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In this work, we have calculated the tree level color-singlet contribution to the inclusive J=c
production in � decay of the �5

s order QCD process � ! J=c þ c �cg and �2�2
s order QED processes

� ! �� ! J=c þ c �c and � ! J=c þ gg. It is found that the contribution of the QED processes is

comparable with that of the QCD process and the numerical results of the QCD process alone are about an

order of magnitude smaller than the previous theoretical predictions. Our prediction in total is 4:2� 10�5

which is about an order of magnitude smaller than the recent CLEO measurement on the branching

fraction Bð� ! J=c þ XÞ. It indicates that the J=c production mechanism in � decay is not well

understood and further theoretical work and experimental analysis are still necessary.
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I. INTRODUCTION

Since the discovery of c �c state J=c and b �b state�more
than three decades ago, the heavy-quarkonium system has
served as a good laboratory for testing QCD from both
perturbative and nonperturbative aspects. With the accu-
mulation of new experimental data and the interesting
progress in the related theory, considerable attention has
been attracted to study heavy-quarkonium spectrum, de-
cay, and production (for a review see [1]).

On the theoretical side, the nonrelativistic QCD
(NRQCD) [2] effective field theory was introduced, based
on which the production and decay of heavy quarkonium
can be calculated with a rigorous factorization formalism.
This formalism separates the physics on the energy scale
larger than the quark mass mQ, which is related to the

annihilation or production of theQ �Q pair, from the physics
on the scale of mQv

2 order, which is relevant to the

formation of the bound state. Consequently, the inclusive
production and decay rates of heavy quarkonium are fac-
torized into the product of the short-distance coefficients,
which could be calculated perturbatively through the ex-
pansion of �s, and the corresponding long-distance matrix
elements, which can be determined by some nonperturba-
tive methods. The orders of magnitude for the long-
distance matrix elements are accounted by the powers of
v, the velocity of heavy quark in the rest frame of the
bound state. One important feature of NRQCD is that it
allows the contribution of the Q �Q pair in color-octet
configuration.

The introduction of NRQCD has greatly improved our
understanding of the production mechanism for the heavy
quarkonium. One remarkable success of NRQCD is that
the transverse momentum (pt) distributions of J=c and c 0
production at Fermilab Tevatron [3] could be well de-
scribed by the color-octet mechanism [4]. However, this

mechanism could not explain the CDF measurements of
J=c polarization [5]. Recently, the next-to-leading order
(NLO) QCD corrections to both the color-singlet and
color-octet processes have been obtained. For the color-
octet process [6], it is found that the leading-order (LO)
results are slightly changed when the NLO QCD correc-
tions are taken into account. In the color-singlet case, the
NLO QCD corrections change the LO results of the pt

distribution and polarization distribution significantly [7],
although it could not resolve the puzzle. The large impact
of NLO QCD corrections on the LO results for the color-
singlet process indicates that the contribution of the color-
octet mechanism may not be as important as we expected
before. Furthermore, the theoretical predictions [8] for the
pt distribution of� production can be comparable with the
data at Tevatron [9] within the theoretical uncertainty when
considering some of the important next-to-next-to-leading-
order �5

s contribution. However, it still cannot explain the
recent polarization measurement by the D0 collaboration
[10]
In the case of J=c production in eþe� annihilation, the

existence of the color-octet mechanism also faces a chal-
lenge. The NRQCD approach predicts that the J=c pro-
duction in eþe� annihilation at LO in �s is dominated by
eþe� ! J=c þ gg, eþe� ! J=c þ c �c, and eþe� !
J=c þ g, in which the first two are color-singlet subpro-
cesses and the last one is a color-octet subprocess. The
color-octet subprocess [11] predicts there is a peak in J=c
momentum spectrum near the kinematic end point.
Unfortunately, the peak was not found in the experimental
observation of BABAR [12] and Belle [13]. By using the
soft-collinear effective theory (SCET), the color-octet pre-
dictions [14] could be softened, but it depends on a un-
known nonperturbative shape function. Belle also extended
their analysis by deriving the associated J=c production
with the c �c pair from inclusive J=c production [15]. The
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NLO QCD calculations show that both �½eþe� ! J=c þ
c �cþ X� [16,17] and �½eþe� ! J=c þ Xnon-c �c� [18,19]
may be explained by considering only the contribution of
color-singlet processes. However, it is pointed out in
Ref. [17] that the color-octet contribution is still not yet
completely ruled out due to the incomplete measurement in
the experimental analysis.

To improve our understanding of the J=c production
mechanism, it was proposed [20,21] that the J=c produc-
tion in� decay may provide an alternate probe to study the
J=c production mechanism in the rich gluon environment.
Experimentally, the branching ratio of � ! J=c þ X was
reported to be ð1:1� 0:4� 0:2Þ � 10�3 by the CLEO
collaboration [22] based on an analysis of about 20 events.
The ARGUS collaboration obtained an upper limit of
0:68� 10�3 [23] at the 90% confidence level. With about
a 35 times larger data sample than the previous work, an
improved measurement of the J=c branching ratio and
momentum spectrum were obtained recently by the CLEO
collaboration with Bð� ! J=c þ XÞ ¼ ð6:4� 0:4�
0:6Þ � 10�4 [24]. Theoretically, the color-octet prediction
is Bð� ! J=c þ XÞ ’ 6:2� 10�4 [21] with a 10% con-
tribution from c ð2SÞ feed-down and another 10% from �cJ

[25]. However, it was found that the branching ratio of the
color-singlet process� ! J=c þ c �cg is about 5:9� 10�4

[26], which is also in agreement with experimental mea-
surement. Although both the color-singlet and color-octet
decay modes can explain the total decay rate indepen-
dently, their predictions on the J=c momentum spectrum
are significantly different. The maximum value of J=c
momentum in the color-singlet and color-octet processes
are 3.7 and 4.5 GeV, respectively. The results of CLEO
show that the J=c momentum spectrum is much softer
than the color-octet prediction and somewhat softer than
the color-singlet prediction. The process � ! J=c þ X
was also studied in the color evaporation model [27] more
than 30 years ago, but this model cannot give systematic
predictions of J=c production. Another early theoretical
work on the process � ! J=c þ X could be found in
Ref. [28].

There is a very good agreement between the LO color-
singlet predictions [26] and experimental measurements
[24]. But it seems difficult to understand the situation in
comparison with the case of the J=c production at B
factories, where there are huge discrepancies between the
LO theoretical predictions and the experimental measure-
ments. Therefore, we recalculate the branching ratio of the
color-singlet process � ! J=c þ c �cg in this paper. The
obtained result is an order of magnitude smaller than the
prediction given in Ref. [26]. We have confirmed our
results by doing two completely independent calculations.
One is to do all the calculations by writing a piece of
program in MATHEMATICA with the help of the FEYNCALC

package. The other is to use the Feynman diagram calcu-
lation (FDC) Package [29] to generate all the needed

FORTRAN source and do the numerical calculation. We

obtained exactly the same results. Moreover, to check
gauge invariance, the gluon polarization vector is explicitly
kept and then is replaced by its 4-momentum in the final
numerical calculation in the FDC version source. Definitely,
the result must be zero and our result confirms it. Then we
had a detailed discussion with Dr. Li, one of the authors of
the previous prediction [26], and found that there is an
error in the color factor treatment in their calculation.
Therefore, the correct �5

s color-singlet prediction cannot
explain the CLEO experimental measurement for � !
J=c þ X now and more theoretical consideration are
needed. So we further estimate the leading-order contribu-
tions of the QED processes � ! �� ! J=c þ c �c and
� ! J=c þ gg at �2�2

s order, in which the process � !
J=c þ gg includes two gauge invariant subsets, � !
�� ! J=c þ gg and � ! ��gg followed by �� ! J=c .
The final results show that the contributions of the QED
processes are comparable with that from the QCD process.
The rest of the paper is organized as follows: In Sec. II,

we describe the calculation on the branching ratio and J=c
momentum spectrum of the QCD process � !
J=c þ c �cg. In Sec. III, we estimate the contribution of
the two QED processes � ! J=c þ c �c and � ! J=c þ
gg. The final results and summary are given in the last
section. In Appendix A, the basic formula and method used
in the calculation are presented. A detailed treatment of the
four-body phase space is given in Appendix B.

II. THE QCD PROCESS � ! J=c þ c �cg

Now we proceed to calculate the total decay rate of� !
J=c þ c �cg and its contribution to the J=c momentum
spectrum. At leading order in �s, there are six Feynman
diagrams shown in Fig. 1. The amplitude M could be
factorized as

M ðb �b½3S1; 1�ðp0Þ ! c �c½3S1; 1�ðp1Þ þ cðp2Þ �cðp3Þ
þ gðp4ÞÞ

¼ Mbðb �b½3S1; 1�
! g�g�gÞ �Mcðg�g�
! c �c½3S1; 1� þ c �cÞ; (1)

in which the later one is universal for all six diagrams and it
is

M c ¼ g2s
ðp2 þ p1=2Þ2ðp3 þ p1=2Þ2

�uðp2Þ���c�
�vðp3Þ:

(2)

The amplitude of Mbðb �b½3S1; 1� ! g�g�gÞ, for example,
for the first diagram is
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M1
b ¼ g3sC1 Tr

�
�b�

�
�p6 0

2 þ p6 1

2 þ p6 3 þmb

ð�p0=2þ p1=2þ p3Þ2 �m2
b

� ��
p6 0

2 � p6 4 þmb

ðp0=2� p4Þ2 �m2
b

e6 3
�
; (3)

where �c and �b are the projection operators defined in
Appendix A, C1 is the corresponding color coefficient, and
e6 3 is the polarization vector of the real gluon. The ampli-
tudeMi

b for the other five diagrams could be obtained in a

similar way. An analytical expression of
P jMj2 is ob-

tained in the calculation, but is too lengthy to be presented
here.

By dimension analysis, it is easy to represent the decay
width and differential decay width of � ! J=c þ c �cg as

�ð�! J=c þc �cgÞ¼ �5
s

m5
b

fðrÞ h�jO1ð3S1Þj�i
2Nc

�hOc
1 ð3S1Þi

3�2Nc

; (4a)

d�

dj ~p1j ð�! J=c þc �cgÞ¼ �s
5

m6
b

gðr; j ~p1j=mbÞ h�jO1ð3S1Þj�i
2Nc

�hOc
1 ð3S1Þi

3�2Nc

; (4b)

where r ¼ mc=mb and fðrÞ are dimensionless, and the
function fðrÞ is the same as hðrÞ in Ref. [26]. To ensure
the validity of our calculations, we use two different kinds
of computer codes for cross-check and obtain exactly the
same results for fðrÞ and gðr; j ~p1j=mbÞ. When r ¼ 1:548

4:73 ¼
0:327, the decay width is

�ð� ! J=c þ c �cgÞ ¼ �5
s

m5
b

h�jO1ð3S1Þj�i
2Nc

hOc
1 ð3S1Þi

3� 2Nc

� 0:269: (5)

Our results of fðrÞ in the range 0:275< r < 0:381 are
listed in Table I. They are about an order of magnitude

smaller than those given in Ref. [26]. The range of r is
obtained by fixing mb ¼ M�=2 ¼ 4:73 GeV and varying
mc from 1.3 to 1.8 GeV. In addition to fðrÞ, the decay width
�ð� ! J=c þ c �cgÞ is also dependent on the choice of the
values of the two long-distance matrix elements

h�jO1ð3S1Þj�i, hOc
1 ð3S1Þi, the mass of c and b quark,

particularly on the coupling constant �s, for it is an �5
s

order process. Since the process � ! J=c þ c �cg can be
viewed as � ! gg�g� followed by g�g� ! J=c þ c �c, the
�s and mb dependence of our theoretical result can be
reduced if we normalize it by the theoretical prediction
on the decay width of � ! light hadron, which includes
the dominant decay modes � ! ggg staring at �3

s order
and � ! �� ! q �q (q ¼ u, d, s, c) starting at �2 order. In
the nonrelativistic limit, the tree level results for � decays
into 3g and q �q are given by

�ð� ! gggÞ ¼ 20�3
sð�2 � 9Þ
243m2

b

h�jO1ð3S1Þj�i; (6a)

�ð� ! q �qÞ ¼ 2�Nce
2
qe

2
b�

2

3m2
b

h�jO1ð3S1Þj�i: (6b)

Then the normalized width �c �cg
nor is given by

�c �cg
nor ¼ fðrÞ�5

shOc
1 ð3S1Þi

3ð2NcÞ2ð 20243�3
sð�2 � 9Þ þP

q

2
3�Nce

2
qe

2
b�

2Þm3
b

:

(7)

Since the 3g process is dominant in � decay, the normal-

ized width �c �cg
nor will only be proportional to �2

s approxi-
mately. The branching ratio then can be estimated by

B ð�!J=c þc �cgÞ¼�c �cg
nor �Bð�! light hadronÞ: (8)

TABLE I. The values of fðrÞ for different r ¼ mc=mb.

r 0.275 0.296 0.317 0.327 0.338 0.361 0.381

fðrÞ 0.904 0.567 0.345 0.269 0.202 0.105 0.055

FIG. 1. The six Feynman diagrams for the short-distance process: b �b½3S1; 1� ! c �c½3S1; 1� þ c �cg.
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There are two typical scales mb and mc in this process.
Since the � ! J=c þ c �cg process can be divided into
� ! gg�g� and g�g� ! J=c þ c �c, the mb scale depen-
dence of process � ! gg�g� is canceled partly in Eq. (7)
although not entirely. Then we choose the scale to be 2mc

but not 2mb in a similar way as that suggested in Ref. [20].
Setting eu¼ec¼ 2

3 , ed¼es¼eb¼�1
3 , �¼ 1

128 , r¼ 1:548
4:73 ’

0:327, mb ¼ 4:73 GeV, jRc ð0Þj2 ¼ 0:81 GeV3 being cal-

culated in potential model [30], Bð� ! light hadronÞ ¼
92% [31], and �sð2mcÞ ¼ 0:259, we predict

B ð� ! J=c þ c �cgÞ ¼ 2:27� 10�5: (9)

The normalized J=c momentum spectrum d�nor=dj ~p1j is
shown in Fig. 3. It is easy to see that the shape of the J=c
momentum spectrum is similar to that in Ref. [26],

although the prediction for the total decay width is an order
of magnitude smaller than the experimental data.

III. THE QED PROCESS � ! J=c þX

There are two QED processes � ! J=c þ c �c and � !
J=c þ gg at the leading order in �s and �. Both of them
are considered in this work and the analytical results will
be presented in the following.

A. � ! �� ! J=c þ c �c

At the leading order, there are four Feynman diagrams
for �ðp0Þ ! �� ! J=c ðp1Þ þ cðp2Þ �cðp3Þ, two of which
are shown in Fig. 2(a). The calculation procedure for this
process is very similar to that for the J=c production in
association with the c �c pair in eþe� annihilation. The
differential decay width is given by

d�

dj ~p1jð�! �� ! J=c þ c �cÞ

¼ 2�CAC
2
Fe

2
be

2
c�

2�2
sh�jO1ð3S1Þj�ihOc

1 ð3S1Þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � 4r2

q
9ð2NcÞ2m6

brx
4
1ð�� x1Þ3ð�2þ x1Þ2ð�þ x1Þ3

�
�2�x1ðð�6x61 þ 8�2x41 � 24x41 þ 64�2x31 � 18�4x21

� 64�2x21 þ 24�4Þr6 þ ð�4x71 þ 104x61 � 32�2x51 � 128x51 � 104�2x41 � 32x41 þ 36�4x31 þ 320�2x31 � 32�4x21

� 160�2x21 � 64�4x1 þ 64�4Þr4 þ ð�39x81 þ 60x71 þ 74�2x61 þ 124x61 � 152�2x51 � 128x51 � 39�4x41 � 120�2x41

þ 32x41 þ 92�4x31 þ 192�2x31 þ 4�6x21 � 4�4x21 � 64�2x21 � 64�4x1 þ 32�4Þr2 þ ð�18x91 þ 8x81 þ 36�2x71

� 14�2x61 þ 8x61 � 18�4x51 þ 4�4x41 � 16�2x41 þ 2�6x21 þ 8�4x21ÞÞ� ð�2 � x21Þ3ð6ðx21 þ 4Þr6 � 4ð5x31 � 4x21

þ 16x1 � 16Þr4 � ð�7x41 þ 4x31 þ 4x21 þ 64x1 � 32Þr2 � 2x21ð8x31 � 13x21 þ 4ÞÞ logx1 ��

x1 þ�

�
; (10)

FIG. 2. The typical Feynman diagrams for the QED processes of inclusive J=c production: (a) b �b½3S1; 1� ! �� ! c �c½3S1; 1� þ c �c,
(b) b �b½3S1; 1� ! �� ! c �c½3S1; 1� þ gg, and (c) b �b½3S1; 1� ! c �c½3S1; 1� þ gg.
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where CA¼3 and CF¼ 4
3 are the color factors,

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij ~p1j2 þ 4m2

c

p
=mb and � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1 þ 2rÞðx1 � 2rÞð1þ r2 � x1Þð1� x1Þ

p
=ð1þ r2 � x1Þ.

Integrating j ~p1j numerically and normalizing �ð� !
�� ! J=c þ c �cÞ by �ð� ! light hadronÞ, we obtain

�c �c
normal ¼

�ð� ! �� ! J=c þ c �cÞ
�ð� ! light hadronÞ

¼ 3:85�2�2
shOc

1 ð3S1Þi
6Ncð 20243�3

sð�2 � 9Þ þP
q

2
3�e

2
qe

2
b�

2Þm3
b

: (11)

By choosing the same numerical values for r, mb, eq, �,

hOc
1 ð3S1Þi, and Bð� ! light hadronÞ as those in Sec. III,

the numerical result is

B ð� ! �� ! J=c þ c �cÞ ¼ 1:14� 10�6; (12)

and the normalized J=c momentum spectrum is shown in
Fig. 3.

B. � ! J=c þ gg

The process �ðp0Þ!J=c ðp1Þþgðp2Þgðp3Þ includes
two parts, �!��!J=cþgg and �!gg�� (��!J=c ).
There are six Feynman diagrams for each part at the lead-
ing order and the typical ones are shown in Figs. 2(b) and 2
(c). We calculate the contribution of the two parts together
and the differential decay width is expressed as

d�

dj ~p1jð�! J=c þ ggÞ

¼ 32�CACFe
2
ce

2
b�

2�2
sh�jO1ð3S1Þj�ihOc

1 ð3S1Þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � 4r2

q
9ð2NcÞ2m6

br
3x1ð�1þ r2Þð2r2 � x1Þ3ð�2þ x1Þ3

�
ðr2 � 1Þð2r2 � x1Þð�2þ x1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2 þ x21

q

� ð8r8 � 4ð3x1 � 4Þr6 þ ð7x21 � 30x1 þ 32Þr4 � 2ðx31 � 8x21 þ 15x1 � 8Þr2 � 2x31 þ 7x21 � 12x1 þ 8Þ
þ 2ð1þ r2 � x1Þ

�
ðx1 � 2r2Þð2r8 þ ð5x21 � 32x1 þ 40Þr6 þ ð�6x31 þ 31x21 � 38x1 þ 6Þr4

þ x1ð2x31 � 10x21 þ 13x1 � 6Þr2 þ 5x21 � 12x1 þ 8Þ log
��2þ x1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2 þ x21

q

�2þ x1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2 þ x21

q
�
þ 2r2ð�2þ x1Þð8r10 � 12x1r

8

þ ð5x21 � 6x1 þ 6Þr6 þ ð13x21 � 38x1 þ 40Þr4 þ ð�10x31 þ 31x21 � 32x1 þ 2Þr2 þ x21ð2x21 � 6x1 þ 5ÞÞ

� log

��2r2 þ x1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2 þ x21

q

�2r2 þ x1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2 þ x21

q
���

; (13)

where x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij ~p1j2 þ 4m2

c

p
=mb, and the normalized decay

width becomes

�gg
Normal ¼

�ð� ! J=c þ ggÞ
�ð� ! light hadronÞ

¼ 60:8�2�2
shOc

1 ð3S1Þi
6Ncð 20243�3

sð�2 � 9Þ þP
q

2
3�e

2
qe

2
b�

2Þm3
b

: (14)

By using the same parameters as above, we obtain

B ð� ! J=c þ ggÞ ¼ 1:79� 10�5 (15)

and the normalized J=c momentum spectrum is plotted in
Fig. 3. In the numerical result, about 85.2% contribution
comes from the � ! gg��ðJ=c Þ part, 18.2% from the
� ! �� ! J=c gg part, and �3:4% from the interference
part.

IV. SUMMARYAND DISCUSSION

Summing up all the contributions of the color-singlet
QED and QCD processes considered above, we predict that

FIG. 3. The contributions of the QCD process � ! J=c þ
c �cg (dashed line) and QED processes � ! J=c þ gg (dot-
dashed line) and 5 times of � ! �� ! J=c þ c �c (dotted line)
to J=c momentum distribution for J=c production in � decay.
The sum of them is given by the solid line.
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the branching ratio of direct J=c production in � decay is

B directð� ! J=c þ XÞ ¼ 4:2� 10�5: (16)

The corresponding normalized J=c momentum distribu-
tion is given by the solid line in Fig. 3. It can be seen in
Fig. 3 that the contribution of the QCD process is domi-
nated in the small pc region, while the effect of the QED

process J=c þ gg is more important in the large pc

region. In Eq. (13) and the dot-dashed line in Fig. 3, the
logarithmic divergence at the kinematic end point is ob-
viously shown for the QED process J=c þ gg. It was
pointed out in Refs. [14,18,32] that both the �s and vb

expansion failed near the kinematic end point region in the
similar processes eþe� ! J=c þ X and � ! �þ X be-
cause of the large perturbative and nonperturbative correc-
tions, and the logarithmic divergent behavior can be
softened by applying the resummation in the SCET. It
can improve the J=c momentum spectrum largely near
the kinematic end point, but the correction for the total
decay width is small. Therefore we omit the resummation
effect here.

Our calculations show that at the leading order in �s, vb,
and vc, the QCD process � ! J=c þ c �cg only accounts
for 54.4% of the LO theoretical prediction for total branch-
ing ratio in spite of an enhancement factor �3

s=�
2 of the

coupling constants comparing to the QED processes. The
main reasons are that the virtuality of the two virtual gluons
are both of m2

b order in the QCD process while the virtual-

ity of the photon is fixed to 4m2
c in the QED processes

dominated by � ! gg��ðJ=c Þ and also the four-body
phase space of the QCD process is smaller than the
three-body one of the QED processes.

On the experimental side, the CLEO collaboration finds
[24] that the feed-down of�cJ to J=c is<8:2%, 11%, 10%
for J ¼ 0; 1; 2, respectively, and the feed-down of c ð2SÞ is
about 24% in � ! J=c þ X. So the center value of the
experimental result for the direct J=c production is

B Directð� ! J=c þ XÞ ¼ 3:52� 10�4 (17)

which is about 8.4 times larger than our results. This means
that, unlike the conclusion before [26], the branching ratio
of � ! J=c þ X cannot be explained by the color-singlet
model at the leading order.

The theoretical predication from the color-octet mecha-
nism can account for most J=c production in � decay, but
its prediction for the J=c momentum spectrum is not in
agreement with the experimental data. The renewed color-
singlet prediction for the shape of the J=c momentum
spectrum is closer to the experimental result, but the dis-
crepancy of the branching ratio between them is large. For
all the numerical results above, we used the theoretically
normalized decay width to estimate the branching ratios. If
we calculate the partial decay width directly with the input
of h�jO1ð3S1Þj�i ¼ 2:9 GeV3 [20] and divide it by the
total decay width �� ¼ 51:4 keV [31], the branching ratio

will be enhanced by a factor of about 3, which still cannot
explain the experimental results. Furthermore, as we dis-
cussed in Sec. III, the numerical prediction quite strongly
depends on the scale choice of �s, and the branching ratio
given in Eq. (16) corresponds to �sð2mcÞ ¼ 0:259. If we
chose the scale to be 2mb and 2

ffiffiffiffiffiffiffiffiffiffiffiffi
mbmc

p
, the theoretical

predictions become 3:6� 10�5 and 3:7� 10�5, respec-
tively, which become even smaller. It indicates that the
NLO QCD correction should be important if the color-
singlet mechanism can explain the experimental data just
like in the known cases. For example, the NLO QCD
corrections for J=c production in eþe� annihilation
show that the K factors are about 1.97 and 1.2 for eþe� !
�� ! J=c þ c �c and eþe� ! �� ! J=c þ gg processes,
respectively, and the NLO QCD corrections to 	b !
J=c J=c and � ! J=c þ 	c are also found to be quite
important [33]. In addition, the contribution of Oð�6

sÞ
processes b �bð3S1; 1Þ ! c �cð3S1; 1Þ þ gg and b �bð3S1; 1Þ !
c �cð3S1; 1Þ þ gggg to the branching ratio has been esti-
mated to be of 10�4 order [25]. So that the next important
step is to give an explicit and complete calculation of them,
which will be very helpful to understand the conflict be-
tween the color-singlet prediction and the CLEO result
[24]. Furthermore, to obtain the full QCD correction for
the inclusive J=c production in � decay would be very
interesting and challenging work, to explain the experi-
mental data. But it will involve very complicated work at
the QCD NLO and is beyond the scope of this paper.
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APPENDIX A: DESCRIPTION OF OUR BASIC
CALCULATION FORMULA

At leading order in vQ, for S-wave heavy-quarkonium

production and decay, the color-singlet model predictions
are equal to that based on NRQCD effective theory. Then
we express d�ð� ! J=c þ XÞ as
d�ð�! J=c þXÞ¼d�̂ðb �b½3S1;1�! c �c½3S1;1�

þXÞh�jO1ð3S1Þj�ihOc
1 ð3S1Þi; (A1)

where d�ðb �b½3S1; 1� ! c �c½3S1; 1� þ XÞ represents the
color-singlet b �b pair in the spin-triplet state decay into a
color-singlet c �c pair in a spin-triplet state plus anything,
which is calculated perturbatively, and h�jO1ð3S1Þj�i and
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hOc
1 ð3S1Þi are the long-distance matrix elements, which

can be related to the nonrelativistic wave functions as

h�jO1ð3S1Þj�i ’ 3

2�
jR�ð0Þj2;

hOc
1 ð3S1Þi ’

9

2�
jRc ð0Þj2:

(A2)

We employ the spinor projection method [34] to calcu-

late the short-distance part d�̂. In the nonrelativistic limit,
the amplitude of b �b½3S1; 1� ! c �c½3S1; 1� þ X could be
written as [35]

Mðb �b½3S1; 1�ðp0Þ ! c �c½3S; 1�ðp1Þ þ XÞ
¼ X

s1;s2

X
i;l

X
s3;s4

X
k;l

hs1; s2 j 1Szi

� h3i; �3j j 1i � hs3; s4 j 1S0zi
� h3k; �3l j 1i

M
�
bi

�
p0

2
; s1

�
�bj

�
p0

2
; s2

�
! ck

�
p1

2
; s3

�
�cl

�
p1

2
; s4

�
þ X

�
;

(A3)

where h3i; �3j j 1i ¼ 
ij=
ffiffiffiffiffiffi
Nc

p
, h3k; �3l j 1i ¼ 
kl=

ffiffiffiffiffiffi
Nc

p
,

hs1; s2 j 1Szi, and hs3; s4 j 1S0zi are the SU(3)-color,
SU(2)-spin, and angular momentum Clebsch-Gordan co-
efficients for Q �Q projecting on certain appropriate con-
figurations at short distance. At leading order in vQ

(Q ¼ b, c), the projection of spinors uðp0

2 ; s1Þ �vðp0

2 ; s2Þ
and vðp1

2 ; s3Þ �uðp1

2 ; s4Þ could be expressed as

�b ¼ X
s1;s2

hs1; s2 j 1Sziu
�
p0

2
; s1

�
�v

�
p0

2
; s2

�

¼ 1

2
ffiffiffi
2

p 6�ðSzÞðp6 0 � 2mbÞ; (A4a)

�c ¼
X
s3;s4

hs3; s4 j 1S0ziv
�
p1

2
; s3

�
�u

�
p1

2
; s4

�

¼ 1

2
ffiffiffi
2

p 6�ðS0zÞðp6 1 þ 2mcÞ; (A4b)

where �ðSzÞ and �ðS0zÞ are the polarization vectors of� and
J=c , respectively. For a spin ¼ 1 state with momentum p,
the sum over all its possible states Sz is

X
Sz

��ðSzÞ���ðSzÞ ¼
�
�g�� þ p�p�

p2

�
: (A5)

According to the spinor projection method, the relation

between d�̂ and jMj2 for the b �b½3S1; 1� ! c �c½3S1; 1� þ X
is

d�̂ðb �b½3S1; 1� ! c �c½3S1; 1� þ c �cgÞ

¼ 1

3

1

4mb

P jMj2
3mbmcð2NcÞ2

d�n; (A6)

where
P

means to sum over all possible polarization states
of the particles in this process and �n is the n-body phase
space. The factor ð1=2NcÞ2 with Nc ¼ 3 comes from the
normalization factor of the NRQCD four-fermion operator.

APPENDIX B: THE FOUR-BODY PHASE-SPACE
TREATMENT

The four-body phase space �4 for b �b½3S1; 1� !
c �c½3S1; 1� þ c �cg is defined as

d�4ðp0 ! p1 þ p2 þ p3 þ p4Þ ¼
Y4
k¼1

d3 ~pk

ð2�Þ32Ek

ð2�Þ4

� 
4

�
p0 �

X4
k¼1

pk

�
:

(B1)

There are many ways to perform the four-body phase-
space integration. Here we briefly introduce our method.
Using the two following identical equations,

Z d4p234

ð2�Þ4 ð2�Þ4
4ðp234 � p2 � p3 � p4Þ � 1;

Z d4p34

ð2�Þ4 ð2�Þ
4
4ðp34 � p3 � p4Þ � 1; (B2)

we transform the four-body space into the combination of
three two-body phase spaces, which is given by

d�4ðp0 ! p1 þ p2 þ p3 þ p4Þ ¼ ds234
2�

ds34
2�

d�2ðp0 ! p1 þ p234Þd�2ðp234 ! p2 þ p34Þ
� d�2ðp34 ! p3 þ p4Þ; (B3)

where s234 ¼ p2
234, s34 ¼ p2

34. The three two-body phase

space integrations are described by the three-momenta ~p1,
~p�
2, ~p

��
3 and their solid angle element d�0, d�

�
234, d�

��
34 in

the rest frames of p0, p234, and p34, respectively. Then the
expression of four-body phase space becomes

d�4 ¼
Z ds234

2�

Z j ~p1j
8ð2�Þ2mb

d�0

Z ds34
2�

�
Z

d��
234

j ~p�
2j

4ð2�Þ2 ffiffiffiffiffiffiffiffi
s234

p
Z j ~p��

3 j
4ð2�Þ2 ffiffiffiffiffiffi

s34
p d���

34;

(B4)

where j ~p1j, j ~p�
2j, and j ~p��

3 j are given in the equations below
in the rest frame of p0, p234, and p34, respectively,
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j ~p1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16m4

b þ ð�4m2
c þ s234Þ2 � 8m2

bð4m2
c þ s234Þ

q
4mb

(B5a)

j ~p�
2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs234 � ðmc � ffiffiffiffiffiffi

s34
p Þ2Þðs234 � ðmc þ ffiffiffiffiffiffi

s34
p Þ2Þ

q
2

ffiffiffiffiffiffiffiffi
s234

p
(B5b)

j ~p��
3 j ¼ s34 �m2

c

2
ffiffiffiffiffiffi
s34

p : (B5c)

The integration ranges of s234 and s34 are

4m2
c < s234 < ð2mb � 2mcÞ2;

m2
c < s34 < ð ffiffiffiffiffiffiffiffi

s234
p �mcÞ2:

(B6)

For space symmetry, d�0 and d
�
234 could be integrated

out directly and jMj2 only depends on the five variables
s234, s34, �

�
234, �

��
34, and 

��
34. To get the total decay rate, the

nontrivial integral with these five variables is performed by
three steps. First, we do the integration d���

34 in the rest

frame of p34, then we integrate out s34 and ��234 in the rest

frame of p234, the last variable s234 is integrated out in �
rest frame. Since j ~p1j only depends on s234, the J=c
momentum spectrum could be easily obtained by replacing
ds234 with ½ðds234Þ=ðdj ~p1jÞ�dj ~p1j. The phase-space inte-
grations for the total rate and J=c momentum spectrum
are calculated numerically.
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