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We have performed a coupled channel calculation of the 1þþ c �c sector including q �q and DD�

molecular configurations. The calculation was done within a constituent quark model which successfully

describes the meson spectrum, in particular, the c �c 1�� sector. Two and four-quark configurations are

coupled using the 3P0 model. The elusive Xð3872Þ meson appears as a new state with a high probability

for the DD� molecular component. When the mass difference between neutral and charged states is

included, a large D0D�0 component is found which dominates for large distances and breaks isospin

symmetry in the physical state. The original c �cð23P1Þ state acquires a sizable DD� component and can be

identified with the Xð3940Þ. We study the B ! K�þ��J=c and B ! KD0D�0 decays, finding a good

agreement with Belle and BABAR experimental data.
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I. INTRODUCTION

In the last years, a number of exciting discoveries of new
hadron states have challenged our description of the hadron
spectroscopy. One of the most mysterious states is the well
established Xð3872Þ. It was first discovered by the Belle
Collaboration in the J=c�� invariant mass spectrum of
the decay Bþ ! Kþ�þ��J=c [1]. Its existence was soon
confirmed by the BABAR [2], CDF [3], and D0 [4]
Collaborations. The world average mass is MX ¼
3871:2� 0:5 MeV and its width �X < 2:3 MeV. The mea-
surements of the Xð3872Þ ! �J=c decay [5,6] imply an
even C parity. Moreover, angular correlation between final
state particles in the Xð3872Þ ! �þ��J=c decay mea-
sured by Belle [5] suggests that the JPC ¼ 0þþ and JPC ¼
0þ� may be ruled out and strongly favors the JPC ¼ 1þþ
quantum numbers, although the 2þþ combination cannot
be excluded. A later analysis by the CDF Collaboration [7]
of the same decay is compatible with the Belle results and
concludes from the dipion mass spectrum that the most
likely quantum numbers should be JPC ¼ 1þþ but cannot
totally exclude the JPC ¼ 2�þ combination. These con-
clusions were confirmed by a new CDF analysis of the
decay Xð3872Þ ! �þ��J=c followed by J=c ! �þ��
excluding all the other possible quantum numbers at 99.7%
confidence level [8]. However, the small phase space avail-
able for the decay Xð3872Þ ! D0 �D0�0 observed by Belle
[9] discards the J ¼ 2, leaving the 1þþ assignment as the
most probable option.

In the 1þþ sector, the only well established state in the
Particle Data Group (PDG) [10] is the �c1ð1PÞwith a mass

M ¼ 3510:66� 0:07 MeV. The first excitation is ex-
pected around 3950 MeV. In this energy region, Belle
has reported the observation of three resonant structures
denoted by Xð3940Þ, Yð3940Þ, and Zð3930Þ. The last one
was observed by Belle in the �� ! D �D reaction [11] and
is already included in the PDG as the �c2ð2PÞ. TheXð3940Þ

has been seen as a peak in the recoiling mass spectrum of
J=c produced in eþe� collision. Its main decay channel is
DD� [12]. The Yð3940Þ appears as a threshold enhance-
ment in the J=c! invariant mass distribution of the B !
J=c!K decay [13].
The relative decay rates outlines a puzzling structure for

the Xð3872Þ. The �J=c and �c 0 decay rates [14]

Xð3872Þ ! �J=c

Xð3872Þ ! �þ��J=c
¼ 0:33� 0:12;

Xð3872Þ ! �c 0

Xð3872Þ ! �þ��J=c
¼ 1:1� 0:4

(1)

suggest a c �c structure; whereas, the Xð3872Þ !
�þ���0J=c decay mode

Xð3872Þ ! �þ���0J=c

Xð3872Þ ! �þ��J=c
¼ 1:0� 0:4� 0:3 (2)

indicates a very different one [15]. The dipion mass spec-
trum in the �þ��J=c channel shows that the pions come
from the �0 resonance. On the other hand, the �þ���0

mass spectrum has a strong peak around 750 MeV, sug-
gesting that the process is dominated by a ! meson. Thus,
the ratio R� 1 indicates that there should be an isospin
violation incompatible with a traditional charmonium
assumption.
Concerning the mass value, in 2006 Belle measured [9]

an enhancement in the D0D0�0 channel just above the
D0D�0 threshold using the Bþ ! KþD0D0�0 decay. The
amazing aspect of this enhancement is that it appears at
MX ¼ 3875:2� 0:7þ0:3

�1:6 � 0:8 MeV just 3 MeV above the

MX world average mass value. This fact triggered a new
discussion about the possibility of two different
charmonium-like states. The Belle mass value was con-
firmed later by the BABAR Collaboration [16]. Last year,
the Belle Collaboration announced a new measurement of
the B ! KD0D0�0 decay [17] with a lower position of the
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Xð3872Þ peak in MX ¼ 3872:6þ0:5
�0:4 � 0:4 MeV. New data

of the �þ��J=� decay has been also recently reported by
the Belle [18], BABAR [19], and CDF [20] Collaborations,
confirming a mass value in agreement with the world
average.

The Xð3872Þ mass is difficult to reproduce by the stan-
dard quark models (see Ref. [21] for a review). The state
appears to be too heavy for a 1D charmonium state and too
light for a 2P charmonium one. Moreover, no four-quark
bound state configurations have been found in this mass
region which rules out the possibility that this particle was
a compact tetraquark system [22,23].

An important property of the Xð3872Þ is that its mass is
extremely close to the D0D�0 threshold with a difference
using PDG values given by �0:6� 0:6 MeV. The prox-
imity of the D0D�0 threshold made the Xð3872Þ a natural
candidate to a C ¼ þ D0D�0 molecule. The hypothesis of
a DD� molecule mainly bound by pion exchange has been
suggested by several authors [24]. In particular, in Ref. [25]
it is argued that the Xð3872Þ is a JPC ¼ 1þþ D0D�0 mole-
cule stabilized by admixture of �J=c and !J=c states.
The author shows that pion exchange alone can not bind
the molecule being the combined effect of pion exchange
and coupled channels responsible for that. The D0D�0
component dominates the wave function at the experimen-
tal binding, all other contributions becoming small.

The molecular interpretation runs into trouble when it
tries to explain the high �c 0 decay rate. For a molecular
state, this can only proceed through annihilation diagrams
and hence is very small.

This puzzling situation suggests for the Xð3872Þ state a
combination of a 2P c �c state and a weakly-bound D0D�0
molecule [13,14]. The experimental assignment JPC ¼
1þþ favors this conclusion, because it allows the molecule
to be in a relative S-wave state; whereas, the corresponding
c �c should be in a relative P-wave state. Then, the masses of
the additional light quarks are compensated by the angular
momentum excitation, and both configurations may be
almost in the same mass region. Similar behavior has
been already observed in the open charmed sector [26].
Recently, Zhang et al. [27] have analyzed, using the
coupled channel Flatté formula, the B ! KD0D0�0 [17],
and B ! K�þ��J=� [18] Belle data. They found that a
third sheet pole close, but below, the D0D�0 threshold is
needed to describe the data, which supports the idea of the
Xð3872Þ as a mixed state of �0

c1 and D0D�0 components.

An updated Flatté analysis of the same data together with
the new BABAR data of the same reactions [16,19] has been
performed in Ref. [28] assuming a mechanism for the
Xð3872Þ production via the charmonium components.
The authors conclude that the data clearly indicates a
sizable c �c 23P1 component in the Xð3872Þ wave function.
Finally, Dong et al. [29] show in their analysis of the J=c�
and c ð2SÞ� decay modes of the Xð3872Þ that the large
value of the ratio BRðXð3872Þ ! J=c�Þ=BRðXð3872Þ !

c ð2SÞ�Þmeasured by the BABAR Collaboration provides a
constraint on the value of the c �c component in the Xð3872Þ.
From the experimental values, they deduce a small admix-
ture of the c �c component.
Having in mind these evidences, in this paper we per-

form a microscopic coupled channel calculation of the 1þþ
sector including both c �c andDD� states. The calculation is
done in the framework of a constituent quark model widely
used in hadronic spectroscopy. The paper is organized as
follows. In the next section, we review the main ingredients
of our model. Section III is devoted to discuss the numeri-
cal procedures and the results. Finally, we summarize the
main findings of our work in the last section.

II. THE MODEL

A. The constituent quark model

The constituent quark model used in this work has been
extensively described elsewhere [30,31], and therefore we
will only summarize here its most relevant aspects. The
model is based on the assumption that the light constituent
quark mass appears as a consequence of the spontaneous
breaking of the chiral symmetry at some momentum scale.
As a consequence, the quark propagator gets modified and
quarks acquire a dynamical momentum dependent mass.
The simplest Lagrangian must therefore contain chiral
fields to compensate the mass term and can be expressed
as [32]

L ¼ �c ði@6 �Mðq2ÞU�5Þc ; (3)

where U�5 ¼ expði�a�a�5=f�Þ, �a denotes nine pseudo-
scalar fields (�0; ~�; Ki; �8) with i ¼ 1; . . . ; 4, and Mðq2Þ is
the constituent mass. This constituent quark mass, which
vanishes at large momenta and is frozen at low momenta at
a value around 300 MeV, can be explicitly obtained from
the theory, but its theoretical behavior can be simulated by
parametrizing Mðq2Þ ¼ mqFðq2Þ where mq ’ 300 MeV,

and

Fðq2Þ ¼
�

�2

�2 þ q2

�
1=2

: (4)

The cutoff � fixes the chiral symmetry breaking scale.
The Goldstone boson field matrix U�5 can be expanded

in terms of boson fields,

U�5 ¼ 1þ i

f�
�5�a�a � 1

2f2�
�a�a þ � � � : (5)

The first term of the expansion generates the constituent
quark mass, while the second gives rise to a one-boson
exchange interaction between quarks. The main contribu-
tion of the third term comes from the two-pion exchange
which has been simulated by means of a scalar exchange
potential.
In the heavy quark sector, chiral symmetry is explicitly

broken and this type of interaction does not act. However, it
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constrains the model parameters through the light meson
phenomenology and provides a natural way to incorporate
the pion exchange interaction in the DD� dynamics.

Beyond the chiral symmetry breaking scale, one expects
the dynamics to be governed by QCD perturbative effects.
They are taken into account through the one gluon-
exchange interaction [33] derived from the Lagrangian

L gqq ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffi
4��s

p
�c��G

�
c �cc ; (6)

where �c are the SU(3) color generators, and G�
c is the

gluon field.
The other QCD nonperturbative effect corresponds to

confinement, which prevents from having colored hadrons.
Such a term can be physically interpreted in a picture in
which the quark and the antiquark are linked by a one-
dimensional color flux tube. The spontaneous creation of
light-quark pairs may give rise at the same scale to a
breakup of the color flux tube [34]. This can be translated
into a screened potential [35] in such a way that the
potential saturates at the same interquark distance:

VCONð~rijÞ ¼ f�acð1� e��crijÞ þ �gð ~�c
i � ~�c

jÞ; (7)

where� is a global constant to fit the origin of energies. At
short distances, this potential presents a linear behavior

with an effective confinement strength a ¼ �ac�cð ~�c
i �

~�c
jÞ while it becomes constant at large distances. It has

been shown that this form of the potential is important to
explain the huge degeneracy observed in the high excited
light meson spectrum [36] and turns out to be very impor-
tant for the correct assignment of JPC ¼ 1�� charmonium
states [37]. Explicit expressions for all these interactions
are given in [37].

All of these ingredients are needed to explain the had-
ronic phenomenology. Apart from the obvious confine-
ment potential, gluon exchange is demanded from the
hyperfine splitting in charmonium. Moreover, pion ex-
change is one of the best established interactions in nature,
since its parameters are constrained by a huge number of
experiments. When Goldstone boson exchanges are con-
sidered at the quark level together with the one gluon
exchange, the possibility of double counting emerges.
This problem has been studied in the literature concluding
that the pion can be safely exchanged together with the
gluon [38].

Constituent quark models are also criticized, because
they only incorporate a limited sector of the Fock space. In
particular, its applicability to high excited states may be
questionable as more thresholds open up. In our case, the
parameters of the model have been fixed in the low lying
part of the spectrum where these effects are more easily
incorporated into them. Furthermore, the main contribu-
tion of the open channels are taken into account by the
screened confinement potential.

B. The coupled channel approach

To model the 1þþ c �c system, we assume that the had-
ronic state is

j�i ¼ X
�

c�jc �i þ
X
	

�	ðPÞj
M1

M2

	i; (8)

where jc �i are c �c eigenstates of the two body
Hamiltonian, 
Mi

are c �n ( �cn) eigenstates describing the

D ( �D) mesons, j
M1

M2

	i is the two meson state with 	

quantum numbers coupled to total JPC quantum numbers,
and �	ðPÞ is the relative wave function between the two

mesons in the molecule. As we always work with eigen-
states of the C-parity operator, we use the usual notation in
which DD� is the right combination of D �D� and D� �D.
The coupling between the two sectors requires the cre-

ation of a light-quark pair n �n. Similar to the strong decay
process, this coupling should be in principle driven by the
same interquark Hamiltonian which determines the spec-
trum. However, Ackleh et al. [39] have shown that the
quark pair creation 3P0 model [40] gives similar results to

the microscopic calculation. The model assumes that the
pair creation Hamiltonian is

H ¼ g
Z

d3x �c ðxÞc ðxÞ (9)

which, in the nonrelativistic reduction, is equivalent to the
transition operator [41]

T ¼ �3
ffiffiffi
2

p
�0X

�

Z
d3pd3p0�ð3Þðpþ p0Þ

�
�
Y1

�
p� p0

2

�
by�ðpÞdy�ðp0Þ

�
C¼1;I¼0;S¼1;J¼0

; (10)

where � (� ¼ ��) are the quark (antiquark) quantum num-

bers, and �0 ¼ 25=2�1=2� with � ¼ g
2m is a dimensionless

constant that gives the strength of the q �q pair creation from
the vacuum. From this operator, we define the transition
potential V	�ðPÞ within the 3P0 model as [42]

h
M1

M2

	jTjc �i ¼ PV	�ðPÞ�ð3Þð ~PcmÞ; (11)

where P is the relative momentum of the two meson state.
Using the wave function from Eq. (8) and the coupling

Eq. (11), we arrive to the coupled equations

M�c� þX
	

Z
V�	ðPÞ�	ðPÞP2dP ¼ Ec�;

X
	

Z
HM1M2

	0	 ðP0; PÞ�	ðPÞP2dPþX
�

V	0�ðP0Þc�

¼ E�	0 ðP0Þ;

(12)

whereM� are the masses of the bare c �cmesons andHM1M2

	0	
is the resonating group method Hamiltonian for the two
meson states obtained from the q �q interaction.
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Solving the coupling with c �c states, we finally end up
with a Schrödinger-type equation for the relative wave
function of the two meson states

X
	

Z
ðHM1M2

	0	 ðP0; PÞ þ Veff
	0	ðP0; PÞÞ�	ðPÞP2dP

¼ E�	0 ðP0Þ; (13)

where

Veff
	0	ðP0; PÞ ¼ X

�

V	0�ðP0ÞV�	ðPÞ
E�M�

(14)

is an effective interaction between the two mesons due to
the coupling with intermediate c �c states.

In this way, we study the influence of the c �c states on the
dynamics of the two meson states. This is a different point
of view from that usually found in the literature where the
influence of two meson states (in general without meson-
meson interaction) in the mass and width of c �c states is
studied [42]. Our approach allows us to generate new states
through the meson-meson interaction due to the coupling
with c �c states and to the underlying q �q interaction. As we
will see, the renormalization effects of the c �c mass due to
this channel is small.

The c �c probabilities are given by

c� ¼ 1

E�M�

X
	

Z
V�	ðPÞ�	ðPÞP2dP (15)

with the normalization condition 1 ¼ P
�jc�j2 þP

	h�	j�	i.

C. Flatté parametrization

In order to compare the predictions of our model with
the recent Belle and BABAR experimental data, we obtain

from Eq. (12) a Flatté-like parametrization of theDD� near
threshold amplitude following Ref. [43]. We recall the
main ideas here.
From Eq. (12), and neglecting the DD� interaction, one

can easily derive the DD� scattering amplitude

F	
DD� ðP;P;EÞ ¼ ���

X
�

V2
	�ðPÞ

E�M� þ g�DD� ðEÞ ; (16)

where the function g�DD� ðEÞ is given by

g�DD� ðEÞ ¼
X
	

Z V2
	�ðPÞ

P2

2� þMD þMD� � E� i0þ
P2dP:

(17)

For small binding energies 
 ¼ MD þMD� � E, it can be
expanded as

g�DD� ðEÞ ¼ �E�
DD� þ i

2
��
DD� þOð4�2
=�2Þ; (18)

where

�E�
DD� ¼ 2�

X
	

Z 1

0
V2
	�ðPÞdP; (19)

��
DD� ¼ 2��

X
	

V2
	�ð0ÞP; (20)

and� � 
 is the characteristic scale of the V�	 production

amplitude which may correspond to the scale of the quark
wave function and it is assumed to be much bigger than the
binding energy of the physical state.
A straightforward generalization to include the DD�

charged states and other channels gives the expression
for the near threshold DD� scattering amplitude

FDD� ¼ � 1

2P

�DD�

E� Ef þ i
2 ð�D0D�0 þ �DþD�� þ �ðEÞÞ þOð4�2
=�2Þ ; (21)

where �ðEÞ accounts for the width due to other processes
different from the opening of the near DD� threshold.
Equation (21) corresponds to a Flatté parametrization with

DðEÞ ¼ E� Ef þ i

2
ð�D0D�0 þ �DþD�� þ �ðEÞÞ

þOð4�2
=�2Þ: (22)

Now assuming, as in Ref. [28], that the short range dy-
namics of the weak B ! KXð3872Þ transition can be ab-
sorbed into a coefficient B, we are able to write the
differential rates in the Flatté approximation as

dBrðB ! KD0D�0Þ
dE

¼ B
1

2�

�D0D�0ðEÞ
jDðEÞj2 : (23)

The analysis of the B ! KXð3872Þ ! K�þ��J=c
data is more involved, because we have to calculate the
DD� ! �þ��J=c transition amplitude.
This can consistently be done in our formalism assuming

that the process takes place through the DD� components
of the Xð3872Þ which decays in �J=c and then into the
final �þ��J=c states. The decay width of the process is
given by

��þ��J=c ¼ X
JL

Z kmax

0
dk

��

ðMX � E� � EJ=c Þ2 þ �2
�

4

� jMJL
X!�J=c ðkÞj2: (24)

The amplitudeMJL
X!�J=c is calculated in our model by the
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rearrangement diagrams of Fig. 1, averaged with the DD�
component of the Xð3872Þ wave function. The rearrange-
ment diagrams are calculated following Ref. [44]. The
amplitude is given by

M fi ¼
X

i¼a; �a;j¼b; �b

Mij; (25)

where

M ijð ~P0; ~PÞ ¼ h
M0
1

M0

2
jHO

ij j
M1

M2

i
� h�SFC

M0
1
M0

2
jOSFC

ij j�SFC
M1M2

i (26)

and the orbital part can be written as [e.g. for the case
ðijÞ ¼ ða �bÞ]

h
M0
1

M0

2
jHO

ij j
M1

M2

i¼
Z
d3PM0

1
d3PM0

2
d3PM1

d3PM2

�

M0
1

�ðPM0
1
Þ
�

M0
2
ðPM0

2
Þ�ð ~PM0

2
� ~PM1

Þ
��ð ~PM0

2
� ~PM2

�ð ~P0 � ~PÞÞ

�H

�
�1

2
ð ~PM1

þ ~PM2
Þþ ~PM0

1

þ1

2
ð ~P0 � ~PÞ

�

M1

ðPM1
Þ

�
M2
ðPM2

Þ: (27)

The spin-flavor-color matrix elements are taken from
Ref. [44].

Once the decay width ��þ��J=c is calculated, the dif-

ferential rate is given by

dBrðB ! K�þ��J=c Þ
dE

¼ B
1

2�

��þ��J=c ðEÞ
jDðEÞj2 : (28)

In order to compare with the experimental data, we deter-
mine the number of event distributions from the differen-
tial cross section

N��J=c
Belle ðEÞ ¼ 2:5 ½MeV�

�
131

8:310�6

�

� dBrðB ! K�þ��J=c Þ
dE

; (29)

ND0 �D0�0

Belle ðEÞ ¼ 2:0 ½MeV�
�

48:3

0:7310�4

�

� dBrðB ! KD0 �D0�0Þ
dE

; (30)

N��J=c
BABAR ðEÞ ¼ 5 ½MeV�

�
93:4

8:410�6

�

� dBrðB ! K�þ��J=c Þ
dE

; (31)

ND0D�0
BABARðEÞ ¼ 2:0 ½MeV�

�
33:1

1:6710�4

�
dBrðB ! KD0 �D�0Þ

dE
:

(32)

In all reactions, a background is taken into account mod-
eled as in Ref. [28]. For the B ! KD0 �D0�0, the D0D�0
signal interferes with the background and so a phase

Belle ¼ 00 and 
BABAR ¼ 3240 have been introduced.
Also, the experimental branching ratio BðD�0 ! D0�0Þ ¼
0:62 is introduced. We use a value forB ¼ 3:510�4 which
is in the order of the one used in Ref. [28].

III. RESULTS

A. Numerical methods

To find the quark-antiquark bound states, we solve the
Schrödinger equation using the Gaussian expansion
method [45]. In this method, the radial wave functions
solution of the Schrödinger equation are expanded in terms
of basis functions

R�ðrÞ ¼
Xnmax

n¼1

b�n

G
nlðrÞ; (33)

FIG. 1. Diagrams included in the quark rearrangement process DD� ! �J=c .

COUPLED CHANNEL APPROACH TO THE STRUCTURE OF . . . PHYSICAL REVIEW D 81, 054023 (2010)

054023-5



where � refers to the channel quantum numbers. The
coefficients b�n and the eigenenergy E are determined
from the Rayleigh-Ritz variational principle

Xnmax

n¼1

�
ðT�

n0n � EN�
n0nÞb�n þX

�0
V��0
n0n b

�0
n ¼ 0

�
; (34)

where the operators T�
n0n and N�

n0n are diagonal, and the

only operator that mixes the different channels is the

potential V��0
n0n .

To solve the four body problem, we also use the
Gaussian expansion of the two body wave functions ob-
tained from the solution of the Schrödinger equation. This
procedure allows us to introduce in variational way pos-
sible distortions of the two body wave function within the
molecule. Using these wave functions Eq. (13) reduces to a
matrix equation by Gauss integration.

A crucial problem of the variational methods is how to
choose the radial functions 
G

nlðrÞ in order to have a

minimal, but enough, number of basis functions.
Following [45] we employ Gaussian’s trial functions
whose ranges are in geometric progression. The geometric
progression is useful in optimizing the ranges with a small
number of free parameters. Moreover the distribution of
the Gaussian ranges in geometric progression is dense at
small ranges, which is well suited for making the wave
function correlate with short range potentials. The fast
damping of the Gaussian tail is not a real problem since
we can choose the maximal range much longer than the
hadronic size.

B. Results

The calculation is parameter free since all the parame-
ters are taken from the previous calculation [31,37] includ-
ing the � ¼ 0:26 parameter in Eq. (10). This value was
fitted to the reaction c ð3770Þ ! DD, which is the only
well established charmonium strong decay. This way to
determine the value of � might overestimate it, since the
c ð3770Þ is very close to the DD threshold and FSI effects,
which were not included, might be relevant [46].

We first perform an isospin symmetric calculation in-
cluding 3S1 and

3D1 DD� partial waves and taking the D
and D� masses as average of the experimental values
between charged states. If we neglect the coupling to c �c
states, we do not get a bound state for theDD� molecule in
the 1þþ channel, neither in the I ¼ 0 nor in the I ¼ 1
channels. The interaction coming from one pion exchange
is attractive in the I ¼ 0 channel but not enough to bind the
system, even allowing for distortion in the meson states.

Now, we include in the I ¼ 0 channel the coupling to c �c
states. The most relevant are the 1þþ ground and first
excited states with bare masses within the model given by

c �cð13P1Þ ! M ¼ 3503:9 MeV;

c �cð23P1Þ ! M ¼ 3947:4 MeV:
(35)

The results of this calculation are shown in part A of
Table I. We find an almost pure c �cð13P1Þ state with mass
3467 MeV which we identify with the �c1ð1PÞ and two

states with significant molecular admixture. One of them
with mass 3865 MeV is almost a DD� molecule bound by
the coupling to the c �c states. The second one, with mass
3936 MeV, is a c �cð23P1Þwith sizableDD� component. We
assign the first state to the Xð3872Þ, as the second one is a
candidate to the Xð3940Þ. We have also analyzed the effect
of higher bare c �c states finding a negligible effect on the
mass and probabilities that will not change the above
numbers.
Coexistence of the !J=c ðI ¼ 0Þ and �J=c ðI ¼ 1Þ de-

cay modes strongly suggest a large isospin mixing.
However, the relative branching fraction of both modes
can be misleading with respect to the absolute magnitude
of the isospin mixing in Xð3872Þ due to the phase space
suppression of the!J=c channel against the �J=c one. In
fact, if we assume that Xð3872Þ is a D0D�0 molecule, the

ratio BðXð3872Þ!�þ���0J=c Þ
BðXð3872Þ!�þ��J=c Þ would be a factor 20 smaller than

the experiment due to the different phase space.
It is clear that we need charged components in the wave

function but with a different weight with respect to the
neutral component. This rules out the intuitive idea of the
dominance of the loosely bound neutral component. The
clarification of this puzzle has been nicely done in Ref [47].
To introduce the isospin breaking in our calculation, we

turn to the charge basis instead of the isospin symmetric
basis with the transformation

jD�D�	i ¼ 1ffiffiffi
2

p ðjDD�I ¼ 0i � jDD�I ¼ 1iÞ; (36)

jD0D�0i ¼ 1ffiffiffi
2

p ðjDD�I ¼ 0i þ jDD�I ¼ 1iÞ; (37)

TABLE I. Masses and channel probabilities for the three states
in three different calculations. The first three states are found
when we perform and isospin symmetric calculation with a value
of � fit to the decay c ð3770Þ ! DD. The second three states
shows the effect of isospin breaking in the DD� masses. The last
three states correspond to a value of � ¼ 0:19 that fits the
experimental mass of the Xð3872Þ. The probability is shown as
zero when it is less than 0.5%.

M (MeV) c �cð13P1Þ c �cð23P1Þ D0D�0 D�D�	

3936 0% 79% 10.5% 10.5%

A 3865 1% 32% 33.5% 33.5%

3467 95% 0% 2.5% 2.5%

3937 0% 79% 7% 14%

B 3863 1% 30% 46% 23%

3467 95% 0% 2.5% 2.5%

3942 0% 88% 4% 8%

C 3871 0% 7% 83% 10%

3484 97% 0% 1.5% 1.5%
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writing our isospin symmetric interaction on the charged
basis. We now explicitly break isospin symmetry taking the
experimental threshold difference into account in our equa-
tions and solving for the charged and neutral components.
Of course, if we do not break it explicitly, we recover our
previous result as a bound state in the I ¼ 0 sector. Now,
we get again three states being the main difference in the
DD� molecular component. The masses and channel prob-
abilities are shown in part B of Table I. We now get a higher
probability for the D0D�0 component, although the isospin
0 component still dominates with a 66% probability and a
3% for isospin 1.

Having in mind that the 3P0 model is probably too naive

and we might be overestimating the value of �, we show in
Fig. 2 the variation of the Xð3872Þmass with it. We can see
that it is possible to get the experimental binding energy
with a fine tune of this parameter. Using 0.6 MeV as the
binding energy, we get a value of � ¼ 0:19, 25% smaller
than the original. The results are shown in part C of Table I.
Now, the D0D�0 clearly dominates with a 83% probability
giving a 70% for the isospin 0 component and 23% for
isospin 1. Of course, as the isospin breaking is a threshold
effect [25], it grows as we get closer to it as can be seen in
Fig. 3 where we show the probabilities of the different
components for the state Xð3872Þ.

In Fig. 4, we compare our results with the B !
KD0 �D0�0 data from Belle (a) and B ! KD0 �D�0 data
from BABAR (b). The same comparison is done in Fig. 5
for the B ! K�þ��J=� data from Belle (a) and BABAR
(b). In all figures, the dashed lines shows the results with-
out resolution functions. The solid line gives the result
using the resolution functions as in Ref. [28]. All the
resolution functions are those given by Belle [17] and
BABAR [19] Collaborations with the exception of the

BABAR DD� resolution where we use the prescription
from Ref. [28].
We find a good description of the Belle B ! KD0D0�0

data; whereas, the agreement is poor in the case of the
BABAR data. It is important to notice that in the Belle
analysis, the mass of the X appears as 3872 MeV, while in
the BABAR data, the resonance is located 3 MeV above.
The BABAR mass value does not coincide with the mass of
the X obtained in our calculation which may be the reason
for the disagreement.
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FIG. 2. Mass of the Xð3872Þ as a function of the strength � of the 3P0 model. The isospin symmetric calculation is shown in figure
(a) and the isospin breaking in figure (b). Dotted lines show the threshold positions for the DD� average in figure (a) and D0D�0 and
D�D�	 in (b). The solid lines show the full result, and the dashed lines turn off the DD� interaction.
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FIG. 3. Probability (in %) of different components as a func-
tion of the binding energy when we vary the � parameter of the
3P0 model. The solid line gives the D0D�0 probability, the dash-
dotted line is theD�D�	, the dashed line is the c �cð23P1Þ, and the
dotted line is the c �cð13P1Þ.
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The B ! K�þ��J=� data are equally well described
for the Belle and BABAR experiments. In this case, both
collaborations give similar values for the mass of the
resonance, namely, 3871.4 MeV, which are in much better
agreement with our result.

IV. SUMMARY

As a summary, we have shown that the Xð3872Þ emerges
in a constituent quark model calculation as a dynamically
generated mixed state of a DD� molecule and �c1ð2PÞ.
Although the c �c mixture is less than the 10%, it is impor-
tant to bind the molecular state. This result is in agreement

with the analysis of Ref. [29]. The proposed structure
allows to understand simultaneously the isospin violation
showed by the experimental data and the radiative decay
rates. Furthermore, we have demonstrated that this solution
explain the new Belle data in the D0D0�0 and �þ��J=�
decay modes and the�þ��J=� BABAR data. The original
�c1ð2PÞ state acquires a significant DD� component and

can be identified with the Xð3940Þ.
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