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We propose to describe the time evolution of quasistationary fluctuations near QCD critical point by a

system of stochastic Boltzmann-Langevin-Vlasov-type equations. We derive the equations and study the

system analytically in the linearized regime. Known results for equilibrium stationary fluctuations as well

as the critical scaling of diffusion coefficient are reproduced. We apply the approach to the long-standing

question of the fate of the critical point fluctuations during the hadronic rescattering stage of the heavy-ion

collision after chemical freeze-out. We find that if conserved particle number fluctuations survive the

rescattering, so do, under a certain additional condition, the fluctuations of nonconserved quantities, such

as mean transverse momentum. We derive a simple analytical formula for the magnitude of this memory

effect.
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I. INTRODUCTION

Mapping the QCD phase diagram as a function of tem-
perature T and baryochemical potential �B is one of the
fundamental goals of heavy-ion collision experiments.
QCD critical point is a distinct singular feature of the phase
diagram. It is a ubiquitous property of QCD models based
on the chiral symmetry breaking dynamics [1,2] (see [3]
for review and further references). Locating the point using
first-principle lattice calculations is a formidable challenge
[4–8]. Recent progress and results are encouraging, but
much work needs to be done to understand and constrain
systematic errors (see, e.g., Refs. [9–11] and reviews
[12,13] for further references and discussion).

If the critical point is located in the region accessible to
heavy-ion collision experiments it can be discovered ex-
perimentally. The search for the critical point is planned at
the Relativistic Heavy Ion Collider (RHIC) at BNL, the
Super Proton Synchrotron (SPS) at CERN, the future
Facility for Antiproton and Ion Research (FAIR) at GSI,
and Nuclotron-based Ion Collider Facility (NICA) in
Dubna [14–17].

The characteristic feature of a critical point is the in-
crease and divergence of fluctuations. The nonmonotonous
behavior of event-by-event fluctuations, measured in
heavy-ion collisions, as a function of the initial collision
energy is a signature of the QCD critical point [18,19]. The
estimates of the magnitude of the fluctuations in [19] were
based on the assumption of thermodynamic equilibrium,
which is a reasonable first approximation at freeze-out. For
such stationary fluctuations the probability of a given value
of a fluctuating variable is proportional to the exponential
of the entropy, i.e., to the number of microscopic states
with that value of the variable [20,21].

In a dynamic environment of a heavy-ion collision, the
system continuously evolves with time. As long as the
evolution is slow enough compared to the typical reequili-

bration time, one can consider fluctuations as simply track-
ing the evolving equilibrium conditions. However, some
fluctuating modes can be slower. In fact, it is precisely
these slow modes which are of primary interest to us.
These include fluctuations of conserved quantities and,
most importantly, the critical fluctuations of the order
parameter field � at the critical point. Fluctuations must
keep readjusting to the continuously drifting equilibrium
value. Can this quasistationary dynamics of fluctuations be
described quantitatively? The purpose of this paper is to
achieve this.
We derive stochastic equations for the particle distribu-

tion functions as well as the critical mode using
fluctuation-dissipation relation in Sec. III. We determine
the corresponding equation for the correlators of the fluc-
tuations in Sec. V and study its solution in Secs. VII, VIII,
and IX. Finally, in Sec. X, as an example of the application,
we answer analytically, in an idealized regime, the long-
standing question of the fate of fluctuations during the
hadronic rescattering phase. We discover a memory effect,
which protects not only fluctuations of conserved quanti-
ties. Notations introduced throughout the paper are indexed
in Appendix A.

II. COMPARISON WITH RELATED WORK

The time evolution of fluctuations has been considered
previously using different methods and/or in different con-
texts. Below we review some of this work in order to point
out the new ingredients as well as the results of our
approach.
Quasistationary dynamics of fluctuations motivated

Ref. [22]. The relaxation of the correlation length, as a
proxy to the magnitude of fluctuations, was studied using a
model equation. Here we shall address evolution of fluctu-
ations on a microscopic level and directly in terms of
observable quantities.
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The quasistationary dynamics plays an essential role in
the anomalous suppression of charge fluctuations, which
has been proposed as a signature of the quark-gluon plasma
formation at early times in Refs. [23,24], and more quanti-
tatively analyzed in [25] (see also review Ref. [26]). The
evolution follows a diffusion-type equation, which means
that fluctuations of larger spatial extent relax slower.
Therefore, as the size of the acceptance window is in-
creased, the memory of the fluctuations goes further back
in time, allowing to probe earlier stages of the fireball
evolution.

The most interesting and not easily anticipated result of
the approach we introduce here is the following. Although
the memory effect is due to the slowness of the conserved
charge fluctuations, the fluctuations of other quantities are
also affected. For example, we show that the fluctuations of
observables such as, e.g., mean transverse momentum pT

in the event also ‘‘remember’’ their earlier value. More
precisely, if the chemical freeze-out (the freeze-out of
inelastic reactions) has occurred near the critical point,
the elastic collisions during the subsequent evolution of
the fireball do not completely ‘‘wash out’’ the critical point
contribution to the mean pT fluctuations even on the time
scales longer than typical collisional relaxation time. We
can determine the magnitude of that effect by studying the
microscopic nature and evolution of the slowest mode of
fluctuations.

The evolution of fluctuations in the vicinity of the criti-
cal point has been studied numerically in Ref. [27]. The
fluctuations were introduced by randomization of initial
conditions, while the subsequent evolution was determi-
nistic. The essential ingredient of the approach we intro-
duce here is the full treatment of fluctuations. I.e.,
fluctuations are driven by a random external source, acting
at all times. The strength of the source is determined by
fluctuation-dissipation relation.

Stochastic Langevin-type equations were used to study
hydrodynamic fluctuations near the critical point in [28].
However, experimental observables such as, e.g., mean pT

fluctuations, are not directly related to hydrodynamic var-
iables. The new ingredient in the present approach is the
use of kinetic Boltzmann equation. The degrees of freedom
here are particle distribution functions, which directly
translate into observable fluctuation measures. Strictly
speaking, our approach lacks rigorous consistency of
low-energy hydrodynamic description, and should be con-
sidered as only a model of the late hadronic stage of the
heavy-ion collision. However, this relatively minor com-
promise allows us to address directly experimental fluctua-
tion measures and make quantitative predictions, rather
than limiting the study to density fluctuations. As a test
of the new approach we shall derive some results of
Ref. [28] in Sec. VIII B.

In a different context, the stochastic Boltzmann-Vlasov
type equations have been used to estimate the rate for hot
electroweak baryon number violation [29–31].

III. THE FORMALISM

To model the fireball evolving through the phase dia-
gram near the critical point, we consider a relativistic
system of particles interacting with a scalar field �,
coupled to a thermal bath at temperature T. We are con-
sidering late hadronic phase of the fireball expansion. The
particle density is assumed to be already sufficiently small,
so that their motion can be considered classically, using
Boltzmann equation. The massm of the scalar field, on the
other hand, is considered to be sufficiently small compared
to 2�T, so that the field can be treated classically, using
field equations. This condition is fulfilled sufficiently close
to the critical point.

A. Equations of motion

Since the field � is a Lorentz scalar, we assume that the
coupling of it to the particles affects their mass (as opposed
to, e.g., chemical potential, which is a Lorentz vector). As
an example, one can consider coupling of nucleons � �NN
or pions��� to the� field in the chiral sigma model. Thus
we are led to consider classical motion of particles with
variable massMð�Þ [32], which depends on the local value
of the scalar field �. The action of the system is given by:

S ¼
Z

d3x
1

2
ð@��@���Uð�ÞÞ �

Z
dsMð�Þ; (1)

where the last integral is taken over the worldline of a
particle with variable mass. The corresponding equations
of motion are given by:

@2�þ dU=d�þ
Z

dsðdM=d�Þ ¼ 0; (2)

dp�=d� ¼ @�Mð�Þ; with p� ¼ Mdx�=d�; (3)

whereM ¼ Mð�Þ is the local value of the variable particle
mass. One can check that the motion governed by Eqs. (3)
preserves p�p� �Mð�Þ2 ¼ 0 along the particle

trajectory.
The Boltzmann equation for the distribution function

fðx; pÞ of such particles in the external field � reads [33]:

p�

M

@f

@x�
þ @�M

@f

@p� þ C½f� ¼ 0; (4)

or in a more physically transparent, noncovariant, form:

_fþ v � rf� ðrM=�Þ � ð@f=@pÞ þ C½f�=� ¼ 0; (5)

where

v � p=ð�MÞ and � � ð1� v2Þ�1=2 (6)

is the particle velocity and relativistic gamma-factor,
respectively.
The collision integral C½f� in Eq. (4) gives the collision

frequency for all particles with momentum p (near space-
time point x) in the rest frame of those particles, while C=�
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is that frequency in the lab frame. Using equations of
motion (3) one can show that the Boltzmann Eq. (4) (or
(5)), implies continuity equation for the particle number
current

@�j
� þ

Z
p
C½f�=� ¼ 0; where j� �

Z
p
fp�=ðM�Þ;

(7)

with

Z
p
�

Z d3p

ð2�Þ3 : (8)

I.e., particle number can only be changed (if at all) by
collisions.

The equation of motion for the scalar field � in the
presence of particles with distribution fðx; pÞ, following
Eq. (2), is given by

@2�þ dU=d�þ ðdM=d�Þ
Z
p
f=� ¼ 0: (9)

Coupled Eqs. (4) and (9) describe evolution of the particle
distribution f and the scalar field �. These equations are
conceptually similar to Vlasov equations in electrodynam-
ics. The difference is that the classical field � is a Lorentz
scalar. There is also certain limited similarity with the
nuclear mean-field approach [34].

Our goal is to extend the above formalism to the de-
scription of fluctuations in the system. In application to
linearized Boltzmann equation this has been done by Fox
and Uhlenbeck and others [35–38]. Here we shall extend
this formalism to linearized Boltzmann-Vlasov type
coupled Eqs. (4) and (9).

B. Linearized equations

For a given constant field�, the Boltzmann equation has
a stationary solution, which is also constant in space,
f�ðpÞ, satisfying C½f�� ¼ 0. This is Boltzmann distribu-
tion for particles of mass Mð�Þ at arbitrary values of
temperature T and chemical potential �:

f�ðpÞ ¼ e�=Te��ðpÞM=T: (10)

The values of T and � depend on the total particle number
(if it is conserved by collisions) and on total energy, if the
system is closed, or by conditions of equilibrium with the
thermal bath if it is open.

The equilibrium value of � is determined by

dU=d�þ ðdM=d�Þ
Z
p
f�=� ¼ 0: (11)

where the second term can be viewed diagrammatically as
the contribution of a thermal tadpole.

We linearize the equations for � and f by expanding
around their equilibrium value. The deviation of f from its
equilibrium value f� will be parametrized, as usual, by

function h:

f ¼ f�ð1þ hÞ: (12)

The linearized Boltzmann equation then reads

_h� _�g=ð�TÞ þ v � rhþ I½h� ¼ 0; (13)

where

g � dM=d� (14)

and I½h� is the linearized collision integral:

C ½f� ¼ �f�I½h� þOðh2Þ: (15)

Note, that both C and I depend on the local value of the
field � (through the dependence of the particle mass M),
and we used the property of the equilibrium distribution
C½f�� ¼ 0.
Shifting the notation for � so that � ¼ 0 is the equilib-

rium value (solution of Eq. (11)) we can write the line-
arized Eq. (9) as

€�� r2�þm2�þ g
Z
p
f0h=� ¼ 0: (16)

where we defined the ‘‘in-medium’’ mass m of the � field
quanta as

m2 ¼ m2
0 þ

d

d�

�
g
Z
p
f�=�

�
�¼0

: (17)

with m2
0 � d2Uð0Þ=d�2. The last term in Eq. (17) can be

recognized as the one-loop thermal contribution to the
vacuum mass m0.
In the system we considered so far the dissipation (en-

tropy increase) is entirely due to the collision term C½f�. In
a more general, and more realistic, case when the field �
interacts with other particles in a heat bath, one can de-
scribe the additional dissipation effects adding a term �0 _�
into the left-hand side (lhs) of Eq. (16).

C. Noise and its correlators

Eqs. (5) and (9) describe evolution of functions f and �
averaged over the time scale of many particle collisions.
Fluctuations of f and� can be characterized by correlation
functions (also averaged over many collisions).
In order to describe these fluctuations we follow the

approach of Ref. [36] and introduce random noise terms.
We shall determine the correlation functions of these noise
terms following Refs. [35,36,39,40] in the linearized re-
gime. For that purpose we shall cast equations in the
following first-order form:

_h� �g=ð�TÞ þ v � rhþ I½h� ¼ �; (18a)

_�þ �0�� r2�þm2�þ g
Z
p
f0h=� ¼ �; (18b)

_�� � ¼ 0: (18c)
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where we introduced noises � and� and, for generality, the
additional dissipation term �0�. It is worth pointing out
that the field � is stochastic with our without the noise �
because of the coupling to the particles [last term on the lhs
of Eq. (18b)].

To determine the correlators of the noises � and �, we
use fluctuation-dissipation relation. The probability distri-
bution of the fluctuating degrees of freedom [20,21]

P ½f; �� � expS½f; �� (19)

is determined by the entropy function

S½f; �� ¼
Z

d3x

�
�

Z
p
fðlogf� 1Þ � 1

T

�
�2

2
þ ðr�Þ2

2

þUð�Þ þ
Z
p
ðMð�Þ���Þf

��
; (20)

where T is the temperature of the external heat bath. The
first term is the well-known Boltzmann entropy
(H-function), while the second term is simply �ðE�
�NÞ=T, where E is the energy of the system and � is the
chemical potential. This term is the contribution of external
reservoir to the (fluctuations of) entropy.

In the linear approximation, we can consider noise to be
Gaussian, and all nontrivial information about it to be in
the correlators such as h�ðx1; p1Þ�ðx2; p2Þi, h�ðx1Þ�ðx2Þi
and h�ðx1; pÞ�ðx2Þi. To determine these correlators we
expand the entropy to quadratic order (note cancellation
of terms linear in h due to logf� ¼ ð��Mð�Þ�Þ=T)

Sð2Þ ¼ � 1

2

Z
d3x

�Z
p
f0h

2 þ 1

T
ð�2 þ ðr�Þ2 þm2�2Þ

�
;

(21)

where

m2 ¼ m2
0 � T

Z
p

d2f�
d�2

(22)

is the same ‘‘in-medium’’ mass of the � field quanta
already defined in Eq. (17), as can be verified by using
Eq. (10).

We follow Refs. [35,36,38] to define the ‘‘entropy ma-
trix’’ (or, more precisely, operator) E:

E
h
�
�

0
@

1
A ¼

f0h
�=T

ð�r2�þm2�Þ=T

0
@

1
A; (23)

so that Eq. (21) can be written as

Sð2Þ ¼ � 1

2
h � Eh; (24)

where h � ðh; �;�Þ denotes the (infinitely dimensional)
‘‘vector’’ whose components are the degrees of freedom of
the system, with the scalar product defined as

ðh; �;�Þ � ðh0; �0; �0Þ �
Z

d3x

�Z
p
hh0 þ ��0 þ ��0

�
:

(25)

Similarly, Eqs. (18) can be also cast in matrix (operator)
form

_hþGh ¼ �; (26)

where

G
h
�
�

0
@

1
A ¼

��g=ð�TÞ þ v � rhþ I½h�
�0�� r2�þm2�þ g

R
p f0h=�

��

0
@

1
A:
(27)

Then the correlator of the noises, combined into a vector
� ¼ ð�; �; 0Þ, can be expressed in terms of the matrix/
operator Q defined as

h�ðt1Þ � �ðt2Þi ¼ 2Q�ðt1 � t2Þ; (28)

and given by the usual fluctuation-dissipation relation (see
Refs. [35,36,39])

2Q ¼ GE�1 þ E�1Gy: (29)

Using Eqs. (23), (27), and (29), one can now find Q:

2Q
h
�
�

0
@

1
A ¼

I½h=f0� þ Iy½h�=f0
2�0T�

0

0
B@

1
CA

¼
ðKþKyÞ½h�

2�0T�
0

0
B@

1
CA; (30)

where we defined operator K as

I ½h� � K½f0h�: (31)

One can show [40] that the operator K is self-adjoint for
elastic collisions, but we leave equations in a more general
form. Equation (30) together with Eq. (28) translates into
the following explicit expression for the correlators:

h�ðx1; p1Þ�ðx2; p2Þi ¼ ðKþKyÞð2�Þ3�3ðp1 � p2Þ
� �4ðx1 � x2Þ; (32a)

h�ðx1Þ�ðx2Þi ¼ 2�0T�
4ðx1 � x2Þ; (32b)

h�ðx1; p1Þ�ðx2Þi ¼ 0: (32c)

It is easy to recognize in Eq. (32a) the generalization of the
result of Ref. [36]. One can also observe that the interac-
tion between the particles and the field � does not manifest
itself in any modification of the corresponding noises. That
should be expected given the physical origin of the noise:
collisions and the interaction with the external reservoir.
The correlations are local in coordinate space, which also
correctly reflects their origin.
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IV. STATIONARY, EQUILIBRIUM FLUCTUATIONS

The quantity directly accessible by experimental mea-
surement is a two-particle correlator h�fð1Þ�fð2Þi. Before
we begin studying time evolution of fluctuations let us
derive the stationary, equilibrium value of the two-particle
correlator and compare with existing results.

To linear order in fluctuations,

f ¼ f�ð1þ hÞ ¼ f0ð1þ h� g�=ð�TÞÞ þOð�2Þ: (33)

The equal-time correlators of h and � are contained in the
matrix elements of the correlator of h which in equilibrium
are given by

hh � hi ¼ E�1 (34)

according to (24). Using the explicit expression (23) for the
components of the entropy matrix we thus find

h�fð1Þ�fð2Þi ¼ hfð1Þfð2Þi � f0ð1Þf0ð2Þ

¼ f0ð1Þf0ð2Þ
��

h� g�

�T

�
ð1Þ

�
h� g�

�T

�
ð2Þ

�

¼ f0ð1Þ�ð1;2Þ þ g2

T

f0ð1Þf0ð2Þ
�ð1Þ�ð2Þ

Dð1;2Þ; (35)

where subscripts (1) and (2) refer to the points in the phase
space ðx1;p1Þ and ðx2;p2Þwhere the scripted quantities are
to be evaluated, �ð1;2Þ ¼ �3ðx1 � x2Þð2�Þ3�3ðp1 � p2Þ
and Dð1;2Þ ¼ ð�r2 þm2Þ�1�3ðx1 � x2Þ. Integrating over

x1;2 one obtains the known result for the equilibrium

fluctuations of particles coupled to classical scalar field �
[19,41]:

V�1h�	p�	p0 i ¼ f0�pp0 þ g2

m2T

f0
�

f00
�0 ; (36)

where V ¼ R
d3x is the volume, �pp0 � ð2�Þ3�3ðp� p0Þ,

and we denoted the momentum space distribution as

	p ¼
Z

d3xfðx;pÞ; such that
Z
p
	p ¼ N (37)

is the total number of the particles.

V. TIME EVOLUTION OF FLUCTUATIONS

Now we want to consider the time evolution of fluctua-
tions as the parameters of the system, most importantly m,
change.

If we take the initial probability distribution for fluctu-
ating variables to be Gaussian, in a linear system the
fluctuations will remain Gaussian at all times. This can
be verified directly, by converting the generalized
Langevin Eqs. (26) into corresponding Fokker-Plank equa-
tion for the probability distribution P½h; t�:

_P ¼ @

@h
�
�
GhPþQ

@P

@h

�
: (38)

Parametrizing the probability using (time-dependent) op-
erator �:

P ¼ ðdet�Þ�1=2 exp

�
� 1

2
h � ��1h

�
; (39)

and substituting into Eq. (38), one finds equation for �:

_� ¼ �G���Gy þ 2Q: (40)

Note that � ¼ E�1 is a stationary solution of this equation,
as expected from Eq. (34) and the fact that

hh � hi ¼ �: (41)

This verifies the fluctuation-dissipation relation (29).
The Eq. (40) for ðd=dtÞhh � hi can be also derived

directly, by applying Eqs. (26) and (28), without assuming
Gaussianity (39).
Equation (40) can be formally integrated from initial

time, taken to be 0, to arbitrary time t:

� ðtÞ ¼ Vðt; 0Þ�ð0ÞVyðt; 0Þ þ 2
Z t

0
dt0Vðt; t0ÞQVyðt; t0Þ;

(42)

where evolution operator Vðt; t0Þ satisfies
_V ¼ �GðtÞV; (43)

i.e.,

V ðt; t0Þ ¼ T exp

�
�
Z t

t0
dt00Gðt00Þ

�
: (44)

Equation (40) can be now used to study the time evolution
of the fluctuations, provided, of course, they remain small,
so that linear approximation is valid at all relevant times.
A more useful equivalent form of Eq. (40) is

d~�

dt
¼ �G~�� ~�Gy � dðE�1Þ

dt
; where ~� � �� E�1:

(45)

In this form, and for E ¼ const, it describes relaxation of�
to its equilibrium value E�1. The solution is given by

~�ðtÞ ¼ Vðt; 0Þ~�ð0ÞVyðt; 0Þ �
Z t

0
dt0Vðt; t0Þ

� dðE�1Þ
dt

Vyðt; t0Þ; (46)

which is equivalent to Eq. (42).
Determining the time-dependence more explicitly in the

general case is a complicated task, and should perhaps be
part of numerical modeling of a more realistic system. As
an illustration of the use of Eq. (46) we shall address the
important question of the fate of the critical point fluctua-
tions after chemical freeze-out. To prepare for this, we
shall briefly discuss the way conservation of particle num-
ber is reflected in the equations (Sec. VI), and then analyze
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the evolution of fluctuations for time-independent G and E
(Secs. VII and VIII).

VI. CONSERVATION OF PARTICLE NUMBER AND
FLUCTUATIONS

Chemical freeze-out is a moment in the history of a
heavy-ion collision fireball, when inelastic reactions be-
come too infrequent to modify the chemical composition
of the system. In other words, the number of particles of a
given species is conserved during subsequent evolution.

To model the evolution past the chemical freeze-out, we
shall require that the collision integral C½f� conserves the
particle number. According to Eq. (7) this requires

Z
p
C½f�=� ¼ 0 (47)

to be valid for all f. The linearized collision operator I in
Eq. (15) therefore obeys, for all h,

M ½I½h�� ¼ 0 (48)

For future convenience, we have introduced notation

M ½h� �
R
p f0hR
p f0

(49)

for the average over equilibrium distribution f0. Imposing
the condition that operator K defined in Eq. (31) is self-
adjoint [40], one can see that Eq. (48) implies

I ½const� ¼ 0: (50)

In other words, operator I has a zero mode. This is also
evident from the fact that constant h corresponds to chang-
ing the value of � in the equilibrium distribution (10), and
that C½f�� ¼ 0 for arbitrary �.

VII. SOLVING EVOLUTION EQUATIONS WITH
CONSTANT COEFFICIENTS

The evolution operator V in Eq. (44) for the system with
time-independent G can be written in the form:

V ðt; t0Þ ¼ X



e�
ðt�t0Þh
 � �
; (51)

where the sum goes over all solutions of the following
eigenvalue system


h
 ¼ Gh
; (52)

and vectors �
 form the dual (adjoint) basis with respect to
the one formed by vectors h
, i.e.,

� 
i
� h
j

¼ �ij: (53)

If the system is also spatially homogeneous, it is conve-
nient to apply Fourier transformation with respect to the
space coordinate x to Eqs. (52). Given the definition of
operator G in Eq. (27), we find:

�
h� �g=ð�TÞ þ iv � qhþ I½h� ¼ 0; (54a)

�
�þ �0�þ q2�þm2�þ gn0M½h=�� ¼ 0; (54b)

�
�� � ¼ 0; (54c)

where we defined

n0 �
Z
p
f0 (55)

-the equilibrium density of the particles.

VIII. THE SLOWEST MODE

The slowest mode corresponding to the lowest eigen-
value of the eigensystem (54) is of primary interest to us. In
this section we shall determine it.

A. Zero mode

We begin by considering the simpler case q ¼ 0. Since
operator I has a zero mode h ¼ const (50), let us separate
it by writing

h ¼ ~hþ �h; where �h � M½h�: (56)

The zero eigenvalue 
0 ¼ 0 of Eqs. (54) corresponds to

the solution such that ~h ¼ � ¼ 0 (so that Eq. (54a) is
trivial) and

h 
0
: gn0M½1=�� �h ¼ �m2� ð
0 ¼ 0Þ: (57)

Note that this mode is predominantly � near the critical
point (i.e, �h ! 0 as m ! 0). This may appear surprising,
since the mode 
0 is due to the particle number conserva-
tion, while � is not a density of a conserved quantity.
However, near the critical point the fluctuations of particle
number density are dominated by their mixing with �
[3,42], whose fluctuations diverge. Equation (57) also
shows that in the limit g ! 0 at fixed m, the 
0 mode is
predominantly �h, as it should be if � is decoupled.
In order to find the dual vector �
0

we need some

information about all other modes h
, since �
0
must be

orthogonal to them (53). Applying operator M to Eq.
(54a) and using (48), we find, at q ¼ 0:

h 
: �h ¼ g

T
M½1=��� ð
 � 0Þ: (58)

This equation contains all the information about the non-
zero modes that we need to determine �
0

.

In order to simplify subsequent linear algebra manipu-
lations, we shall define two convenient basis vectors:

ĥ: ~h ¼ � ¼ � ¼ 0 and �h ¼ gM½1=��=T; (59)

�̂: ~h ¼ � ¼ �h ¼ 0 and � ¼ 1: (60)

In terms of these vectors, Eq. (58) means that, for any
nonzero eigenvalue 
 � 0, eigenmodes are given by
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h 
 ¼ �̂ þ ĥþ ðterms with �h ¼ � ¼ 0Þ; (61)

while Eq. (57) for the zero mode can be written as

h 
0
¼ �2�̂ �m2ĥ; (62)

where we defined

�2 � g2n0
T

M½1=��2: (63)

Equations (61) and (62) together determine the orientation
and the length of the dual vector

� 
0
¼ 1

V

�̂ � �̂

�2 þm2
; (64)

which satisfies the defining orthonormality conditions (53).
We defined another convenient vector, related to (59):

�̂ ¼ T

�2
f0ĥ; (65)

such that �̂ � ĥ ¼ 1. One can also check that �
0
is the 
 ¼

0 eigenvector of 
�
 ¼ Gy�
, as it should be.

B. Hydrodynamic mode and diffusion coefficient

The mode 
0, corresponding to conservation of the
particle number, is hydrodynamic in the sense that, for
small q, 
0 ¼ Oðq2Þ. The ratio 
0=q

2 ¼ D defines the
corresponding diffusion coefficient D, which we can ex-
tract from Eqs. (54).

As we did deriving Eq. (58) for nonzero modes at q ¼ 0,
let us apply operator M to Eq. (54a). Now, at q � 0, we
find


 �h� iM½v � q~h� ¼ 

g

T
M½1=���: (66)

We need now to express ~h in terms of �h and � using

Eq. (54a). Since ~h ! 0 as q ! 0, one can see that ~h
must begin at order q. Keeping in Eq. (54a) only terms
of OðqÞ we obtain:

iv � q �hþ I½~h� ¼ 0: (67)

Wewould need to invert operator I to express ~h in terms of
�h. For generic operator I we shall define function c ðv2Þ,
which solves the equation

I ½vc � ¼ v: (68)

The fact that solution can be found in this form follows
from isotropy of the collision operator and equilibrium
distribution function. In terms of c , the solution to
Eq. (67) is given by

~h ¼ �iq � vc �h: (69)

Substituting this into Eq. (66) we find, instead of Eq. (58),

�hð
0 �D0q
2Þ ¼ 
0

g

T
M½1=���; (70)

where we denoted by D0

D0 � 1

3
M½v2c � (71)

the diffusion coefficient for the particle gas with fixedmass
(the limit g ! 0). Putting together Eq. (70) and (57), which
remains valid to the order in q2 we need, we find


0 ¼ Dq2 þOðq4Þ; where D ¼ m2

�2 þm2
D0: (72)

The fact thatD ! 0 asm2 ! 0 is to be expected on general
grounds from the hydrodynamic relation D ¼ ��=� [43],
where �� is the conductivity, and � is the susceptibility of
the particle number, and the fact that �� 1=m2 [28,43].
Within our microscopic approach:

� ¼ h�N2i
VT

¼ n0
T

�2 þm2

m2
(73)

according to Eq. (93) which we encounter later.

IX. FASTER MODES

This section is a slight detour from the main thread of the
paper. We have already accumulated all information about
the zero and even nonzero modes, Eqs. (57) and (58), that
we need to study the memory effect in fluctuations
(Sec. X). However, it might still be interesting to look at
the structure of the nonzero modes in more detail, to
understand better the properties of the system of equations
we are solving.
So far we have not used any information about the linear

collision operator I beyond the conservation of the particle
number and isotropy. For the sake of analytic transparency,
and within this section only, we shall assume here that all
eigenvalues, but one, of the operator I are equal to the
same value ��1, which has the meaning of an average
relaxation rate. The exception is the zero eigenvalue, cor-
responding to the condition (48). This approximation is
well-known and is due to Refs. [44,45] (see also Ref. [46]).
Operator I should also respect the condition that opera-

tor K, defined by (31) is self-adjoint. All the above con-
ditions are satisfied by the operator

I ½h� ¼ ��1ðh�M½h�Þ: (74)

Another simplification we shall adopt in this section
only corresponds to assuming ��1 � �0; m, i.e., that ��1

is much faster than any other rate in the problem.
We emphasize that, although these approximations are

physically sensible, they are only used here to make a
transparent analytic treatment possible, illustrating the
properties of the system we study.

Substituting Eq. (58) back into (54a) and solving for ~h
we find, at q ! 0,

~h ¼ 
�

1� 
�

g

T
ðM½1=�� � 1=�Þ�: (75)
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Now substituting h given by Eqs. (56), (58), and (75) into
Eq. (54b), we find the equation determining the eigenval-
ues 
:


2 � 
�0 þm2 þ�2 � 
��2
�

1� 
�
¼ 0: (76)

where we used (63) and defined also

�2
� � g2n0

T
M½1=�2�: (77)

Equation (76) has three roots. For the scale hierarchy we
consider, ��1 � �0; m, there are two roots of order �0 orm
and one root of order ��1. The two smaller roots, to leading
order in �, satisfy the quadratic equation


2 � 
�þ ~m2 ¼ 0; (78)

where

~m 2 � m2 þ �2; (79)

� � �0 þ �2
��; (80)

and thus


1;2 ¼ ��=2	 i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 � ð�=2Þ2

q
: (81)

At this point one can see that ~m is the rest mass (pole
mass) of the quasiparticle �. It is different from the (static)
screening mass m, and does not vanish at the critical point
[28,47,48], where m ! 0.

Also, Eq. (80) shows that the full dissipation rate �
contains contribution �2

�� from the interaction of � with

the particles. In principle, one could start with �0 ¼ 0
(closed system) and consider the particle collisions to be
the only source of the dissipation.

The third eigenvalue is given, to the leading nontrivial
order in �, by


3 ¼ ��1 þ ð�2 ��2
�Þ�: (82)

(Applying Cauchy-Bunyakovsky-Schwarz inequality to
Eqs. (63) and (77), one can see that �< ��.)

Finally, any function h? satisfying

M ½h?� ¼ 0 and M½h?=�� ¼ 0 (83)

solves the eigensystem with � ¼ � ¼ 0 and 
 ¼ ��1. The
linear (eigen)space defined by Eqs. (83) is infinitely di-
mensional and, correspondingly, 
 ¼ ��1 is an infinitely
degenerate eigenvalue. This degeneracy is not lifted be-
cause modes h? do not mix with the modes corresponding
to eigenvalues 
i, i ¼ 0, 1, 2, 3. This is a convenient
feature of the Anderson-Witting approximation (74).

Returning to the 
0 mode, with operator I in the form
given by Eq. (74), Eq. (68) can be solved: c ¼ �, and
D0 ¼ M½v2��=3.

X. FROM CHEMICAL TO KINETIC FREEZE-OUT

A. Preliminaries

As an application of the formalism, let us consider the
following long-standing problem. Assuming that the
chemical freeze-out occurred near the critical point, how
much of the fluctuation signal survives until kinetic freeze-
out? A more precise and detailed answer to this problem
will likely require a numerical simulation. Here we want to
illustrate the mechanism, and make a simple estimate of
the effect. To that end we shall make several simplifying
assumptions, in order to maintain analytical control. In
essence, we shall assume that separation of different
relaxation-time scales is sufficiently large for us to be
able to focus on only the most relevant modes.
Chemical freeze-out is characterized by ‘‘freezing’’ of

inelastic reactions. This means that the number of each
individual particles is conserved (particles in the same
isospin multiplet could be considered as different internal
states of the same particle, to allow for quasielastic colli-
sions). This, in turn, means that any measure of fluctuations
of a conserved number of particles should not change.
More precisely, it can only change by diffusion, which
we shall assume here to be the slowest scale in the problem
(i.e., we work in the q ! 0 limit).
On the other hand, fluctuations such as those of mean

pT , which is not a conserved quantity, must evolve between
chemical and kinetic freeze-out, at which point they are
‘‘frozen’’ and eventually observable. The form and the
amount of this evolution we shall now discuss.
During the interval between chemical and kinetic freeze-

out the typical time scale, �e, of the evolution of the system
is much slower than the inverse elastic collision rate � and
the scales ��1 associated with the relaxation of the � field.
In a realistic heavy-ion collision �e ¼ Oð10� 20Þ fm (or-
der of fireball size), while ��1; � ¼ Oð0:5� 2Þ fm (typi-
cal hadronic scales). Thus we shall assume �e � �, ��1.
In order to be able to obtain analytically tangible solu-

tion we shall take into account the effect of the change of
only one parameter: m-the screening mass of �. Since the
fluctuations are singular as 1=m2 near the critical point, the
effect of change of m could be assumed to be dominant,
compared with the change of, e.g., equilibrium distribution
functions f0 (e.g., via change of T), which we shall con-
sider fixed, for simplicity. As a concrete example, one
could consider evolution of m determined by the model
in Ref. [22]. As we shall see, the actual time dependence of
m will not matter, as long as it is slow, which is helped by
critical slowing down [22].
The physically reasonable assumptions spelled out

above are needed to make the analytic results attainable
and usefully transparent. These assumptions can be re-
laxed, e.g., via a numerical simulation, at the expense of
analytic control. Our main purpose here is to illustrate the
mechanism in the most transparent way possible.
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B. Evolution of fluctuations

We begin by determining the evolution operator Vðt; t0Þ.
If we choose the interval, t� t0, so small that we could
neglect the change of G (i.e., change of m) and consider it
constant, then we could integrate Eq. (44) and obtain V
given by Eq. (51).

If the interval t� t0 is also large compared to relaxation
scales 
�1

i , for all i � 0, only the term corresponding to the
zero mode 
 ¼ 
0 ¼ Oðq2Þ will survive in Eq. (51):

V ðt; t0Þ ¼ e�
0ðt�t0Þh
0
� �
0

þ ðexp: small termsÞ: (84)

In order to extend this result to longer time intervals over
which the change of G cannot be neglected, we use the
property

V ðt; t0Þ ¼ Vðt; tnÞ . . .Vðt2; t1ÞVðt1; t0Þ (85)

and subdivide t� t0 into smaller intervals satisfying

�1
i 
 tn � tn�1 
 �e. Our assumption of scale hierarchy

is needed to make such a choice possible. Using Eq. (84)
we then find

Vðt; t0Þ ¼ e�
R

t

t0 
0dth
0
ðtÞ � �
0

ðt0Þ � ð�
0
ðtÞ

� h
0
ðtnÞÞ . . . ð�
0

ðt1Þ � h
0
ðt0ÞÞ: (86)

In order to evaluate dot products in Eq. (86), we use
explicit form of eigenvectors h
0

and �
0
, given by

Eqs. (62) and (64), and find, e.g.,

� 
0
ðt1Þ � h
0

ðt0Þ ¼ �2 þm2ðt0Þ
�2 þm2ðt1Þ

: (87)

There is a string of such factors in Eq. (86) and, multi-
plying them successively, one finds that all but the first and
the last factor �2 þm2ðtÞ cancel, leaving

V ðt; t0Þ ¼ e�
R

t

t0 
0dth
0
ðtÞ � �
0

ðt0Þ�
2 þm2ðt0Þ

�2 þm2ðtÞ
¼ e�

R
t

t0 
0dth
0
ðtÞ � �
0

ðtÞ: (88)

The only dependence on the initial time t0 remains in the
exponentially decaying prefactor. Since 
0 ¼ Dq2, this
prefactor is close to unity near the limit we have been
working in: q ! 0 (the fact that D�m2 ! 0 near the
critical point also helps). In general, the importance of
the prefactor depends on the size of the region over which
the fluctuations are measured. Since 1=
0 is an estimate of
the time, �D, it takes for a fluctuation to diffuse over this
region, the factor can be estimated roughly as exp½�ðt�
t0Þ=�D�. Below we shall consider the case when the region
is large enough, so that �D � �e.

We are now ready to apply Eq. (46). We shall take the
initial time t ¼ 0 to be the time of chemical freeze-out, and
the final time t ¼ tk the time of kinetic freeze-out. At
chemical freeze-out, t ¼ 0, the fluctuations are equili-

brated and ~� ¼ 0. Thus at kinetic freeze-out, t ¼ tk,

Eq. (46) gives, upon integration,

~�ðtkÞ ¼ h
0
ðtkÞ � �
0

ðtkÞ � ðE�1ðtcÞ
� E�1ðtkÞÞ�
0

ðtkÞ � h
0
ðtkÞ: (89)

A shorter way to derive Eq. (89) is to observe that the
actual time-dependence ofmðtÞ is not important, as long as
it is faster than the diffusion: �D � �e (but �e � 
�1

i ).
Choosing mðtÞ to have an (almost) instantaneous step from
mc to mk, and constant at all other times one can then find

solution (89) using Eq. (46) with initial condition ~�ð0Þ ¼
E�1ðtcÞ � E�1ðtkÞ.
Taking into account Eq. (23), which for convenience we

write, using notations 1h for the unit operator 1h½h� ¼ h
and �̂ for the basis vector ðh ¼ 0; � ¼ 1; � ¼ 0Þ,

E�1ðtÞ ¼ f�1
0 1h þ T�̂ � �̂ þ T

m2ðtÞ �̂ � �̂; (90)

together with Eqs. (62) and (64), we find for� ¼ E�1 þ ~�
at kinetic freeze-out time

� ðtkÞ ¼ E�1ðtkÞ þ
�
T

m2
c

� T

m2
k

�
�2�̂ �m2

kĥ

�2 þm2
k

� �2�̂ �m2
kĥ

�2 þm2
k

; (91)

where mc;k ¼ mðtc;kÞ is the value of the � screening mass

at chemical/kinetic freeze-out. The last term, containing
1=m2

c , is the memory effect, due to the freezing out of
conserved particle number fluctuations.

C. Two-particle correlator and memory

In order to translate Eq. (91) into observed fluctuations,
we should recall that � ¼ hh � hi and apply Eqs. (35) (all
but the last equality) to calculate the 2-particle correlator.
The fluctuations of the momentum space distribution of
particles (37) at kinetic freeze-out are thus given by

V�1h�	p�	p0 i ¼ f0�pp0 þ g2

m2
kT

f0
�

f00
�0 þ

g2

T

�
1

m2
c

� 1

m2
k

�

� f0f
0
0 �

�2=�þm2
kM½1=��

�2 þm2
k

��
2=�0 þm2

kM½1=��
�2 þm2

k

; (92)

which should be compared to Eq. (36) with m ¼ mk. To
check that the effect of the additional term is to preserve
the particle number (multiplicity) fluctuation at the value it
attained at chemical freeze-out, let us calculate that fluc-
tuation by integrating Eq. (92) over momenta p and p0 and
using Eq. (37). Normalizing by the total number hNi ¼
n0V for convenience, we find
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hð�NÞ2i
hNi ¼ 1þ �2

m2
k

þ
�
1

m2
c

� 1

m2
k

�
�2 ¼ 1þ �2

m2
c

; (93)

where we used definition (63). We see that, as expected, the
effect of the memory term is to keep multiplicity fluctua-
tions from changing after chemical freeze-out.

The effect which is less obvious is that the memory term
also contributes to fluctuations of quantities which are not
conserved. We shall keep discussion as general as possible,
but to be less abstract, we shall consider fluctuations of
mean transverse momentum pT per event, which is one of
the most common ‘‘intensive’’ measures of fluctuations.
This fluctuation can be also expressed via the correlator
(92) (see, e.g., Ref. [19]):

hð�pTÞ2i ¼ 1

hNi2
Z
p

Z
p0
ðpT � �pTÞðp0

T � �pTÞh�	p�	p0 i;
(94)

where we defined

�p T � M½pT�: (95)

Normalizing by hNi to remove trivial system-size scaling,
we find

hNihð�pTÞ2i ¼M½ðpT � �pTÞ2� þ g2n0
T

M½ðpT � �pTÞ=��2

�
�
1� rm
m2

k

þ rm
m2

c

�
; (96)

where we introduced

rm ¼
�

�2

�2 þm2
k

�
2
: (97)

Equation (96) shows that the critical contributionOð1=m2
cÞ

can, under certain conditions, survive through the hadronic
rescattering stage until kinetic freeze-out. Compared to the
value at chemical freeze-out, the Oð1=m2

cÞ term is attenu-
ated by the factor rm (97) which, if the � screening mass at
kinetic freeze-out, mk, is of order � or smaller, is a non-
negligible fraction of unity.

D. Estimating the memory factor

Let us now estimate the memory factor (97). The value
of rm depends quite strongly on the ratio of mk to �. For
fluctuations to survive, mk=� cannot be large.

The estimate for � can be made using Eq. (63). In order
to do this correctly we need to generalize our analysis to
include more than one species of particles: nucleons (2 spin
and 2 isospin states), pions, etc. We then find that the
expression for rm in Eq. (97) still holds, with �2 receiving
contributions from all species:

�2 ¼ �2
nucleons þ �2

pions þ . . . : (98)

Choosing, for example, top SPS energy freeze-out condi-
tions T ¼ 168 MeV and �B ¼ 266 MeV [49], we find for

the contribution of nucleons�nucleons�430:ðgp=10:ÞMeV.

We take gp�mp=f��10 as an estimate of the coupling of

� to protons.
The estimate for the contribution of pions is �pions�

110:ðg�=2:ÞMeV, where g��G=m��2:, using the esti-
mate for G from Ref. [19]. The estimates for the contribu-
tion of antinucleons and kaons are similarly small,
compared to �nucleons. Summing in quadratures, increases
the estimate for � by less than 10% over �nucleons: � �
460 MeV.
Thus, at top SPS energy, the critical pT fluctuations

survive at least half as well as the particle multiplicity
fluctuations (rm > 1=2) until kinetic freeze-out, if the �
screening mass at the freeze-out does not exceed mk<ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p �1

p
��300MeV.

XI. SUMMARY, DISCUSSION AND OUTLOOK

In summary, we introduced an approach to studying
time-dependent quasistationary fluctuations near QCD
critical point by combining stochastic Boltzmann equation
with an equation of motion for a scalar field, describing the
‘‘soft’’ critical mode. We obtained the general solution of
the linearized system and studied its relaxation modes. We
focused on the slowest (diffusion) mode and analyzed its
effect on the evolution of fluctuations after chemical
freeze-out.
One of the consequences of our analysis is the following

prediction. Under the conditions that particle number fluc-
tuations are frozen after chemical freeze-out, the fluctua-
tions of nonconserved quantities, such as, e.g., mean pT ,
are also preserved over time scales longer than collisional
relaxation-time �. The strength of this effect crucially
depends on the ratio of the � screening mass mk at kinetic
freeze-out to � [see Eq. (97) and Sec. XD].
In other words, while for the multiplicity fluctuations to

be preserved after chemical freeze-out the kinematic win-
dow of acceptance must be large enough [25,26], for the pT

fluctuations to be preserved, additional condition is neces-
sary: mk < �. We find that, e.g., at top SPS energies, pT

fluctuations can survive the hadronic rescattering at least
half as well as the particle multiplicity fluctuations for
mk < 300 MeV.
The origin of this effect is the mixing between the

critical mode � and the conserved particle number density
[see discussion after Eq. (57)]. E.g., when � � m, the
mode h
0

, which is kept from relaxing by the particle

number conservation, is almost the same as �, Eq. (62).
The fluctuations of � involved in h
0

must keep the mag-

nitude they reached at chemical freeze-out, contributing
the term�1=m2

c into Eqs. (93) and (96). While multiplicity
fluctuations in Eqs. (93) are frozen, the pT fluctuations
evolve, with contribution of the mode h
0

decreasing with

increasing m as the factor rm.
At the same time, the fluctuations of � alone, with

particle number fixed [i.e., obeying Eq. (58)], equilibrate
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on a short time scale, ��1, tracking the evolution ofm. This
equilibrated mode of fluctuations contributes 1=m2

k term

into Eq. (96).
In this paper we focused on fluctuations of one particle

species, treating the rest of the hadron gas as a heat bath.
This simplification allowed us to follow the evolution of
fluctuations analytically and expose the mechanism behind
the memory effect in the most transparent way. This analy-
sis could be generalized to the case of multiple particle
species, carrying (different values of) the same conserved
charge, as well as the case of multiple conserved quantities
(baryon number, isospin, etc.). Taking into account fluctu-
ations of conserved energy and momentum would be
necessary, for example, to obtain correct m ! 0 scaling
of the diffusion coefficient [28,43]. We leave this to future
work.

We also neglected the effects of quantum statistics for
simplicity. Although these are relatively small under real-
istic conditions (few percent, as estimated by mean occu-
pation numbers M½f0�), this approximation could be
removed. For the most part this would require replacing
the equilibrium distribution in Eq. (10) with Bose-Einstein
or Fermi-Dirac distribution and factors f0 in equations
such as Eq. (92) with f0ð1	 f0Þ. This would also imply
that the collision integral C½f� has Uehling-Uhlenbeck
form [50]. The influence functional method [51,52] could
be used to derive the corresponding equations.

We would like to stress that, although we did use
relaxation-time approximation to obtain more explicit for-
mulas for nonzero modes 
 in Sec. IX, the results pertain-
ing to the memory effect, which rely on the properties of
the zero mode 
0 studied in Sec. VIII, are valid beyond
relaxation-time approximation.

A numerical simulation of the stochastic Eqs. (18)
should allow to take into account more detailed properties
of the heavy-ion collision evolution, such as inhomogene-
ity, anisotropy and flow. The evolution of the �massm can
be described self-consistently, using Eq. (22), conceptually
reminiscent of nuclear mean-field approach [34], or dis-
oriented chiral condensate studies [53,54].

We also deliberately limited our analysis to linearized
regime and focused on quadratic moments of fluctuations.
The stronger singular behavior of higher moments of fluc-
tuations makes them more attractive signatures of the QCD
critical point [55]. A study of the higher-order moments
would require generalization of the analysis to nonlinear
equations such as (5) and (9).

ACKNOWLEDGMENTS

The hospitality of the Institute for Nuclear Theory at the
University of Washington during the program ‘‘The QCD
Critical Point’’, which stimulated this project, is gratefully
acknowledged. The author thanks K. Rajagopal and D. Son
for comments and discussion. This work is supported by
the DOE Grant No. DE-FG0201ER41195.

APPENDIX A: NOTATIONS

C½f�-collision integral (4);
D-diffusion constant (72);
D0-same, at g ¼ 0, (71);
E-‘‘entropy matrix’’ (24) and (23);
f-short for fðx;p; tÞ, nonequilibrium distribution func-

tion (4);
f�-equilibrium distribution function for given back-

ground � (10);
f0 or f

0
0-short for f0ðpÞ or f0ðp0Þ, as above, for � ¼ 0;

G-operator (27), acting on h gives ‘‘drift’’ terms in
stochastic Eqs. (18) and (26);
g-coupling of particles to � (14);
h-short for hðx;p; tÞ relative deviation of f from f� (12);
�h-mean value of h (56);
~h-deviation of h from �h (56);
h-generalized vector ðh;�; �Þ (24);
h
-eigenmode of G with eigenvalue 
 (52);

ĥ-convenient basis vector (59);
I-linearized collision integral (15);
K-linear operator related to I by Eq. (31);
M or Mð�Þ-particle mass for given � (1);
M½h�-mean value of h (49);
m0-vacuum mass of the field � (16), d2Uð0Þ=d�2;
m-thermal screening mass of � (17) and (22);
~m-thermal pole mass (rest energy) of � quasiparticles

(79) and (81);
mc or mk-screening masses of � at chemical or kinetic

freeze-out;
N-total number of particles;
n0-equilibrium density of particles (55);
p or p0-particle momentum variable in f;
pT-the magnitude of the component of p transverse to

beam axis;
q-Fourier conjugate to x in hðx;p; tÞ;
Q-matrix of noise correlators (28);
rm-memory factor (97);

Sð2Þ-quadratic terms in the entropy (21);
T-temperature of the external bath (20);
U-Uð�Þ potential for �, (1);
V-

R
d3x, 3-volume;

V-evolution operator (43);
v-short for vðpÞ, particle velocity (6);
�0-relaxation rate of � due to interaction with the ex-

ternal thermal bath only (18b);
�-the full relaxation rate of � (78) and (80);
� or �0-�ðpÞ or �ðp0Þ, relativistic factor (6);
�2-Eq. (63) and also ~m2 �m2 (79);
�pp0-ð2�Þ3�3ðp� p0Þ, (36);
�-�ðxÞ, Langevin noise in Eq. (18b);
�
-dual vector to h
 (53);

�̂-see Eq. (65);

0-smallest eigenvalue of (52);
	p-momentum space distribution, (37);

�-�ðx;p; tÞ, noise in Boltzmann Eq. (18a);
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�-noise vector ð�;�; 0Þ (26) and (28);
�-canonical momentum for �, (18c);
�-matrix of correlators hh � hi, (41);
~�-deviation of � from equilibrium (45);
�-�ðxÞ, scalar field, critical mode;
�̂-basis vector (60);

�-collisional relaxation time (74);
�e-fireball evolution time scale, Sec. XA;
c -c ðv2Þ, solution to Eq. (68);R
p -see Eq. (8);

�-the scalar product is defined in Eq. (25).
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