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In this paper, the decay constants and mean square radii of pseudoscalar heavy mesons are studied in the

SUð3Þ symmetry breaking. Within the light-front framework, the ratios fDs
=fD and fBs

=fB are individu-

ally estimated using the hyperfine splittings in the D�
ðsÞ �DðsÞ and B�

ðsÞ � BðsÞ states and the light quark

masses, ms;q (q ¼ u, d), to extract the wave function parameter �. The values fDs
=fD ¼ 1:29� 0:07 and

fBs
=fB ¼ 1:32� 0:08 are obtained, which are not only chiefly determined by the ratio of light quark

masses ms=mq, but also insensitive to the heavy quark masses mc;b and the decay constants fD;B. The

dependence of fBc
=fB on�MBcB

�
c
with the varied charm quark masses is also shown. In addition, the mean

square radii are estimated as well. The values
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2

Dþ
s
i=hr2

Dþi
q

¼ 0:740�0:041
þ0:050 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2

B0
s
i=hr2

B0 i
q

¼ 0:711�0:049
þ0:058

are obtained, and the sensitivities of hr2Pi on the heavy and light quark masses are similar to those of the

decay constants.
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I. INTRODUCTION

The decay constants of pseudoscalar heavy mesons with
c and b quarks play an important role for studies of CP
violation and in extracting the Cabibbo-Kobayashi-
Maskawa matrix elements. Experimentally, new data on
the charm meson decay constants fD and fDs

have been

reported [1,2]. As the calculations of the decay constants
are related to the wave function overlap of the quark and
antiquark which are governed by the strong interaction,
they therefore provide a crucial manner to compare differ-
ent theoretical methods. In addition, the determination of
fBS

remains beyond the reach of current experiments, thus

the reliability of estimated fBs
by a theoretical approach is

dependent on whether the determinations of fD and fDs
by

this approach are consistent with the new data. During the
last decade, the decay constants of pseudoscalar heavy
mesons have been studied in lattice simulations [3–9], in
the QCD sum rules approach [10–13], and in the relativis-
tic quark model [14–18].

The understanding of the electromagnetic (EM) proper-
ties of hadrons is also an important topic, and the EM form
factors which are calculated using nonperturbative meth-
ods are the useful tool for this purpose. There have been
numerous experimental [19–24] and theoretical studies
[25] of the EM form factors of the light pseudoscalar
meson (� and K). However, the EM form factors of heavy
mesons (which contain one heavy quark) have much fewer
studies [26,27] than those of light ones. The present paper
is devoted to an analysis of the wave function and decay
constant by the hyperfine mass splitting of heavy mesons
and the formulas of the decay constant and mean square
radius within the light-front (LF) framework. We present

the SUð3Þ symmetry breaking effect in decay constants and
electromagnetic properties of pseudoscalar heavy mesons.
The light-front quark model (LFQM) is a promising

analytic method for solving the nonperturbative problems
of hadron physics [28], as well as offering many insights
into the internal structures of bound states. The basic
ingredient in LFQM is the relativistic hadron wave func-
tion which generalizes distribution amplitudes by includ-
ing transverse momentum distributions and contains all the
information of a hadron from its constituents. The hadronic
quantities are represented by the overlap of wave functions
and can be derived in principle. The light-front wave
function is manifestly a Lorentz invariant, expressed in
terms of internal momentum fraction variables which are
independent of the total hadron momentum. Moreover, the
fully relativistic treatment of quark spins and center-of-
mass motion can be carried out using the so-called Melosh
rotation [29]. This treatment has been successfully applied
to calculate phenomenologically many important meson
decay constants and hadronic form factors [30–36].
The remainder of this paper is organized as follows. In

Sec. II an analysis of wave function and decay constant is
presented. In Sec. III the formulism of LFQM is reviewed
briefly, and the formulas of decay constant and mean
square radius are derived. In Sec. IV numerical results
and discussions are presented. Finally, the conclusions
are given in Sec. V.

II. ANALYSES OF WAVE FUNCTION AND DECAY
CONSTANT

The decay constant fP for a pseudoscalar meson is
defined by a matrix element of the axial vector current
between the vacuum and the meson bound state:

h0j �q1���5q2jPðPÞi ¼ ifPP�: (2.1)*t2732@nknucc.nknu.edu.tw
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In a nonrelativistic approximation, fP is related to the
Bethe-Salpeter wave function at the origin j�ð0Þj as [37–
39]

fP ’ 2
ffiffiffiffiffiffi
Nc

pffiffiffiffiffiffiffiffi
MP

p j�ð0Þj; (2.2)

where Nc is the color number and MP is the mass of the
meson. If we consider the potential of a hyperfine interac-
tion inside the meson to Oð�sÞ:

Vhf ¼ 4�sð3~s1 � r̂ ~s2 � r̂� ~s1 � ~s2Þ
3m1m2r

3
þ 32��s ~s1 � ~s2

9m1m2

�3ð ~rÞ;
(2.3)

where �s is the strong coupling constant, s1;2ðm1;2Þ are the
spins (masses) of the constituent quark. For the s-wave
meson, the first term of Eq. (2.3) has no contribution and
the second term can distinguish the pseudoscalar and vec-
tor mesons. Therefore, the hyperfine mass splitting is
obtained as

�MPV ¼ 32��s

9m1m2

j�ð0Þj2: (2.4)

By combining Eqs. (2.2) and (2.4) and canceling j�ð0Þj,
we obtain

fP ¼
�
27�MPVm1m2

8��sMP

�
1=2

: (2.5)

If we suppose the strong coupling constants �sðDÞ ’
�sðDsÞ and �sðBÞ ’ �sðBsÞ, then the ratios of the decay
constants can be obtained as

fDs

fD
¼

�
�MDsD

�
s

�MDD�

MD

MDs

ms

mq

�
1=2

;

fBs

fB
¼

�
�MBsB

�
s

�MBB�

MB

MBs

ms

mq

�
1=2

;

(2.6)

where q ¼ u, d. From Eq. (2.6), we find that the ratios are
dependent on the ratio of light quark massesms=mq and are

independent of heavy quark masses. Furthermore, by can-
celing the ratio ms=mq, we have a relation which does not

contain any parameter in the nonrelativistic approxima-
tion:

fBs

fB
¼

�
�MDD��MBsB

�
s

�MDsD
�
s
�MBB�

MDs
MB

MDMBs

�
1=2 fDs

fD
: (2.7)

If one wants to include the relativistic correction to the
ratios of the decay constants, not only the values of ms;q,

but also the form of wave function �ð ~rÞ must be known.
Let us come back to Eq. (2.2). The deviation of Eq. (2.2)
uses the Fourier transform

�ð~rÞ ¼
Z d3k

ð2�Þ3=2 e
i~r� ~k�ð ~kÞ; (2.8)

where�ð ~kÞ is the wave function in the momentum space. If

the Fourier transform is evaluated for the positive-energy
projection of the Bethe-Salpeter wave function at equal
‘‘time’’ zþ ¼ z0 þ z3 ¼ 0, then [40]

fP �
Z dxd2k?

2ð2�Þ3 �ðx; k?Þ; (2.9)

where x is the longitudinal momentum fraction, k? are the
relative transverse momenta, and �ðx; k?Þ satisfies the
normalization condition:

Z dxd2k?
2ð2�Þ3 j�ðx; k?Þj2 ¼ 1: (2.10)

In general, the momentum distribution amplitude �ðx; k?Þ
is obtained by solving the light-front QCD bound
state equation HLFjPi ¼ MjPi which is the familiar
Schrödinger equation in ordinary quantum mechanics,
and HLF is the light-front Hamiltonian. However, at the
present time, how to solve the bound state equation is still
unknown. Alternatively, we come back to the still-
unknown wave function �ð~rÞ and express it as a linear
combination of the arbitrary known functions which form a
complete set. Of course, the complete set is not unique.
Here we give two examples for comparison. One is the
solution of 1=r potential [41]:

�c
nlmð ~rÞ ¼

�
2�

n

�
3=2

� ðn� l� 1Þ!
2n½ðnþ lÞ!�3

�
1=2

�
�
2�r

n

�
l
L2lþ1
n�l�1ð2�r=nÞ exp

�
��r

n

�
Ylm;

(2.11)

where superscript c means ‘‘Coulomb,’’ � is a parameter
which has the energy dimension, Ylm is the spherical
harmonics, and Lp

q�pðxÞ is an associated Laguerre poly-
nomial which is defined as

Lp
q�pðxÞ � ð�1Þp

�
d

dx

�
p
ex
�
d

dx

�
qðe�xxqÞ: (2.12)

The other complete set is the solution of an isotropic
harmonic oscillator [41]:

�g
nlmð~rÞ ¼

�3=2

�1=4
ð�rÞlhnlð�rÞ exp

�
��2r2

2

�
Ylm; (2.13)

where superscript g means Gaussian and the first few
hnlð�rÞ’s are

h00 ¼ 2; h11 ¼
ffiffiffi
8

3

s
; h22 ¼ 4ffiffiffiffiffiffi

15
p ;

h20 ¼
ffiffiffi
6

p �
1� 2

3
�2r2

�
:

(2.14)

Then the exact solution can be expressed as

�ð~rÞ ¼ X1
nlm

acðgÞnlm�
cðgÞ
nlmð~rÞ; (2.15)
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where
P1

nlm jacðgÞnlm j2 ¼ 1. This way seems very clumsy

because, apart from �, it also introduces a series of un-
determined coefficients, anlm. The following considera-
tions, however, improve the situation. First, only the
coefficients an00 survive because we just studied the
s-wave meson. Second, we substitute Eq. (2.15) to
Eq. (2.4) and obtain

�MPV ¼ 32��s

9m1m2

�
�3

4�3=2

�� X1
even n

agn00hn0ð0Þ
�
2
; (2.16)

which takes the Gaussian case, for example. It is worth
noting that the square bracket in Eq. (2.16) is independent
of �. Then, the ratio of hyperfine mass splittings can be
reduced as

�MDsD
�
s

�MDD�
¼ mq

ms

�
�cs

�cq

�
3
;

�MBsB
�
s

�MBB�
¼ mq

ms

�
�bs

�bq

�
3
;

(2.17)

which does not include any coefficient anlm. Equa-
tion (2.17) is also suitable to the Coulomb case. In fact,
due to the � function in Eq. (2.3) having the dimension of
an energy cube and ~r is vanishing here, Eq. (2.17) holds for
any wave function which contains only one hadronic pa-
rameter �. In addition, the ratios �cs=�cq and �bs=�bq in

Eq. (2.17) are mainly influenced by the ratio ms=mq. This

situation leads to the ratios fDs
=fD and fBs

=fB are sensi-

tive to the SUð3Þ symmetry breaking, but are insensitive to
the heavy quark masses, which will be shown later. In the
literature, there are some early attempts [42,43] to account
for flavor symmetry breaking in pseudoscalar meson decay
constants. In the next section the wave function �ð~rÞ and
the values of ms;q are studied within the light-front

framework.

III. LIGHT-FRONT FRAMEWORK

A. General formulism

An s-wave meson bound state, consisting of a quark q1
and an antiquark �q2 with total momentum P and spin J, can
be written as (see, for example [32])

jMðP; S; SzÞi ¼
Z
fd3p1gfd3p2g2ð2�Þ3�3ð ~P� ~p1 � ~p2Þ

� X
�1;�2

�SSzð~p1; ~p2; �1; �2Þjq1ðp1; �1Þ

� �q2ðp2; �2Þi; (3.1)

where p1 and p2 are the on-mass-shell light-front mo-
menta,

~p ¼ ðpþ; p?Þ; p? ¼ ðp1; p2Þ; p� ¼ m2
q þ p2

?
pþ ;

(3.2)

and

fd3pg � dpþd2p?
2ð2�Þ3 ;

jqðp1; �1Þ �qðp2; �2Þi ¼ byðp1; �1Þdyðp2; �2Þj0i;
fbðp0; �0Þ; byðp; �Þg ¼ fdðp0; �0Þ; dyðp; �Þg

¼ 2ð2�Þ3�3ð~p0 � ~pÞ��0�: (3.3)

In terms of the light-front relative momentum variables
ðx; k?Þ defined by

pþ
1 ¼ ð1� xÞPþ; pþ

2 ¼ xPþ;

p1? ¼ ð1� xÞP? þ k?; p2? ¼ xP? � k?;
(3.4)

the momentum-space wave function�SSz can be expressed
as

�SSzð~p1; ~p2; �1; �2Þ ¼ 1ffiffiffiffi
N

p
c
R
SSz
�1�2

ðu; 	?Þ�ðx; k?Þ; (3.5)

where R
SSz
�1�2

constructs a state of definite spin ðS; SzÞ out of
light-front helicity ð�1; �2Þ eigenstates. Explicitly,

R
SSz
�1�2

ðx; k?Þ ¼
X
s1;s2

h�1jRy
Mð1� x; k?; m1Þjs1i

� h�2jRy
Mðx;�k?; m2Þjs2i

�
�
1

2

1

2
; s1s2j 12

1

2
;SSz

�
; (3.6)

where jsii are the usual Pauli spinors, and RM is the
Melosh transformation operator [30,31]:

hsjRMðxi; k?; miÞj�i ¼ mi þ xiM0 þ i ~
s� � ~k? � ~nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmi þ xiM0Þ2 þ k2?

q ;

(3.7)

with x1 ¼ 1� x, x2 ¼ x, and ~n ¼ ð0; 0; 1Þ as a unit vector
in the ẑ direction. In addition,

M2
0 ¼ ðe1 þ e2Þ2 ¼

m2
1 þ k2?
1� x

þm2
2 þ k2?
x

;

ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ k2? þ k2z

q
;

(3.8)

where kz is the relative momentum in ẑ direction and can
be written as

kz ¼ xM0

2
�m2

2 þ k2?
2xM0

: (3.9)

M0 is the invariant mass of q �q and generally different from
the mass M of the meson which satisfies M2 ¼ P2. This is
due to the fact that the meson, quark, and antiquark cannot
be simultaneously on shell. We normalized the meson state
as
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hMðP0; S0; S0zÞjMðP; S; SzÞi
¼ 2ð2�Þ3Pþ�3ð ~P0 � ~PÞ�S0S�S0zSz ; (3.10)

which led to Eq. (2.10).
In practice, it is more convenient to use the covariant

form of R
SSz
�1�2

[30,31,36,44]:

R
SSz
�1�2

ðx; k?Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2

q
ffiffiffi
2

p
~M0ðM0 þm1 þm2Þ

� �uðp1; �1Þð �P6 þM0Þ�vðp2; �2Þ; (3.11)

where

~M0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 � ðm1 �m2Þ2
q

;

�P � p1 þ p2; �uðp; �Þuðp; �0Þ ¼ 2m

pþ ��;�0 ;

X
�

uðp; �Þ �uðp; �Þ ¼ p6 þm

pþ ;

�vðp; �Þvðp; �0Þ ¼ � 2m

pþ ��;�0 ;

X
�

vðp; �Þ �vðp; �Þ ¼ p6 �m

pþ :

(3.12)

For the pseudoscalar meson, we have � ¼ �5, Eq. (3.11)
can then be further reduced by the applications of equa-
tions of motion on spinors [36]:

R
SSz
�1�2

ðx; k?Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2

q
ffiffiffi
2

p
~M0

�uðp1; �1Þ�5vðp2; �2Þ: (3.13)

Next, we derive the formulas of the decay constant and the
mean square radius for the pseudoscalar meson. The for-
mer is the main subject of this work, and the latter is used
to fix some parameters.

B. Formulas for decay constant andmean square radius

The decay constants of pseudoscalar mesons Pðq1 �q2Þ
are defined in Eq. (2.1). The matrix element can be calcu-
lated using the formulism in the last subsection:

h0j �q2���5q1jPðPÞi ¼
Z
fd3p1gfd3p2g2ð2�Þ3

� �3ð ~P� ~p1 � ~p2Þ�Pðx; k?Þ
� R00

�1�2
ðx; k?Þ

� h0j �q2���5q1jq1 �q2i: (3.14)

Since ~M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2?

q
, the decay constant can

be extracted as

fP ¼ 2
ffiffiffiffiffiffiffiffiffi
2Nc

p Z
fdxg Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ k2?
q �Pðx; k?Þ (3.15)

where fdxg ¼ dxd2k?
16�3 and A ¼ m1xþm2ð1� xÞ.

Next, the EM form factor of a meson P is determined by
the scattering of one virtual photon and one meson. It
describes the deviation from the pointlike structure of the
meson, and is a function of Q2. Here, we considered the
momentum of the virtual photon in a spacelike region, so it
was always possible to orient the axes in such a manner
that Qþ ¼ ðP0 � PÞþ ¼ 0. Thus, the EM form factor was
determined by the matrix element:

hPðP0ÞjJþjPðPÞi ¼ eFPðQ2ÞðPþ P0Þþ; (3.16)

where J� ¼ �qeqe�
�q, eq is the charge of quark q in e unit,

and Q2 ¼ ðP0 � PÞ2 < 0. With the light-front framework,
FP can be extracted by Eq. (3.16):

FPðQ2Þ ¼ eq1

Z
fdxg A2 þ k? � k0?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ k2?
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ k02?
q

��Pðx; k?Þ�P0 ðx; k0?Þ

þ e �q2

Z
fdxg A2 þ k? � k00?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ k2?
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ k002?
q

��Pðx; k?Þ�P0 ðx; k00?Þ; (3.17)

where k0? ¼ k? þ xQ?, k00? ¼ k? � ð1� xÞQ?. For ap-

plying this to Eq. (3.22), it is convenient to consider the

term ~�P � �Pðx; k?Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2?

q
and take the Taylor ex-

pansion around k2?

~�P0 ðk02?Þ ¼ ~�P0 ðk2?Þ þ
d ~�P0

dk2?

��������Q?¼0
ðk02? � k2?Þ

þ d2 ~�P0

2ðdk2?Þ2
��������Q?¼0

ðk02? � k2?Þ2 þ . . . (3.18)

Then, by using the identity

Z
d2k?ðk? � A?Þðk? � B?Þ ¼ 1

2

Z
d2k?k2?A? � B?;

(3.19)

we can rewrite (3.17) to

FPðQ2Þ ¼ ðeq1 þ e �q2Þ �Q2
Z
fdxg�2

Pðx; k?Þ
� ½x2eq1 þ ð1� xÞ2e �q2�

�
�
�P

A2 þ 2k2?
A2 þ k2?

þ ~�Pk
2
?

�
þOðQ4Þ; (3.20)

where

CHIEN-WEN HWANG PHYSICAL REVIEW D 81, 054022 (2010)

054022-4



�M ¼ 1
~�M

�
d ~�M

dk2?

�
; ~�M ¼ 1

~�M

�
d2 ~�M

ðdk2?Þ2
�
: (3.21)

It should be realized that the size and the density of a
hadron depend on the probe. For an EM probe, it is the

electric charge radius hr2i1=2 that is obtained. In the ex-
perimental view, hr2Pi cannot be measured directly and is

obtained by fitting the slope of FPðQ2Þ at Q2 ¼ 0, i.e.,

hr2Pi ¼ 6
dFPðQ2Þ
dQ2

��������Q2¼0
: (3.22)

Here the mean square radius is easily obtained:

hr2Pi ¼ hr2q1i þ hr2�q2i
¼ eq1

	
�6

Z
fdxgx2 ~�P

�
ðA2 þ 2k2?Þ

d

dk2?
þ ðA2 þ k2?Þk2?

�
d

dk2?

�
2
�
~�P




þ e �q2

	
�6

Z
fdxgð1� xÞ2 ~�P

�
ðA2 þ 2k2?Þ

d

dk2?
þ ðA2 þ k2?Þk2?

�
d

dk2?

�
2
�
~�P



: (3.23)

It is worth mentioning that, first, the static property
FPð0Þ ¼ eP is quite easily checked in Eq. (3.20). Second,
from Eq. (3.23), we find that the mean square radius is
related to the first and second longitudinal momentum
square derivatives of ~� which contain the Melosh trans-
formation effect.

If we take the heavy quark limit m1 ¼ mQ ! 1,

mQðMPÞ is unimportant for the low energy properties of

the meson state, so it is more natural to use velocity v
instead of momentum variable P. The normalization of the
meson state is rewritten as [45]

hPðv0ÞjPðvÞi ¼ 2ð2�Þ3vþ�3ð ��v� ��v0Þ; (3.24)

where �� ¼ MP �mQ is the residual center mass of the

heavy meson and the meson states have a relation jPðvÞi ¼

ðMPÞ�1=2jPðPÞi. In addition, since x is the longitudinal
momentum fraction carried by the light antiquark, the
meson wave function should be sharply peaked near x�
�QCD=mQ. It is thus clear that x ! 0 and only terms of the

form X � xmQ survive in the wave function as mQ ! 1;

that is, X is independent of mQ in the heavy quark

limit. Therefore, the normalization of the wave function
Eq. (2.10) is rewritten as

Z dXd2k?
2ð2�Þ3 j’ðX; k?Þj2 ¼ 1; (3.25)

where ’ðX; k?Þ ¼ ðmQÞ�1=2�ðx; k?Þ. Other replacements

are A ! ~A ¼ X þmq2 and
~�ðx; k?Þ ! ~’ðX; k?Þ. Thus we

can rewrite (3.23) as

hr2Qq2
i ¼ hr2Qi þ hr2�q2i

¼ eQ
m2

Q

	
�6

Z
fdXgX2 ~’

�
ð ~A2 þ 2k2?Þ

d

dk2?
þ ð ~A2 þ k2?Þk2?

�
d

dk2?

�
2
�
~’




þ e �q2

	
�6

Z
fdXg~’

�
ð ~A2 þ 2k2?Þ

d

dk2?
þ ð ~A2 þ k2?Þk2?

�
d

dk2?

�
2
�
~’



: (3.26)

The first term of Eq. (3.26) vanished when mQ ! 1. This
means that not only hr2Qq2

i is blind to the flavor of Q, but
also hr2Pi is insensitive to m1 for the heavy meson. The
former is the so-called flavor symmetry and the latter will
be proven in the numerical calculation.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In the nonrelativistic (NR) approximation, we substi-
tuted the experimental data [1] to Eq. (2.7), and obtained
fBs

=fB ¼ ð1:03� 0:02ÞfDs
=fD. If one wanted to evaluate

fBs
=fB and fDs

=fD individually, then ms ¼ 483 MeV and

mq ¼ 310 MeV were the ‘‘best-fit’’ values for the pseudo-

scalar and vector light meson masses [46]. The ratios were

fDs

fD

��������NR
¼ 1:226� 0:002;

fBs

fB

��������NR
¼ 1:24� 0:02:

(4.1)

The former was a little smaller than the data [1,2]
fDs

=fDjexp ¼ 1:27� 0:06, and the latter was almost larger

than the other theoretical calculations (see Tables II and
III).
In the light-front framework, the momentum distribution

amplitude �ðx; k?Þ or the wave function �ð~rÞ in principle
is unknown unless all the coefficients an00 are obtained.
However, we may suppose ac100 ¼ 1 or ag000 ¼ 1, that is,
�ð ~rÞ ¼ �c

100ð ~rÞ or�ð ~rÞ ¼ �g
000ð~rÞ as a trial wave function

to fit the relevant data. The other an00’s will be subsumed if
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the parameters appearing in the momentum distribution
amplitude cannot satisfy all experimental results. In other
words, the coefficients anlm are taken as another kind of
parameter. Of course, based on the principle of quantum
mechanics, the physical meanings of these new parameters

are clear. Here we list the first �cðgÞ
n00 :

�c
100ðx; k?Þ ¼ 8

�
2�

�3

�
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1e2

xð1� xÞM0

s �
�2

k2? þ k2z þ �2

�
2
;

(4.2)

�g
000ðx; k?Þ ¼ 4

�
�

�2

�
3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1e2

xð1� xÞM0

s
exp

�
� k2? þ k2z

2�2

�
;

(4.3)

and use the experimental data of f�þ ¼ 130:4� 0:2 MeV

and hr2
�þi1=2 ¼ 0:672� 0:008 fm to fit the parameters

mq and �qq. The results are mq ¼ 0:172ð0:251Þ GeV
and �qq ¼ 0:555	 0:011ð0:317	 0:007Þ GeV for

�c
100ð�g

000Þ. As for the strange quark mass, in Ref. [47]

ms �mu ¼ 0:23 GeV was obtained with some interaction
potentials, while in Ref. [31] ms �mu ¼ 0:12 GeV in the
invariant meson mass scheme. So here we use the values

ms �mu ¼ 0:180� 0:050 GeV and fKþ ¼ 155:5�
0:8 MeV to fix �sq. The results are �sq ¼
0:463�0:032

þ0:054ð0:354�0:009
þ0:015Þ GeV for �c

100ð�g
000Þ. The charge

radius hr2
Kþi1=2 and the mean square radius hr2

K0i were

calculated by these parameters and were listed in Table I.

We found that, on one hand, the value of hr2
Kþi1=2 (hr2K0i) for

�c
100 was too large (small) than that obtained in the experi-

ment. Then, the coefficients acn00 for n > 1may be taken as

nonzero to correct the fitting of hr2
Kþi1=2 and hr2

K0i.
However, the mean square radii of �c

n00 is greater when

n is larger, or hr2i�c
100

< hr2i�c
200

< hr2i�c
300

< . . . This

means, for decreasing the value of hr2
Kþi1=2, the values of

acn00 must be artificially arranged in order to cancel out the

contributions of �c
n00 (n 
 2) mutually. It is too hard to

achieve now. On the other hand, the results for �g
000 were

consistent with the experimental data. Therefore we only
use the Gaussian-type wave function, �g

000, to the follow-

ing calculation. By combining Eq. (2.17), the experimental
data [1], and the light quark mass in above, we obtained the
ratios as

�cs

�cq

��������g¼ 1:20� 0:04;
�bs

�bq

��������g¼ 1:20� 0:05: (4.4)

TABLE I. Charge radius hr2
Kþi1=2 and the mean square radius hr2

K0 i of the experiment, this work, and other theoretical estimations.
DS is Dyson-Schwinger equations; VMD� is vector meson dominance plus an effective chiral theory; BS is Bethe-Salpeter equation.

Experiment [1] �c
100 �g

000 DS [48] VMD� [49] pQCD [50] BS [51]

hr2
Kþi1=2 (fm) 0:560� 0:031 0:710þ0:033

�0:044 0:607þ0:010
�0:012 0.49 0.616 0.570 0.62

hr2
K0 i (fm2) �0:077� 0:010 �0:121�0:036

þ0:039 �0:072�0:017
þ0:019 �0:020 0.057 �0:0736 �0:085

TABLE II. Theoretical calculations of the decay constants fD, fDs
(MeV), and the ratio fDs

=fD. QL is quenched lattice calculations,
BS is Bethe-Salpeter equation, Linear and HO are the different potentials within LFQM. We have quoted only the value with mc ¼
1:5 GeV in this work (LF).

fD fDs
fDs

=fD

Experiment 205:8� 8:9 [1] 261:2� 6:9 [2] 1:27� 0:06a

This work (LF) 205:8� 8:9 264:5� 17:5 1:29� 0:07
This work (NR) 1:226� 0:002
Lattice (HPQCDþ UKQCD) [3] 208� 4 241� 3 1:162� 0:009
QL (QCDSF) [4] 206� 6� 3� 22 220� 6� 5� 11 1:068� 0:018� 0:020
QL (Taiwan) [5] 235� 8� 14 266� 10� 18 1:13� 0:03� 0:05
Lattice (FNALþMILCþ HPQCD) [6] 201� 3� 17 249� 3� 16 1:24� 0:01� 0:07
QL (UKQCD) [8] 210� 10þ17

�16 238� 8þ17
�14 1:13� 0:02þ0:04

�0:02

QL [9] 211� 14þ0
�12 231� 12þ6

�1 1:10� 0:02
QCD Sum Rules [10] 177� 21 205� 22 1:16� 0:01� 0:02
QCD Sum Rules [12] 203� 23 235� 24 1:15� 0:04
Field Correlators [14] 210� 10 260� 10 1:24� 0:04
Potential Model [15] 234 268 1.15

BS [16] 230� 25 248� 27 1:08� 0:01
BS [17] 238 241 1.01

LinearfHOg [18] 211f194g 248f233g 1:18f1:20g
aThis value is obtained by combining fD ¼ 205:8� 8:9 MeV [1] and fDs

¼ 261:2� 6:9 MeV [2].
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Obviously, the SUð3Þ symmetry breaking is the major
contribution to the ratios in Eq. (4.4).

For the heavy quark masses, the quite different values
were also used in the model calculations. For example,
mc ¼ 1:38 GeV andmb ¼ 4:76 GeVwhich were fitted for
the spectrum of the p-wave charmonium and bottomonium
states [53]; and mc ¼ 1:8 GeV and mb ¼ 5:2 GeV which
were obtained from the potential models and the varia-
tional principle [54]. Here the values mc ¼ 1:2, 1.5,
1.8 GeV and mb ¼ 4:2, 4.7, 5.2 GeV were taken into
account. By combining Eqs. (3.15), (4.3), and (4.4), and
the quark masses mqðsÞ ¼ 0:251ð0:431Þ GeV, the depen-

dences of fDs
=fD on fD with three different mc’s and

fBs
=fB on fB with three different mb’s were shown in

Fig. 1 and 2, respectively. It was easily found that the ratios

fDs
=fD and fBs

=fB were not only insensitive to the heavy

quark masses mc and mb, but also insensitive to the decay
constants fD and fB, respectively.
Recently, the CLEO collaboration updated their data

about the branching fraction for the purely leptonic decay
Dþ ! �þ� and reported [1] fexp

Dþ ¼ 205:8� 8:9MeV. By

using this value, we determined the ratio fDs
=fD ¼ 1:29�

0:07 and the decay constant fDs
¼ 264:5� 17:5 MeV

with mc ¼ 1:5 GeV. We found these results were consis-
tent with the data [2]: f

exp

Dþ
s
¼ 261:2� 6:9 MeV and

f
exp

Dþ
s
=f

exp

Dþ ¼ 1:27� 0:06, which were the average of the

CLEO and Belle results (which included the radiative
corrections). In addition, our values were generally larger
than the other theoretical calculations. Table II compares

TABLE III. Theoretical calculations of the decay constants fB, fBs
(MeV), and the ratio fBs

=fB. Only the value with mb ¼ 4:7 GeV
has been quoted in this work (LF).

fB fBs
fBs

=fB

Experiment 204� 31a

This work (LF) 204� 31 270:0� 42:8 1:32� 0:08
This work (NR) 1:24� 0:02
QL (QCDSF) [4] 190� 8� 23� 25 205� 7� 26� 17 1:080� 0:028� 0:031
Lattice (HPQCD) [7] 216� 9� 19� 4� 6 259� 32 1:20� 0:03� 0:01
QL (UKQCD) [8] 177� 17� 22 204� 12þ24�23 1:15� 0:02þ0:04

�0:02

QL [9] 179� 18þ26
�9 204� 16þ28

�0 1:14� 0:03þ0:00
�0:01

QCD Sum Rules [11] 178� 14 200� 14 1:12� 0:01� 0:03
QCD Sum Rules [12] 203� 23 236� 30 1:16� 0:05
QCD Sum Rules [13] 210� 19 244� 21 1.16

Field Correlators [14] 182� 8 216� 8 1:19� 0:03
Potential Model [15] 189 218 1.15

BS [16] 196� 29 216� 32 1:10� 0:01
BS [17] 193 195 1.01

LinearfHOg [18] 189f180g 234f237g 1:24f1:32g
aThis value is extracted by the branching ratio: BðB� ! 
� ��Þ ¼ ð1:42� 0:43Þ � 10�4 [52].

mc 1.2 GeV

mc 1.5 GeV

mc 1.8 GeV

170 180 190 200 210 220 230 240
1.20

1.25

1.30

1.35

1.40

fD MeV

f D
s

f D

FIG. 1. Dependence of fDs
=fD on fD with mc ¼ 1:2, 1.5,

1.8 GeV. The left and right vertical dash lines correspond to
the lower and upper limits of the data fD ¼ 205:8� 8:9 MeV,
respectively.

mb 4.2 GeV

mb 4.7 GeV

mb 5.2 GeV

160 180 200 220 240
1.20

1.25

1.30

1.35

1.40

fB MeV

f B
s

f B

FIG. 2. Dependence of fBs
=fB on fB with mc ¼ 4:2, 4.7,

5.2 GeV. The left and right vertical dash lines correspond to
the lower and upper limits of the data fB ¼ 204� 31 MeV,
respectively.
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the theoretical calculations with experimental value. For
the bottom sector, the Belle [55] and BABAR [56,57]
collaborations found evidence for B� ! 
� �� decay which
was not helicity suppressed. However, the Belle and
BABAR values had 3.5 and 2.6 standard-deviation signifi-
cances, respectively; thus the average was provisional [52]:
BðB� ! 
� ��Þ ¼ ð1:42� 0:43Þ � 10�4. We extracted the
decay constant f

exp
B ¼ 204� 31 MeV. By using this

value, the ratio fBs
=fB ¼ 1:32� 0:08 and the decay con-

stant fBs
¼ 270:0� 42:8 MeV with mb ¼ 4:7 GeV were

obtained. Table III compares the theoretical calculations
with the experimental value. Similar to the charm sector,
our ratio fBs

=fB was almost larger than all other calcula-

tions. It is worth mentioning that the decay constants of
both pseudoscalar and vector heavy mesons have already
been investigated by the author of Ref. [18] with the
analysis of magnetic dipole decays of various heavy fla-
vored mesons in the light-front quark model. The parame-
ters in Ref. [18] were constrained by the variational
principle for the QCD-motivated effective Hamiltonian.
Roughly speaking, our above results showed the flavor
SUð3Þ symmetry breaking ms=mq ¼ 1:72� 0:20 leads

into the ratios

fDs

fD
¼ 1:29� 0:07;

fBs

fB
¼ 1:32� 0:08:

For the Bc meson, however, both the decay constant and
the hyperfine splitting have not been measured yet. We
considered the ratio of hyperfine mass differences:

�MBcB
�
c

�MBB�
¼ mq

mc

�
�bc

�bq

�
3
: (4.5)

Similar to the above cases, the ratio fBc
=fB was insensitive

to the value of mb and sensitive to that of mc=mq. The

dependences of fBc
=fB on �MBcB

�
c
with mc ¼ 1:2, 1.5,

1.8 GeV and mb ¼ 4:7 GeV were shown in Fig. 3. Some
model predictions were made for fBc

[15,54,58–62], and

the range of these values was fBc
¼ 360� 517 MeV or

fBc
=fB ¼ 1:76� 2:53. As shown in Fig. 3, this range

corresponded to �MBcB
�
c
¼ 16� 64 MeV. We found that

this result was consistent with a calculation using the
nonrelativistic renormalization group [63] �MBcB

�
c
¼

48� 15þ14
�11 MeV.

Besides, the mean square radii of the heavy meson are
calculated by the above parameters and Eq. (3.23). The
dependences of hr2

Dþ;D0;Ds
i on mc and hr2

Bþ;B0;Bs
i on mb

were shown in Figs. 4 and 5, respectively. It was easily
found that, as mentioned at the end of Sec. III, the mean
square radii hr2

Dþ;D0;Ds
i and hr2

Bþ;B0;Bs
i were insensitive to

the heavy quark masses mc and mb, respectively. We used
mc ¼ 1:5 GeV and mb ¼ 4:7 GeV to estimate the mean
square radii of the heavy meson and the results are listed in
Table IV. It is interesting to note that the value hr2

Bþi is
slightly lower but comparable to what one would obtain
from the lattice calculation of Ref. [27], and it is consid-
erably smaller than the results obtained by applying the

mc 1.2 GeV

mc 1.8 GeV
mc 1.5 GeV

0 20 40 60 80 100
0

1

2

3

4

MBc Bc
MeV

f B
c

f B

FIG. 3. Dependences of fBc
=fB on �MBcB

�
c
with mc ¼ 1:2,

1.5, 1.8 GeV and mb ¼ 4:7 GeV. The low and high horizontal
dash lines correspond to fBc

¼ 360 MeV and fBc
¼ 517 MeV,

respectively. The left and right vertical dash lines correspond to
�MBcB

�
c
¼ 16 MeV and �MBcB

�
c
¼ 64 MeV, respectively.

r2
D

r2
Ds

r2
D0

1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.4

0.2

0.0

0.2

0.4

mc GeV

r2
fm

2

FIG. 4. Dependences of hr2
Dþ;D0 ;Ds

i on mc ¼ 1:2� 1:8 GeV.

r2
B

r2
Bs

r2
B0

4.2 4.4 4.6 4.8 5.0 5.2
0.4

0.2

0.0

0.2

0.4

mb GeV

r2
fm

2

FIG. 5. Dependences of hr2
Bþ ;B0;Bs

i on mc ¼ 4:2� 5:2 GeV.
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simple vector meson dominance. The SUð3Þ symmetry

breaking in hr2Pi1=2, which mainly come from the mass
difference ms �mq ¼ 180� 50 MeV, are obtained asffiffiffiffiffiffiffiffiffiffiffi

hr2
Dþ

s
i

hr2
Dþi

vuut ¼ 0:740�0:041
þ0:050;

ffiffiffiffiffiffiffiffiffiffi
hr2

B0
s
i

hr2
B0i

vuut ¼ 0:711�0:049
þ0:058:

The radius ratio of Bþ
c and Bþ are also obtained asffiffiffiffiffiffiffiffiffiffiffi

hr2
Bþ
c
i

hr2
Bþi

vuut ¼ 0:407þ0:037
�0:038 � 0:319þ0:029

�0:030;

which corresponds to the range fBc
¼ 360� 517 MeV.

V. CONCLUSIONS

In this study, we discussed the ratios of decay constants
and mean square radii for pseudoscalar heavy mesons. By
considering the hyperfine interaction inside the meson, we
found that the ratio of light quark masses ms=mq was the

important factor for determining the ratio of the decay
constants. First, in the nonrelativistic approximation, we
obtained the relation fBs

=fB ¼ ð1:05� 0:02ÞfDs
=fD

which did not use any parameters. These two ratios were
individually evaluated by including the ‘‘best-fit’’ light
quark masses ms=mq ¼ 483=310 ¼ 1:558 and the values

fDs
=fD ¼ 1:226� 0:002 and fBs

=fB ¼ 1:24� 0:02 were

obtained. Second, in the light-front framework, we utilized
the mass difference of light quark masses ms �mq ¼
180� 50 MeV and the fittings of the decay constants for
light mesons to compare the mean square radii of Kþ;0

mesons in the power-law and Gaussian momentum distri-
bution amplitudes. The latter was consistent with the data
and it extracted the light quark masses ratio ms=mq ¼
1:72� 0:20. This mass ratio led to fDs

=fD ¼ 1:29�
0:07 and fBs

=fB ¼ 1:32� 0:08. The former was in agree-

ment with the experimental data and the latter was almost
larger than all other theoretical calculations. Both these
ratios were not only insensitive to the heavy quark masses
mc;b, but also insensitive to the decay constants fD;B.

Similar to the above, the ratio fBc
=fB was mainly deter-

mined by the mass ratio mc=mq and the mass splitting

�MBcB
�
c
. The dependences of fBc

=fB on �MBcB
�
c
with the

varied charm quark masses have been shown. We found
that fBc

=fB ¼ 1:76� 2:53 corresponded to �MBcB
�
c
¼

16� 64 MeV. In addition, the mean square radii of heavy
meson were estimated. We found the mean square radii
hr2

Dþ;D0;Ds
i and hr2

Bþ;B0;Bs
i were insensitive to the heavy

quark masses mc and mb, respectively, which was consis-
tent with the behavior when the heavy quark limit was
taken. Our hr2

Bþi was slightly lower but comparable to that

of lattice calculation, and was considerably smaller than
that of vector meson dominance (VMD). The light quark
mass ratio and the range of fBc

given above also led the

radius ratios
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2

Dþ
s
i=hr2

Dþi
q

¼ 0:740�0:041
þ0:050,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2

B0
s
i=hr2

B0i
q

¼
0:711�0:049

þ0:058, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2

Bþ
c
i=hr2

Bþi
q

¼ 0:407þ0:037
�0:038 �

0:319þ0:029
�0:030, respectively.
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[11] J. Bordes, J. Peñarrocha, and K. Schilcher, J. High Energy

TABLE IV. Mean square radius hr2Pi (fm2) of this work and the
other theoretical calculations.

This work Lattice [27] VMD

Dþ 0:165�0:010
þ0:011

D0 �0:261þ0:018
�0:019

Dþ
s 0:0902�0:011

þ0:014

Bþ 0:273�0:043
þ0:059 0:334� 0:003 0.393a

B0 �0:134þ0:022
�0:029

B0
s �0:0676þ0:0141

�0:0189

Bþ
c 0:0277� 0:0451b

aThis value is obtained by hr2iVMD ¼ 6=M2
�.

bThis value is obtained by fBc
¼ 360� 517 MeV.

SUð3Þ SYMMETRY BREAKING IN DECAY CONSTANTS . . . PHYSICAL REVIEW D 81, 054022 (2010)

054022-9



Phys. 12 (2004) 064.
[12] S. Narison, arXiv:hep-ph/0202200.
[13] M. Jamin and B.O. Lange, Phys. Rev. D 65, 056005

(2002).
[14] A.M. Badalian, B. L. G. Bakker, and Y.A. Simonov, Phys.

Rev. D 75, 116001 (2007).
[15] D. Ebert, R. N. Faustov, and V.O. Galkin, Phys. Lett. B

635, 93 (2006).
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