Z TW=2

�TW=2
dy0

Z TW=2

�TW=2
dy00

��ðy0�x0Þ�ðx00�x0Þ�ðy00�y0Þ

�
Z d3q

ð2�Þ3
eiq�rq

q2

Z d3q0

ð2�Þ3
eiq

0�rq0

q02

¼��2
sf

ð1Þ
qq0 ðCÞ3body

T2
W

2

1

jrqjjrq0 j: (25)

In the case of Fig. 4(d), the color factor fð1Þ
qq0 ðCÞ3body is

defined as

fð1Þ
qq0 ðCÞ3body ¼

CuijkT
a
ii0T

b
jrT

a
rj0T

b
kk0C

vy
i0j0k0

CumnoC
vy
mno

: (26)

In total, there are six three-body diagram contributions,

4For equilateral geometries, the singlet and octet potentials are
attractive while the decuplet one is repulsive.
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Mð1Þ
qq0 ðC; rq; rq0 Þ3body, with q and q0 (q � q0) running from 1

to 3.
The contributions of the ladder and three-body diagrams

cancel in Eq. (12) against �Mð0Þ2ðC; rÞ=2 ¼
�ðP3

q¼1 M
ð0Þ
q ðC; rqÞÞ2=2. This happens because

fð1Þq ðCÞlad ¼ ðfð0Þq ðCÞÞ2 8 q; (27)

fð1Þ
qq0 ðCÞ3body ¼ fð0Þq ðCÞfð0Þ

q0 ðCÞ 8 q; q0: (28)

We will prove these identities for all representations C in
the following Sec. IVB. Hence the ladder and the three-
body diagrams only contribute to the exponentiation of the
LO potential.

Finally, we are left with the evaluation of the diagram in
Fig. 4(f). The diagram has, in general, a q0 dependence;
however, the integration over time in the TW ! 1 limit
sets q0 ¼ 0.5 The fermionic part is gauge invariant; the
gauge part, in Coulomb gauge, may be read, for instance,
from [47]. The one-loop gluon self-energy contribution to
the gluon propagator in momentum space and at q0 ¼ 0 is

i�ab

q2

�s

4�

��
11� 2

3
nf

�
ln
�2

q2
þ 31

3
� 10

9
nf

�
; (29)

where nf is the number of massless light quarks contrib-

uting to the fermionic part of Fig. 4(f). The divergence has

been renormalized in the MS scheme and � is the renor-
malization scale. The contribution to the potential is

Vð1Þ
C ðrÞ ¼ X3

q¼1

fð0Þq ðCÞ
Z d3q

ð2�Þ3 e
iq�rq 4��s

q2

�s

4�

�
��

11� 2

3
nf

�
ln
�2

q2
þ 31

3
� 10

9
nf

�

¼ X3
q¼1

fð0Þq ðCÞ �2
s

4�jrqj ½2�0ðlnð�jrqjÞ þ 	EÞ þ a1�;

(30)

where 	E is the Euler-Mascheroni constant, a1 ¼ 31=3�
10nf=9 and �0 ¼ 11� 2nf=3.

Since, in Coulomb gauge, all other diagrams of Fig. 4
either vanish or contribute to the potential exponentiation,
the contribution coming from the diagram in Fig. 4(f) is the
only contribution to the potential at NLO. It has the same
color factor as the LO one, which factorizes in front of the
complete expression of the potential up to NLO. This reads

VCðrÞ¼
X3
q¼1

fð0Þq ðCÞ�sð1=jrqjÞ
jrqj

�
1þ �s

4�
ð2�0	Eþa1Þ

�
; (31)

where the color coefficients fð0Þq ðCÞ may be read from
Eqs. (16), (18), and (20). We recall that, in the octet case,
VO is a 2� 2 matrix.
The main outcome of Eq. (31) is that at NLO the QQQ

static potential and the Q �Q static potential [44] just differ
by the overall color representation, but that the effective
coupling of the potential, �Vð1=jrqjÞ ¼ �sð1=jrqjÞ�
½1þ �s

4� ð2�0	E þ a1Þ�, is the same for all Q �Q, QQ, and

QQQ color representations. There is no reason to believe
that this result keeps holding at NNLO. Indeed, it has been
shown in [48] that the color-singlet and color-octet effec-
tive couplings for the Q �Q potential differ at NNLO.
In Feynman gauge, besides the diagram in Fig. 4(f), also

the diagrams in Figs. 4(a)–4(c) contribute to the potential.

FIG. 4. Diagrams appearing at order g4 in the three-quark potential.

5The TW ! 1 limit comes from the matching condition (8). It
sets q0 ¼ 0 as in limTW!1

RTW=2
�TW=2 dt

R
dq0 expð�iq0tÞgðq0Þ ¼

gð0Þ.
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The situation is very similar to the quark-antiquark case
and it is straightforward to check that the final result up to
NLO agrees with Eq. (31).

B. Color factors in the one-loop exponentiation

In this section, we prove Eqs. (27) and (28) for all color
representations. In the singlet case, for all q and q0 we
obtain

fð1Þq ðSÞlad ¼ fð1Þ
qq0 ðSÞ3body ¼ 4

9: (32)

Together with Eq. (16), this proves Eqs. (27) and (28).
Analogously, in the decuplet case, for all q and q0 we
obtain

fð1Þq ð�Þlad ¼ fð1Þ
qq0 ð�Þ3body ¼ 1

9; (33)

which again, together with Eq. (18), proves Eqs. (27) and

(28). In the octet case, fð1Þq ðOÞlad, as defined in Eq. (24),

fð1Þ
qq0 ðCÞ3body, as defined in Eq. (26), and fð0Þq ðOÞ, as defined

in Eq. (20), are 2� 2 matrices. By explicit computation,
one can show that

fð1Þ1 ðOÞlad ¼
4
9 0
0 1

9

 !
¼ ðfð0Þ1 ðOÞÞ2;

fð1Þ2 ðOÞlad ¼
7
36

1
4
ffiffi
3

p
1

4
ffiffi
3

p 13
36

 !
¼ ðfð0Þ2 ðOÞÞ2;

fð1Þ3 ðOÞlad ¼
7
36 � 1

4
ffiffi
3

p

� 1
4
ffiffi
3

p 13
36

 !
¼ ðfð0Þ3 ðOÞÞ2;

(34)

which proves Eq. (27). One can also show that

fð1Þ13 ðOÞ3body ¼
� 1

18 � 1
2
ffiffi
3

p
1

4
ffiffi
3

p � 5
36

 !
¼ fð0Þ1 ðOÞfð0Þ3 ðOÞ;

fð1Þ12 ðOÞ3body ¼
� 1

18
1

2
ffiffi
3

p

� 1
4
ffiffi
3

p � 5
36

 !
¼ fð0Þ1 ðOÞfð0Þ2 ðOÞ;

fð1Þ32 ðOÞ3body ¼ � 13
72 �

ffiffi
3

p
8ffiffi

3
p
8 � 1

72

 !
¼ fð0Þ3 ðOÞfð0Þ2 ðOÞ:

(35)

This is enough to prove Eq. (28), because, fð0Þq ðOÞ being
symmetric, it holds that ðfð0Þq ðOÞfð0Þ

q0 ðOÞÞT ¼
fð0Þ
q0 ðOÞfð0Þq ðOÞ, and, moreover, ðfð1Þ

qq0 ðOÞ3bodyÞT ¼
fð1Þq0qðOÞ3body.6

V. THE CASE OF N COLORS AND N QUARKS

A generalization of Eq. (7) to N > 3 colors but with
three quarks can be easily obtained using the Hook length
formula on the corresponding Young tableaux [49].
However, a system made of three quarks and N � 3 colors
does not contain a color-singlet state. For this reason, in the
following, we will consider the case of N quarks and N
colors. With the increase in the number of quarks, also the
number of representations increases rapidly, but we will
always have a totally antisymmetric representation (the
color-singlet one) and a totally symmetric representation,
whose dimension is ð2N�1

N Þ, i.e. the number of independent

entries in a totally symmetric tensor of rank N with indices
running from 1 to N.
The singlet representation (A1) can be easily general-

ized to any given number N of colors and quarks using the
Levi-Civita tensor "ijk��� of rank N. Since

"ijk���"ijk��� ¼ N!; (36)

where repeated indices are summed from 1 to N, the
normalized totally antisymmetric singlet tensor is given by

~S ijkl��� ¼
"ijkl���ffiffiffiffiffiffi
N!

p ; (37)

where, from now on, a tilde will designate representations
with N colors and quarks. We provide now an expression

for the color factors fð0Þq ð~SÞ relevant at LO. Since the singlet
tensor is totally antisymmetric, the factors fð0Þq ð~SÞ are equal
for all q. The product of two Levi-Civita tensors can be
expressed as a determinant of Kronecker � symbols in the
following way:

"ijk���"mnl��� ¼ det

�im �in �il � � �
�jm �jn �jl � � �
�km �kn �kl � � �
..
. ..

. ..
.

0
BBBB@

1
CCCCA; (38)

which generalizes the three-dimensional identity
"ijk"lmn ¼ �ilð�jm�kn � �jn�kmÞ � �imð�jl�kn �
�jn�klÞ þ �inð�jl�km � �jm�klÞ. Using this property we

obtain the color factor [39]

fð0Þq ð~SÞ¼"ijkl���ffiffiffiffiffiffi
N!

p Ta
imT

a
jn�ko�lp �� �

"mnop���ffiffiffiffiffiffi
N!

p ¼� CF

N�1
8 q;

(39)

where CF ¼ ðN2 � 1Þ=2=N.
The singlet LO potential is then

Vð0Þ
~s ðrÞ ¼ � CF

N � 1
�s

Xn
q¼1

1

jrqj ; (40)

where the sum runs over all n ¼ NðN � 1Þ=2 possible one-
gluon exchanges between two different quark lines and r is
the dimension NðN � 1Þ=2 vector (x1 � x2; . . . ;x1 �
xN;x2 � x3; . . . ;xN�1 � xN). We observe that the singlet

6The fact that the fð1Þqq0 ðOÞ3body matrices are not symmetric
under the exchange q $ q0 does not contradict time-reversal
invariance, since, in the complete three-body amplitude, for each

diagram proportional to fð1Þqq0 ðOÞ3body=ðjrqjjrq0 jÞ there is a dia-

gram proportional to fð1Þq0qðOÞ3body=ðjrqjjrq0 jÞ that restores the
symmetry.
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Q �Q potential is N � 1 times each two-body component of
the singlet potential of a baryon made of N quarks, which
generalizes the well-known result that the quark-quark
potential in an ordinary baryon (N ¼ 3) is half the quark-
antiquark potential. This may be understood in the follow-
ing way: if we collapse N � 1 quarks in the same position
the remaining one will ‘‘see’’ N � 1 times the quark-quark
potential. This, in turn, corresponds to the quark-antiquark
potential, since the SUðNÞ antisymmetric representation of
rank N � 1 describing a system of N � 1 quarks in a
totally antisymmetric color state has dimension N and
corresponds to the conjugate of the fundamental represen-
tation, i.e. the representation describing an antiquark.

For what concerns the totally symmetric representation,

let ~�u
ijk��� be a generic symmetric tensor, with u running

from 1 to ð2N�1
N Þ. The totally symmetric equivalent of

Eq. (38) is

Xð2N�1
N Þ

u¼1

~�u
ijk��� ~�

u
i0j0k0��� ¼

1

N!

X

ði0j0k0...Þ

�ii0�jj0�kk0 � � � ; (41)

where, on the right-hand side, there areN Kronecker deltas
and the sum is understood to be performed over all permu-

tations of the indices i0j0k0 � � � . The tensors ~�u
ijk��� are

normalized as

~� u
ijkl��� ~�

v
ijkl��� ¼ �uv: (42)

In analogy with Eq. (39), the totally symmetric color factor
relevant at LO is

fð0Þq ð~�Þ ¼
~�u
ijkl���Ta

ii0T
a
jj0�kk0�ll0 � � � ~�v

i0j0k0l0���
~�u
ijkl��� ~�

v
ijkl���

¼ CF

Nþ 1
8 q:

(43)

The result follows from

Ta
ii0T

a
jj0 ¼ ��ii0�jj0

2N
þ �ij0�ji0

2
; (44)

the totally symmetric nature of ~�u
ijkl��� and the normaliza-

tion (42). The LO totally symmetric potential is then

Vð0Þ
~d
ðrÞ ¼ CF

N þ 1
�s

Xn
q¼1

1

jrqj ; (45)

where, as before, n ¼ NðN � 1Þ=2.
We prove now the exponentiation of the color-singlet

and color-symmetric potentials at NLO, i.e. Eqs. (27) and
(28), for a baryon in SUðNÞ made of N quarks. We can

write the color factor fð1Þq ð~SÞlad as

fð1Þq ð~SÞlad ¼
"ijkl���ffiffiffiffiffiffi
N!

p Ta
ixT

b
xmT

a
jyT

b
yn�ko�lp � � �

"mnop���ffiffiffiffiffiffi
N!

p ;

and the color factor fð1Þq ð~�Þlad as

fð1Þq ð~�Þlad ¼
~�u
ijkl���Ta

ixT
b
xmT

a
jyT

b
yn�ko�lp � � � ~�v

mnop���
~�u
ijkl��� ~�

v
ijkl���

:

Using Eq. (44), the totally antisymmetric nature of "mnop���,
the totally symmetric nature of ~�u

ijkl���, and the normal-

izations (36) and (42) we obtain

fð1Þq ð~S; ~�Þlad ¼
�

CF

N 	 1

�
2 8 q;

where the upper sign refers to the antisymmetric case and
the lower sign to the symmetric one. This proves that

fð1Þq ð~SÞlad and fð1Þq ð~�Þlad are the squares of fð0Þq ð~SÞ and

fð0Þq ð~�Þ respectively, i.e. Eq. (27).
For the three-body diagram we adopt a similar proce-

dure, with the difference that here the contracted indices
will be N � 3.7 The color factors are then, for all q and q0,

fð1Þ
qq0 ð~SÞ3body ¼

"ijkl���ffiffiffiffiffiffi
N!

p Ta
ixT

b
xmT

a
jnT

b
ko�lp � � �

"mnop���ffiffiffiffiffiffi
N!

p ;

and

fð1Þ
qq0 ð~�Þ3body ¼

~�u
ijkl���Ta

ixT
b
xmT

a
jnT

b
ko�lp � � � ~�v

mnop���
~�u
ijkl��� ~�

v
ijkl���

:

Proceeding like before, we obtain

fð1Þ
qq0 ð~S; ~�Þ3body ¼

�
CF

N 	 1

�
2 8 q; q0; (46)

which proves Eq. (28) for the antisymmetric (upper sign)
and the symmetric (lower sign) case.

VI. THE THREE-BODY PART OF THE STATIC
POTENTIAL AT NNLO

We may ask when a genuine three-body interaction, i.e.
a contribution which is not the sum of three 1=jrqj terms

and is not generated by the exponentiation of two-quark
interactions, shows up in the Wilson loop. This happens at
order g6. More precisely, we write8

7For definiteness, we assume the two gluons to be attached to
the same quark line. However, starting from N ¼ 4 quark lines,
it is also possible that a gluon is exchanged between two quarks
and a second one is exchanged between two different quarks.
This is again a 1=ðjrqjjrq0 jÞ term and by similar arguments it can
be shown that its color factor is also the square of (39), thus
obeying (28).

8We assume that lnð�jrqjÞ terms have been resummed such
that the potential up to NLO reads

VCðrÞ ¼
X3
q¼1

fð0Þq ðCÞ�sð1=jrqjÞ
jrqj

�
1þ �sð1=jrqjÞ

4�
ð2�0	E þ a1Þ

�
:

Under this condition, terms like lnð�jrqjÞ or ln2ð�jrqjÞ are
absent at NNLO.
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Vð2Þ
C ðrÞ ¼ V3body

C ðrÞ þ �3
s

X3
q¼1

a
2body
q ðCÞ
jrqj ; (47)

where the three-body part of Vð2Þ
C , V3body

C , is defined as the

part of Vð2Þ
C that vanishes when putting one of the quarks at

infinite distance from the other two, i.e. in the limit jrij,
jrjj ! 1 (i � j) with fixed jrkj (k � i and k � j). Since

Vð2Þ
C is gauge invariant, then, by definition, also the numeri-

cal coefficients a2bodyq ðCÞ and V3body
C are. V3body

C may only

stem from diagrams with gluons attached to all three quark
lines.

At order g6, we have many diagrams that involve gluons
attached to all three quark lines. These can be divided into
some basic categories. The adoption of the Coulomb gauge
proves again useful, making only a small subset of these
diagrams different from zero. We thus have the following
diagrams, evaluated, for simplicity, between totally anti-
symmetric and symmetric color states only.

(1) The diagrams displayed in Fig. 5 contribute to the
exponentiation of the tree-level and one-loop poten-
tials. At this order of perturbation theory, the match-
ing condition is given by Eq. (13). It is easily shown
that the amplitudes of the diagrams (a)–(c) are9

(48)

(49)

Keeping in mind that there are three diagrams of
the form of Eq. (48), one of type (a) and two of
type (b), for each q, q0 pair, and six diagrams of the
type of Eq. (49), it is easy to see that their contri-

butions cancel against �Mð0ÞðC; rÞMð1ÞðC; rÞ þ
Mð0Þ3ðC; rÞ=3 in the matching condition (13) and

therefore do not contribute to Vð2Þ
C ðrÞ.

The amplitude of diagram (d) can be obtained from
Eq. (25) substituting one of the two longitudinal
gluon propagators with Eq. (29), yielding

(50)
×

Recalling that we already proved the exponentiation

relation of the color factor fð1Þ
qq0 ðCÞ3body in Sec. IVB,

from Eqs. (14) and (31) we see that diagrams of type
(d) (two for each q,q0 pair) cancel against

�Mð0ÞðC; rÞMð1ÞðC; rÞ in Eq. (13).
(2) Abelian diagrams such as the ones in Fig. 6 are

easily shown to be zero in Coulomb gauge.
However in different gauges, such as the Feynman
gauge, these diagrams are expected to give a con-
tribution to the exponentiation and a contribution to
the order �3

s result, as their two-body counterparts
do in the Q �Q case [8,9,44].

(3) The non-Abelian diagrams shown in Fig. 7 also
vanish. Figure 7(a) has a vanishing color factor
between singlet-singlet and decuplet-decuplet
initial-final states and, in Coulomb gauge, a vanish-
ing amplitude as well. The dashed blob in Fig. 7(b)
is a loop of gluons or fermions. Lorentz invariance

FIG. 5. Three-body diagrams at NNLO that contribute, in Coulomb gauge, to the exponentiation of the LO and NLO potential.

9In the general case of a baryon in SUðNÞ made of N quarks,

faqq0 ð~S; ~�Þ ¼ fbqq0 ð~S; ~�Þ ¼ fcqq0q00 ð~S; ~�Þ ¼
�
	 CF

N 	 1

�
3
;

for all q, q0, and q00. The upper signs refer to the antisymmetric
(singlet) representation and the lower signs to the symmetric
representation.
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dictates that its Lorentz tensor structure has to be
composed by combinations of a metric tensor g��

and the external momenta q�i . Since the sources are
static, this guarantees that the Lorentz structure is
proportional to at least one power of q0i . By means
of the usual argument, in the TW ! 1 limit, q0i gets
multiplied by �ðq0i Þ and vanishes. Finally, also
Figs. 7(c) and 7(d) vanish because they involve
non-Abelian vertices with longitudinal gluons only.

(4) We are then left with diagrams of the type shown in
Fig. 8: in Coulomb gauge, these are the only ones
contributing to the three-body interaction.

We now proceed to the evaluation of the diagrams of
Fig. 8. There are six different diagrams of each type (a) and
(b): for each source line there are two diagrams where this
line couples to two gluons (like the bottom line in Fig. 8).
These two diagrams are symmetric with respect to a per-
mutation of the other two lines. We call H a

C and H b
C the

momentum-space amplitudes of the diagrams in Figs. 8(a)
and 8(b) respectively and HC ¼ H a

C þH b
C.

We consider now the color structure of the diagrams in
Fig. 8. The color factors fH ðSÞ and fH ð�Þ are equal for all
12 diagrams:

fH ðSÞ ¼ �1
2 and fH ð�Þ ¼ �1

4: (51)

We note that the singlet and decuplet color factors share the
same sign; hence also the contributions to the potential

FIG. 7. Non-Abelian three-body diagrams that have zero am-
plitude in Coulomb gauge.

FIG. 8. The only three-body diagrams that are not exponentia-
tions and that have a nonvanishing amplitude in Coulomb gauge.
Dashed lines are longitudinal gluons, and curly lines are trans-
verse ones.

FIG. 6. Abelian three-body diagrams that have zero amplitude in Coulomb gauge.
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from these diagrams will share the same sign, at variance
with the tree-level and one-loop results.10

We compute now HC. We call q2 and q3 the momenta
that flow out of the first and second quark lines. Setting to
zero the external energies, we obtain

H a
Cðq2;q3Þ ¼ � fH ðCÞg6

q2
2q

2
3

Z d4k

ð2�Þ4

� 4ðq2 � k̂q3 � k̂� q2 � q3Þ
ðk0 þ i�Þðk� q2Þ2ðkþ q3Þ2ðk2 þ i�Þ ;

(52)

and

H b
Cðq2;q3Þ ¼ �fH ðCÞg6

q2
2q

2
3

Z d4k

ð2�Þ4

� 4ðq2 � k̂q3 � k̂� q2 � q3Þ
ð�k0 þ i�Þðk� q2Þ2ðkþ q3Þ2ðk2 þ i�Þ :

(53)

Summing H a
C and H b

C yields

HCðq2;q3Þ¼�ifH ðCÞg6
q2
2q

2
3

Z d3k

ð2�Þ3
4ðq2 � k̂q3 � k̂�q2 �q3Þ
k2ðk�q2Þ2ðkþq3Þ2

¼ ifH ðCÞg6
8q2

2q
2
3

�jq2þq3j
jq2jjq3j þ

q2 �q3þjq2jjq3j
jq2jjq3jjq2þq3j

� 1

jq2j�
1

jq3j
�
: (54)

The contribution of this diagram to the potential in position
space is

VHCðr2; r3Þ ¼ i
Z d3q2

ð2�Þ3 e
iq2�r2

Z d3q3

ð2�Þ3 e
iq3�r3HCðq2;q3Þ;

(55)

the total contribution of all 12 diagrams of the type shown
in Fig. 8 is

Vtot
HCðrÞ ¼ 2½VHCðr2; r3Þ þ VHCðr1;�r3Þ

þ VHCð�r2;�r1Þ�: (56)

As shown in Appendix B, V tot
HCðrÞmay be expressed as a

double integral suitable for numerical evaluation. We have
considered the following geometries.
(A) Isosceles geometry in a plane.—In this geometry, the

three quarks are placed in different positions of the same
plane, with two distances chosen to be equal: jr2j ¼ jr3j ¼
r and r̂2 � r̂3 ¼ cos�. The quarks are located at the vertices
of an isosceles triangle. The potential V tot

HC
depends on r

and �; it has the form

V tot
HC

ðr; �Þ ¼ fH ðCÞ�3
s

cH ð�Þ
r

: (57)

In Fig. 9(a), we plot cH ð�Þ as a function of �. The
coefficient is always positive, giving rise to an attractive
contribution to the potential, both in the singlet and dec-
uplet channels [we recall that the color factors (51) are
negative]. The dependence on the angle �, i.e. on the
geometry of the configuration at fixed r, is weak: cH ð�Þ
ranges from a maximum of about 1.46 at � � 0:65 to a
minimum of about 0.49 at � ¼ �. On the contrary, the
dependence on the geometry of the two-body contributions
to the potential, such as Eq. (14), is much stronger. In
particular, the two-body contribution diverges in jr1j ¼
0, i.e. for � ¼ 0.
The weaker dependence on the geometry of the three-

body contribution with respect to the two-body contribu-
tion could signal the onset of a smooth transition toward
the long-distance Y-shaped three-body potential seen in the
lattice data. This long-distance potential turns out to de-
pend only on one length, L, which is the sum of the
distances between the Fermat point of the triangle made
of the three quarks and the three quarks. For isosceles
triangles, L has the following dependence on r and �:

10For the antisymmetric and symmetric representations of a SUðNÞ baryon made of N quarks, the color factors are given by

fH ð~SÞ ¼ "ijkl���ffiffiffiffiffiffi
N!

p Td
imT

a
jnT

b
krT

e
rof

bdcfaec�lp � � �
"mnop���ffiffiffiffiffiffi

N!
p ; fH ð~�Þ ¼

~�u
ijkl���Td

imT
a
jnT

b
krT

e
rof

bdcfaec�lp � � � ~�v
mnop���

~�u
ijkl��� ~�

v
mnop���

:

Using (without summing over u),

"ijkl1���lN�3ffiffiffiffiffiffi
N!

p "mnol1���lN�3ffiffiffiffiffiffi
N!

p ¼ �imð�jn�ko � �jo�nkÞ � �inð�jm�ko � �jo�kmÞ � �ioð�jn�km � �jm�knÞ
NðN � 2ÞðN � 1Þ ;

~�u
ijkl1���lN�3

~�u
mnol1���lN�3

¼ �imð�jn�ko þ �jo�nkÞ þ �inð�jm�ko þ �jo�kmÞ þ �ioð�jn�km þ �jm�knÞ
NðN þ 2ÞðN þ 1Þ ;

we obtain

fH ð~S; ~�Þ ¼ �N 
 1

8
:
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L¼ gð�Þr;

where gð�Þ ¼
�
cos�2 þ

ffiffiffi
3

p
sin�2 for 0 �  2�=3;

2 for 2�=3<�  �:
(58)

Note that the Fermat point of any triangle with an angle
greater or equal than 2�=3 is located at the vertex of that
angle. In terms of L, Eq. (57) becomes

Vtot
HC

ðL; �Þ ¼ fH ðCÞ�3
s

gð�ÞcH ð�Þ
L

: (59)

In Fig. 9(b), for completeness, we plot gð�ÞcH ð�Þ as a
function of �. The plot is qualitatively very similar to the
plot of cH ð�Þ: the maximum gets shifted to � � 1:047,
numerically equivalent to the equilateral geometry � ¼
�=3, which thus appears to be the energetically favored
one for Vtot

HC
ðL; �Þ at fixed L.

(A.1) � ¼ 0: Two quarks in the same position.—A spe-
cial case of isosceles geometry is � ¼ 0, where two quarks
are located in the same position. From

R
dðq̂2 �

q̂3ÞHCðq2;q3Þ ¼ 0, it follows that VHCð0; r3Þ ¼
VHCðr2; 0Þ ¼ 0, hence V tot

HC
ðr; 0Þ ¼ 2VHCðr; rÞ. The

three-body potential is finite and given by

V tot
HC

ðr; 0Þ ¼ fH ðCÞ�3
s

cH ð0Þ
r

; with

cH ð0Þ ¼ 6� �2

2
:

(60)

(A.2) � ¼ �=3: Planar equilateral geometry.—In the
equilateral case, we have cH ð�=3Þ � 1:377. We may
compare the relative magnitude of the three-body contri-
bution to the tree-level potential. In the singlet case
[cf. Eq. (17)], the ratio yields

V tot
H s

ðrÞ
Vð0Þ
s ðrÞ ¼ cH ð�=3Þ

4
�2
s ð1=rÞ � �2

s ð1=rÞ
2:90

; (61)

where we have made explicit the scale dependence of the
coupling constant. We note that, using �s at one loop,
Vtot
H s

ðrÞ may become as large as one-sixth of the tree-level

Coulomb potential in the region around 0.3 fm, where, at
least in the Q �Q case, perturbation theory still holds [13].
(B) Generic geometry.—In the most general geometry,

the three-body potential (56) depends on two coordinates.
We may arbitrarily chose one of these coordinates to be L,
leaving the other unspecified. If we call a, b, c the lengths
of the three sides of the triangle made of the three quarks,
then L is given by [37]

L¼
�
a2þb2þc2

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðaþbþcÞð�aþbþcÞða�bþcÞðaþb�cÞp

2

�
1=2

for�max2�

3
;

L¼aþbþc�maxða;b;cÞ for�max>
2�

3
; (62)

where �max is the largest angle of the triangle.
(B.1) Planar lattice geometry with two fixed quarks.—In

Fig. 10, we plot the three-body potential obtained by plac-
ing the three quarks in a plane ðx; yÞ, fixing the position of
the first quark in (0, 0), the second one in (1, 0), and
moving the third one in the lattice (0:5þ 0:125nx,
0:125ny) with nx 2 f0; 1; . . . ; 20g and ny 2 f0; 1; . . . ; 24g.
The plot clearly shows the dependence on the geometry at
fixed L; however, the dependence is weaker than in the
two-body case.
(B.2) Three-dimensional lattice geometry with the three

quarks moving along the axes.—In the lattice calculation of
Ref. [28], the three quarks were located along the axes of a
three-dimensional lattice, namely, at ðnx; 0; 0Þ, ð0; ny; 0Þ,
and ð0;0;nzÞ, with nx2f0;1; . . . ;6g and ny, nz 2 f1; . . . ;6g.
For the sake of comparison, we consider the same geome-

0.5 1.0 1.5 2.0 2.5 3.0

0.6

0.8

1.0

1.2

1.4

cH

(a)

0.5 1.0 1.5 2.0 2.5 3.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

g cH

(b)

FIG. 9 (color online). (a) We plot the coefficient cH ð�Þ as defined in Eq. (57) and obtained from the numerical integration of Eq.
(B3). (b) We plot gð�ÞcH ð�Þ.
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try and plot the corresponding three-body potential in
Fig. 11. The plot shows a weak dependence on the geome-
try: much weaker than in the two-body case, but also
somewhat weaker than in the geometry considered in
(B1).

As a final remark, we would like to note that V tot
HC, the

contribution of the diagrams shown in Fig. 8 calculated in
Coulomb gauge, has an unambiguous physical meaning.
From Eq. (B3), it can be seen that this contribution van-
ishes when one of the quarks is put at infinite distance from
the other two. Hence no two-body contribution gets en-
tangled in V tot

HC
, which can be rightfully identified with the

three-body potential, V
3body
C , defined in Eq. (47).

VII. THE COLOR-SINGLET STATIC POTENTIAL
AT NNLO

In the color-singlet case, Eq. (47) becomes

Vð2Þ
s ðrÞ ¼ V

3body
s ðrÞ þ �3

sa
2bodyðSÞX3

q¼1

1

jrqj : (63)

The coefficient a2bodyðSÞ is independent of the geometry of
the three quarks: we can take advantage of this fact and
calculate a2bodyðSÞ without performing any explicit two-
loop calculation. In a configuration like the one described

in (A1), Vð2Þ
s is only a function of the distance r between

one quark and the other two located at the same point:

Vð2Þ
s ðrÞ ¼ �

�
3� �2

4

�
�3
s

r
þ 2�3

s

a2bodyðSÞ
r

; (64)

up to a singular term independent on r that we may drop,
for instance, by dimensionally regularizing the potential in

momentum space. In this configuration, Vð2Þ
s ðrÞ is equal to

the static quark-antiquark potential, because, when three
quarks are in a color-singlet configuration and two of them
are located at the same point, these two behave as an
antitriplet in color space, i.e. as an antiquark. Owing to
the two-loop result of the quark-antiquark potential, we
may therefore write [9]

Vð2Þ
s ðrÞ ¼ � 4

3

�3
s

r

1

ð4�Þ2
�
a2 þ

�
�2

3
þ 4	2

E

�
�2

0

þ 	Eð4a1�0 þ 2�1Þ
�
; (65)

where �1 ¼ 102� 38nf=3 and

a2 ¼ 4343

18
þ 36�2 � 9

4
�4 þ 66ð3Þ

�
�
1229

27
þ 52

3
ð3Þ

�
nf þ 100

81
n2f: (66)

From Eqs. (64) and (65), it follows that

a2bodyðSÞ ¼ � 2

3

1

ð4�Þ2
�
a2 � 36�2 þ 3�4

þ
�
�2

3
þ 4	2

E

�
�2

0 þ 	Eð4a1�0 þ 2�1Þ
�
: (67)

The complete NNLO expression of the three-quark color-

singlet static potential, Vð2Þ
s ðrÞ, is then given by Eq. (63),

where V3body
s ðrÞ ¼ V tot

H s
ðrÞ can be read from Eqs. (56) and

(B3), and a2bodyðSÞ from Eq. (67). The explicit expression
of the color-singlet static potential up to NNLO is listed in
Eq. (68).

VIII. CONCLUSIONS

We have studied the static potential of a three-quark
system in perturbation theory up to NNLO. Up to NLO,
we have analyzed all the color channels (singlet, octets,
and decuplet) of the SU(3) case and the results have been
generalized to SUðNÞ with N quarks for the totally anti-
symmetric and totally symmetric channels. At LO, the
potential is a sum of three Coulombic one-gluon exchanges
between two of the three quarks. We have pointed out that,
already at this order, octets mix. At NLO, after proving the

2 4 6 8 10 12 14
L

1.2

1.0

0.8

0.6

0.4

0.2

FIG. 11 (color online). The normalized three-body potential,
V tot
HC

ðL; . . .Þ=ð�fH ðCÞ�3
s Þ, plotted as a function of L for the

geometry described in (B2).
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L

1.4

1.2

1.0

0.8
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0.4

FIG. 10 (color online). The normalized three-body potential,
V tot
HC

ðL; . . .Þ=ð�fH ðCÞ�3
s Þ, plotted as a function of L for the

geometry described in (B1).
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potential exponentiation, the potential turns out to be sim-
ply a sum of two-body contributions, whose effective
coupling �V is independent of the considered color state
and is the same as for theQ �Q,QQ, andQQQ potentials. It
is expected that�V becomes dependent on the color state at
NNLO, as it happens in the Q �Q case.

At NNLO, the first genuine three-body contribution
appears. Three-body contributions are specific features of
theQQQ potential and for this reason of particular interest.

We have calculated this contribution, providing numerical
results for several geometrical configurations. The general
outcome is that the dependence on the geometry of the
three-body force is weaker than for the two-body force.
Combining the three-body contribution with the two-body
contribution extracted from the NNLO expression of the
quark-antiquark static potential, we have obtained the
complete three-quark color-singlet static potential at
NNLO. It reads

VsðrÞ ¼ � 2

3

X3
q¼1

�sð1=jrqjÞ
jrqj

�
1þ �sð1=jrqjÞ

4�

�
31

3
þ 22	E �

�
10

9
þ 4

3
	E

�
nf

�
þ
�
�sð1=jrqjÞ

4�

�
2
�
þ66ð3Þ þ 484	2

E

þ 1976

3
	E þ 3

4
�4 þ 121

3
�2 þ 4343

18
�
�
52

3
ð3Þ þ 176

3
	2
E þ 916

9
	E þ 44

9
�2 þ 1229

27

�
nf þ

�
16

9
	2
E þ 80

27
	E

þ 4

27
�2 þ 100

81

�
n2f

��
� �s

�
�s

4�

�
2½vH ðr2; r3Þ þ vH ðr1;�r3Þ þ vH ð�r2;�r1Þ�; (68)

where

vH ðr2; r3Þ ¼ 16�r̂2 � r̂3
Z 1

0
dx

Z 1

0
dy

1

R

��
1�M2

R2

�

� arctan
R

M
þM

R

�
þ 16�r̂i2r̂

j
3

Z 1

0
dx

Z 1

0
dy

� R̂iR̂j

R

��
1þ 3

M2

R2

�
arctan

R

M
� 3

M

R

�
;

with R ¼ xr2 � yr3, R ¼ jRj, and M ¼ jr2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp þ

jr3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� yÞp

. Note that by pulling one of the quarks at
infinite distance from the others, the three-body potential
as well as two of the two-body potentials vanish and Eq.
(68) reduces to the quark-quark antitriplet static potential
at NNLO, relevant for QQq baryons.

In [24], also the three-loop leading logarithmic contri-
bution in the infrared cutoff has been calculated. Since that
calculation does not account for the octet mixing, its result
applies for geometries where the mixing cancels, like the
isosceles one. It would be interesting to extend that calcu-
lation to generic geometries and combine the result with
the complete NNLO result given above.

Other possible future developments include compari-
sons with lattice results. They exist both for the ground
state (the color-singlet state) and for the possibly first
gluonic excitation of theQQQ system [27,28]. An accurate
comparison in the short range will show the running of the
three-body potential and determine at which distances a
perturbative description of the three-body potential breaks
down. It may also serve to establish the nature of the
gluonic excitation seen in the lattice data, determine if it
is indeed the first excitation and clarify if, in the short
range, the three static quarks assume a singlet, an octet, or a
decuplet color configuration; it may also serve to extract
the masses of the gluelumps made of three static quarks.
For all this it is crucial that octet mixing is properly taken
into account in the analysis and in the lattice setup if

geometries different from the isosceles one are used.
Finally, in the case of more general geometries, it would
provide particular insight in the nonperturbative dynamics
of QCD, to investigate the transition region from (short)
distances dominated by two-body forces (where the poten-
tials depend on two coordinates) to (long) distances domi-
nated by three-body forces (where, for the Y-shaped
configuration, the potentials depend only on one string
length). In this respect, the weak dependence on the ge-
ometry shown by our results for the leading perturbative
three-body contribution could indicate a smooth transition
to the Y shape.
The QQQ static potential at higher order is relevant for

the determination of the masses of the baryons made of
three heavy quarks. Our NLO result is sufficient to provide
the masses at NLO,11 while at NNLO also 1=m and 1=m2

potentials should be included. Clearly, having a reliable
determination of the masses is of valuable help in the
experimental searches.
In [52], the possible relevance of baryonic states in the

quark-gluon-plasma phenomenology was pointed out and
in [40] finite temperature lattice QCD simulations ofQQQ
systems in all color channels were performed. The lattice
data are very accurate also in the short range and clearly
distinguish (in an equilateral geometry) among the singlet
and octet (attractive) potentials and the (repulsive) decup-
let potential before screening sets in. Temperature effects
at short distances may be systematically included along the
lines developed in Ref. [53] for the Q �Q case and compari-
sons with finite temperature data may be performed.

11If implemented, our result may affect the mass determinations
obtained in Ref. [50] within a variational study of weakly
coupled baryons. We note that the value obtained there for the
bbb ground state is very close to the lattice determination of
Ref. [51], providing an indirect evidence in support of the
Coulombic nature of the system.
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In general, one expects that QQQ states in a thermal
bath will experience a much richer phenomenology than
Q �Q states. First, more color configurations are possible,
and second, among these, not only the singlet but also the
octet states are subject, at least in some geometries, to an
attractive interaction. Finally, there will be a larger variety
of possible transitions among the different states induced
by the thermal bath. Thermal transitions between color-
singlet and color-octet or color-decuplet states will likely
be the dominant source of the QQQ color-singlet thermal
decay width in the short distance, low temperature regime
as it is the case for the color-singlet to color-octet transi-
tions in the Q �Q case [53,54].
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APPENDIX A: REPRESENTATIONS

To ease the reader, we reproduce here from [24] the
tensors for the singlet, two octet, and decuplet representa-
tions in which the product of three triplet representations of
SU(3) may be decomposed. The totally antisymmetric
singlet tensor is

Sijk ¼
"ijkffiffiffiffiffi
3!

p ;(A1)

the octet antisymmetric in the indices ij is

OAa
ijk ¼ "ijqT

a
kq; OAa�

ijk ¼ "ijqT
a
qk; (A2)

where the index q is summed from 1 to 3, the octet
symmetric in ij is

OSa
ijk ¼

1ffiffiffi
3

p ð"ikqTa
jq þ "jkqT

a
iqÞ;

OSa�
ijk ¼ 1ffiffiffi

3
p ð"ikqTa

qj þ "jkqT
a
qiÞ;

(A3)

and the symmetric decuplet is

�1
111 ¼ �5

222 ¼ �10
333 ¼ 1; �2

112 ¼ �2
121 ¼ �2

211 ¼
1ffiffiffi
3

p ; �3
122 ¼ �3

221 ¼ �3
212 ¼

1ffiffiffi
3

p ;

�4
113 ¼ �4

131 ¼ �4
311 ¼

1ffiffiffi
3

p ; �7
133 ¼ �7

331 ¼ �7
313 ¼

1ffiffiffi
3

p ; �8
223 ¼ �8

322 ¼ �8
232 ¼

1ffiffiffi
3

p ;

�9
233 ¼ �9

332 ¼ �9
323 ¼

1ffiffiffi
3

p ; �6
123 ¼ �6

132 ¼ �6
213 ¼ �6

231 ¼ �6
312 ¼ �6

321 ¼
1ffiffiffi
6

p :

(A4)

One can easily check the following normalization and
orthogonality relations:

SijkSijk ¼ 1;

OAa�
ijk OAb

ijk ¼ OSa�
ijk O

Sb
ijk ¼ �ab;

�

ijk�

�
ijk ¼ �
�;

SijkO
Ab
ijk ¼ SijkO

Sb
ijk ¼ Sijk�



ijk ¼ OAa�

ijk O
Sb
ijk

¼ OAa�
ijk �


ijk ¼ OSa�
ijk �



ijk ¼ 0: (A5)

APPENDIX B: POSITION-SPACE THREE-BODY
POTENTIAL

From Eqs. (54) and (55), VHCðr2; r3Þ may be written as

VHCðr2; r3Þ ¼ fH ðCÞg6
Z d3q2

ð2�Þ3
Z d3q3

ð2�Þ3
Z d3k

ð2�Þ3

� 4ðq2 � k̂q3 � k̂� q2 � q3Þeiq2�r2eiq3�r3

q2
2q

2
3k

2ðk� q2Þ2ðkþ q3Þ2
:

In order to evaluate the integrals, it is convenient to in-
troduce the Feynman parameters x and y:

Z d3q2

ð2�Þ3
qi
2e

iq2�r2

q2
2ðk� q2Þ2

¼ �i@ir2

Z 1

0
dx

Z d3q2

ð2�Þ3

� eiq2�r2

½q2
2ð1� xÞ þ ðk� q2Þ2x�2

;

(B1)

Z d3q3

ð2�Þ3
qi
3e

iq3�r3

q2
3ðkþ q3Þ2

¼ �i@ir3

Z 1

0
dy

Z d3q3

ð2�Þ3

� eiq3�r3

½q2
3ð1� yÞ þ ðkþ q3Þ2y�2

:

(B2)

In this form, the integrals in q2, q3, and k can be performed
analytically and VHCðr2; r3Þ ends up as a two-dimensional
integral in x and y:

VHCðr2; r3Þ ¼
fH ðCÞ�3

s

�
r̂i2r̂

j
3

Z 1

0
dx

Z 1

0
dy

1

R

�
�
�ij

��
1�M2

R2

�
arctan

R

M
þM

R

�

þ R̂iR̂j

��
1þ 3

M2

R2

�
arctan

R

M
� 3

M

R

��
;

(B3)

whereR ¼ xr2 � yr3, R ¼ jRj, andM ¼ jr2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp þ

jr3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� yÞp

.
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