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We study the finite temperature behavior of light scalar and pseudoscalar meson properties in the
context of a three-flavor nonlocal chiral quark model. The model includes mixing with active strangeness
degrees of freedom, and takes care of the effect of gauge interactions by coupling the quarks with the
Polyakov loop. We analyze the chiral restoration and deconfinement transitions, as well as the temperature
dependence of meson masses, mixing angles and decay constants. The critical temperature is found to be
T. =202 MeV, in better agreement with lattice results than the value recently obtained in the local SU(3)
PNIJL model. It is seen that above T.. pseudoscalar meson masses get increased, becoming degenerate with
the masses of their chiral partners. The temperatures at which this matching occurs depend on the strange
quark composition of the corresponding mesons. The topological susceptibility shows a sharp decrease

after the chiral transition, signalling the vanishing of the U(1), anomaly for large temperatures.
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L. INTRODUCTION

The detailed understanding of the behavior of strongly
interacting matter under extreme conditions of temperature
and/or density has become an issue of great interest in
recent years. In this context, it is clearly important to study
how hadron properties (masses, mixing angles, decay con-
stants, etc.) get modified when hadrons propagate in a hot
and/or dense medium. In particular, since the origin of the
light scalar and pseudoscalar mesons is related to the
phenomenon of chiral symmetry breaking, the temperature
and/or density behavior of their properties is expected to
provide relevant information about a possible chiral sym-
metry restoration. Unfortunately, even if a significant
progress has been made on the development of ab initio
calculations such as lattice QCD [1-3], these are not yet
able to provide a full understanding of the QCD phase
diagram and the related hadron properties, due to the well-
known difficulties of dealing with small current quark
masses and finite chemical potentials. Thus it is important
to develop effective models that show consistency with
lattice results and can be extrapolated into regions not
accessible by lattice calculation techniques. In previous
works [4—7] the study of the phase diagram of SU(2) chiral
quark models that include nonlocal interactions [8] has
been undertaken. These theories can be viewed as nonlocal
extensions of the widely studied Nambu-Jona-Lasinio
model [9]. In fact, nonlocality arises naturally in the con-
text of several successful approaches to low-energy quark
dynamics as, for example, the instanton liquid model [10]
and the Schwinger-Dyson resummation techniques [11].
Lattice QCD calculations [12] also indicate that quark
interactions should act over a certain range in momentum
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space. Moreover, several studies [13,14] have shown that
nonlocal chiral quark models provide a satisfactory de-
scription of hadron properties at zero temperature and
density. On the other hand, when looking at the description
of the chiral phase transition, it has been noticed that for
zero chemical potential these models lead to a rather low
critical temperature 7, in comparison with lattice results
[4,5]. However, it has been recently shown that the inclu-
sion of the Polyakov loop, which can be taken as an order
parameter for the deconfinement transition, leads to a
significant increase of the chiral restoration temperature
both in two-flavor [15] and three-flavor [16] nonlocal
models. The inclusion of the Polyakov loop has also
been considered in the context of NJL-like models, namely,
the so-called PNJL models [17-21], and the quark-meson
model [22].

The aim of the present work is to go one step beyond
previous analyses, studying the finite temperature behavior
of light scalar and pseudoscalar meson properties in the
context of three-flavor nonlocal chiral models that include
mixing with active strangeness degrees of freedom, and
taking care of the effect of gauge interactions by coupling
the quarks with a background color gauge field.

This article in organized as follows. In Sec. IT we present
the general formalism and derive the expressions needed to
evaluate the different meson properties at finite tempera-
ture. In Sec. III we provide details concerning the deter-
mination of model parameter values as well as the results
obtained at zero temperature. Our results for the behavior
of the different meson properties as a function of the
temperature are presented and discussed in Sec. IV.
Finally, in Sec. V we sketch our conclusions.
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II. THE FORMALISM

We deal here with a nonlocal covariant SU(3) quark
model which includes the coupling to a background color
gauge field. The Euclidean effective action for the quark
sector of this model is given by

5= j d“x{ib(x)[—mm + Al ) = LW
abcDS() (X)]E(X)

38R )] + U[A<x>]} (1)

+ Jja () jg (0] =

where the chiral U(3) vector ¢ includes the light quark
fields, ¢ = (uds)’, and m = diag(m,, m,, m,) stands for
the current quark mass matrix. For simplicity we consider
the isospin symmetry limit, in which m, = m; = m. The
fermion kinetic term includes a covariant derivative D,, =
d, —iA,, where A, are color gauge fields, and the opera-
tor y,d, in Euclidean space is defined as 3 ;_; 37, 7= +
Va % with vy, = iy,. Regarding the interaction terms, the
currents j5'*(x) are given by

o= [ez@i(c S hau(x-3) @

=ff@@&@+®ﬁﬂMQ—9y(@

where g(z) is a form factor responsible for the nonlocal
character of the interaction, and the matrices A,, with a =
0,...,8, are the standard eight Gell-Mann 3 X 3 matri-

ces—generators of SU(3)— plus Ay = 4/2/31343. The
constants 7. in the t’"Hooft term (responsible for flavor-
mixing) are defined by

1
Tope = 3 € ik €mnt(A0)im(Ap) jn (A o)k 4

Finally, the action (1) also includes an effective potential
U that accounts for gauge field self-interactions.

The partition function associated with the effective ac-
tion Eq. (1) can be bosonized in the usual way introducing
the scalar and pseudoscalar meson fields o,(x) and 77,(x)
respectively, together with auxiliary fields S,(x) and P,(x).
To deal with these auxiliary fields we follow the standard
stationary phase approximation, which provides a set of
equations that relate them to the scalar and pseudoscalar
meson fields. Since we are interested in studying the be-
havior of various meson properties in the presence of a heat
bath, we have to extend the bosonized effective action to
finite temperature. In the present work this is done by using
the Matsubara formalism.

The coupling of fermions to the color gauge fields is
implemented through the covariant derivative in the fer-
mion kinetic term 7y, D ,. As usual, we will assume that the
quarks move in a constant background field A, = iAy =
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ig8,,0G4 A“/2, where G4 are the SU(3) color gauge fields.
Then the traced Polyakov loop, which is taken as order
parameter of confinement, is given by ® = % Trexp(iB ),
where 8 = 1/T, ¢ = iA,. We will work in the so-called
Polyakov gauge, in which the matrix ¢ is given a diagonal
representation ¢ = ¢3A3 + ¢pgAg, which leaves only two
independent variables, ¢3 and ¢q.

To treat the resulting finite temperature system of inter-
acting mesons in the presence of the Polyakov loop we
consider first the mean field approximation (MFA), keep-
ing only the nonzero vacuum expectation values & ,. Note
that due to charge conservation only &, 3¢ can be differ-
ent from zero. Moreover, 3 also vanishes in the isospin
limit. The corresponding MFA grand canonical thermody-
namical potential reads

Quea(T) = —22 [ nTrln[pm +32(p,0)] -

+ UD, T), (5)

where f = u, d, s, c = r, g, b, and the shorthand notation
Jpn =2, [&p/(2m)’ has been used. We have also in-
troduced the definition p,. = (p, w, — ¢.), where w,
stands for the fermionic Matsubara frequencies and the
quantities ¢, are defined by the relation ¢ =
diag(¢,, ¢, ¢5). The quark constituent masses 2 /(p,.)
are here momentum-dependent quantities, given by

Eff(pnc) = mf + &fg(pnc): (6)

where g(p) is the Fourier transform of the form factor g(z).
For convenience we have introduced mean field values
given by

2 1
G, =4500+ 03 + =0y,
‘/;O 3 \/§8

2
= —0n + —=0 s
gy 30-0 \/g ()
and similar definitions hold for S, in terms of S, S5 and Ss.
Note that in the isospin limit &, = &, thus we have
2, (pue) = 24(pye)- Within the stationary phase approxi-
mation, the mean field values of the auxiliary fields Sy turn

out to be related with the mean field values of the scalar
fields o, by [23]

_ H_ _
G,+GS, +—5,8 =0

_ H -
5.+ GS, + =582 =0.
) Oy s 5y Pu

)
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The effective potential U(P, T), which accounts for
Polyakov loop dynamics, can be fitted by taking into
account group theory constraints together with lattice re-
sults, from which one can estimate the temperature depen-
dence. Following Ref. [21] we take

UD,T) = [— %a(T)(DZ + b(T)In(1 — 602
+ 83 — 3(1)4)]T4, (8)

with the corresponding definitions of a(T) and b(T).
Owing to the charge conjugation properties of the QCD
Lagrangian [24], the mean field traced Polyakov loop field
@ is expected to be a real quantity. Assuming that ¢ and
¢g are real-valued [21], this implies ¢g =0, & =
[2cos(p5/T) + 1]/3.

For finite current quark masses the quark contribution to
Qumra(T) turns out to be divergent. To regularize it we
follow the same prescription as in previous works [6].
Namely, we subtract from Qypa(7) the quark contribution
in the absence of fermion interactions, and then we add it in
a regularized form, i.e. after the subtraction of an infinite,
T-independent contribution. From the minimization of this
regularized thermodynamical potential it is possible now to
obtain a set of three coupled *“gap” equations that deter-
mine the mean field values &,, d, and ¢; at a given
temperature:

3 Qi _
(a&w 85'\, a¢3) 0 (9)

In order to obtain the meson mass spectrum and other
properties one has to consider the mesonic fluctuations
around the mean field values. We begin by introducing a
more convenient basis defined by

fz‘j = \/Li(Aaga)ij’ (10)

where &, = o,, m,, while i, j run from 1 to 3 (neutral
fields are shifted by £, — &, — £&). For the scalar fields one
has in this way

a0

0+08+00 + +
V20 B , o K
— a,
o= _ % (2] Ty 0 )
ij Clo 75+73+7§ 2K
- =0 __ 203 99
K K +
o B/ j

Y

while a similar expression holds for the pseudoscalar sec-
tor, replacing ay — 7, o0 — 1 and k — K. Using this
notation the resulting quadratic contribution to the finite
temperature bosonized effective action can be written as

. 1 -
SqE ad _ 5 [ [G;;,kl(qz, V%)U‘ij(qm)lfkl(_qm)
qm

+ Gy @ AT Tl (1)
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where ¢q,, = (¢, v,), v, =2mwT being bosonic
Matsubara frequencies. The functions Gj;,, in Eq. (12)
are given by

Gou@ vi) = C5(G% vi) 88 + ((r) ™D, (13)

where

CH@,12) = —8F j 8(pne + /27

X p%lc + Pne " dm + 2i(pnc + ('Im)zj(pnc)
Di(pnc + Qm)D/(pnc)

(14)

and

rii;,kl = G5i15jk igeikhejlhsh‘ (15)
In Eq. (14) we have defined D;(s) = s> + Ef(s), where
j=1,2,3 correspond to f = u, d, s in the notation of
Eq. (6).

From the quadratic effective action S%*? it is possible to
derive the scalar and pseudoscalar meson masses as well as
the quark-meson couplings. In what follows we will con-
sider explicitly only the case of pseudoscalar mesons. The
corresponding expressions for the scalar sector are com-
pletely equivalent, just replacing upper indices “—" by
“+”. In terms of the physical fields, the contribution of
pseudoscalar mesons to S can be written as

ua 1 >
$Pp =5 [ (6@ A G )
q,m

+ 27 (g7 (=g + Gr(G, viy)

X [2K°(q,)K*(=q) + 2K (g,)K™ (—q,)]

+ G, vi)n(g)n(—q,)

+ Gy (@ vi)n' (@,)n' (=g} (16)

Here, the fields n and 7’ are related to the U(3) states 7,
and 7ng according to

n = cosf, mg — sinb, n n' = sinf,;mg + cosb N,

7)

where the mixing angles 6, . are defined in such a way
that there is no 7 — 7’ mixing at the level of the quadratic
action. In a similar way, in the scalar sector one has two
physical scalar mesons o and f(980) that are linear com-
binations of the states og and o, with mixing angles 6,
and 6. The functions Gp(g% »;,) introduced in Eq. (16)
are given by
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H _\-1
G ) = [(G " 535) T Co(@ v%n)]
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H _\-1
(@ v2) = [(G " 5&,) +Co(@ vfn)]

Ges(@°, va) + Goo(@°, vin)

Go(§* vy) =

— (22 .2\ _
—\/[Gos(q V)P + [Ggs(q”"")

Go(@* Vi) 7

2
- Ges(G% va) + GG, vh)
Gn’(‘l »2) = 8s\q" 00\d">
2
where
1 6G—4HS, — 2HS,
Ggg(q Vm 3 2G2 GHS H252 C88( 2m)
. V2 H(S-5) .
Gould™ i) = 3 567~ s - st T Csl@ )
R 1 6G+4HS, — HS,
Goold i) =3 567 = GHS, — H25? * Co(@ v)
(19)
and
Gy t2C;, N2
ng = f, Cog = ?(Cuu - Cs.y)’
(20)
_2C,, tC
COO - 3

Now the pseudoscalar meson masses are obtained by
solving the equations

Gp(—m3,0) =0, @21

with P = 77, K, 1 and n’. The mass values determined by
these equations correspond to the spatial “screening-
masses’’ of the mesons’ zeroth Matsubara modes, and their
inverses describe the persistence lengths of these modes at
equilibrium with the heat bath. It is worth to notice that
there is a screening mass for each Matsubara mode. The
full bound state propagator can be calculated via any
polarization tensor that receives a contribution from the
bound state, but only once all screening masses have been
determined. The propagator obtained in this way is defined
only on a discrete set of points along what might be called
the imaginary-energy axis, and the ‘“‘pole-mass”, i.e., the
mass that yields the bound state energy pole for g ~ 0, is
obtained only after an analytic continuation of the propa-
gator onto the real-energy axis. The fact that Lorentz
invariance is broken for 7 > 0 means that, in general, the
pole mass and screening masses are not equal (see e.g.
Ref. [25]). Although the analytic continuation involved in
this process is not unique, an unambiguous result is ob-
tained by requiring that it yields a function that is bounded
at complex-infinity and analytic off the real axis [26]. From
this description it is nonetheless clear that the screening
masses completely specify the properties of 7 > 0 bound
states. The masses associated to the zeroth Matsubara
mode studied here are spatial screening masses corre-

J[Gog( e |

sponding to a behavior exp(—mpr) in the conjugate 3-
space coordinate r, and should correspond to the lowest
state in each meson channel. In fact, these are the quantities
usually studied in lattice calculations [27].

In the n — 7’ system, once the meson masses have been
determined one can find the mixing angles 6, and 6,,,
which are in general different from each other. These are
given by

2Ggy(—m3, 0)

tan26p = ,
: oo(—mp, 0) = Ggg(=mp, 0)

P=mnn.

(22)

The meson fields have to be renormalized, so that the
residues of the corresponding propagators at the meson
poles are set equal to one. The corresponding wave func-
tion renormalization constants Zp are given by

_ dGy(@,0)

Z—l
P -9 . >
dq P=—m

(23)
with P = 7, K, m and n’. Finally, the meson-quark cou-
pling constants Gp, are given by the original residues of
the meson propagators at the corresponding poles,

Gpy = 2" (24)

In the case of the pseudoscalar mesons other important
features are the corresponding weak decay constants f,,,
defined by

(OIAL O 7y(q)) = ifupq (25)

where A{, is the a-component of the axial current. For a,
b = 1...7, the constants f,;, can be written as &, fp, with
P=mafora=1,2, 3 and P=K for a=4 to 7. In
contrast, as occurs with the meson masses, the decay
constants become mixed in the a = 0, 8 sector. Details
on how to obtain the expressions for the axial currents in
the presence of nonlocal fields can be found e.g. in
Refs. [13,23]. After a rather lengthy calculation we find
that, at finite temperature, the pion and kaon decay con-
stants are given by

fr = 4fuu(—m2, 0)Z5?,

(26)
2[fuv( mK’ 0) + f\u( mK: 0)]21/2

where
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AV In2i(Puc T @) = Puc " G+ Pic) 2 (Pne)
fi(@v )—Zf { (p”‘ _> Di(Pue + 4D (Pnc)

- [2g<pnc + %"’) —8(Pne) — 8P + qm)]

Ei(pnc _}_%,,)
Di(pnc +%)

q
+ g<pnc +7'”)

5 [Ei(pnc n ‘l_m) n Ej(pm n q_m) S (pad) = (et qm)]p%c F P G+ Si(Pre + qm)Ej(pnc)}‘ @n

2 2

In the case of the n — 7’ system, two decay constants
can be defined for each component (a = 0 or 8) of the axial
current. They can be written in terms of the decay constants
fa» and the previously defined mixing angles 6, , as

o= [.qu(_m%, 0) cos,, — fao(— mn’ 0) sind ]21/2
foy = Uas(=m3,, 0)sin6y + foo(—m3,, 0) cosen/]Z;/,z,
(28)

Within our model, the decay constants f,;, for a, b = 0, 8
are related to the f;; defined in Eq. (27) by

fSS(q v ) - _[zfss(q Vm) + fuu(éz’ Vm)]

fOO(éz’ vm) = g[zfuu(ézl Vm) + fss((jl)zr Vm)]

fog@zy Vi) = fso(glz» Vi)
f

(29)

[fuu (q Vﬂ’l fSS (éz’ Vm)]'

As expected, both the nondiagonal decay constants fg, fgo
and the mixing angles 6,, 6,/ vanish in the SU(3) symme-
try limit.

III. MODEL PARAMETERS AND ZERO
TEMPERATURE RESULTS

In this section we determine the model parameters to be
used in our numerical calculations, and quote the results
obtained for various meson properties at zero temperature.
The latter include the values of meson masses, decay
constants and mixing angles, as well as quark constituent
masses, quark condensates and quark-meson couplings.

At low temperatures, the value of the traced Polyakov
loop is essentially determined by the effective potential in
Eq. (8), therefore for T — 0 one has ® — 0, cos(¢3/T) —
—1/2. Since for low T the Matsubara sums in the thermo-
dynamical potential are governed by modes with large n,
one has w, — ¢. =[2n + )7 — ¢./T|T = w,,, thus for
T — 0 the coupling of fermions to the Polyakov loop
vanishes. In this way, the zero-T calculations are similar
to those carried out in Ref. [23], in which SU(3) nonlocal
chiral quark models without the inclusion of the Polyakov
loop have been considered. As in that work, our numerical
analysis has been performed using a Gaussian form factor,
namely

Di(pnc + ('Im)Dj(pnc)

[
g(p) = exp(—p*/A?), (30)

which has been often considered in the literature. This
introduces a new free parameter A, which plays the role
of an ultraviolet cutoff momentum scale (we recall that the
form factor is defined in Euclidean momentum space). At
T = 0, the main difference between our analysis and that
in Ref. [23] is that here we are considering an OGE-
motivated nonlocal interaction, whereas in the previous
work a different form [motivated by instanton liquid mod-
els (ILM)] for the nonlocal currents has been chosen. In the
case of two-flavor models, a detailed comparison between
these different interaction forms has been carried out in
Ref. [28], showing that the results for both models are
qualitatively similar. Notice that in Ref. [23] only the
pseudoscalar meson sector was addressed.

After the assumption of the form factor in Eq. (30), the
nonlocal chiral quark model under consideration includes
five free parameters, namely, the current quark masses m
and my, the coupling constants G and H and the cutoff
scale A. In our numerical calculations we have chosen to
fix the value of m, whereas the remaining four parameters
are determined by requiring that the model reproduces
correctly the measured values of four physical quantities
at zero temperature. These are the masses of the pion, kaon
and 1’ pseudoscalar mesons, and the pion decay constant
f» Taking m = 5 MeV, we obtain the following set of
parameters:

m =15 MeV
A = 843 MeV

(input) my, = 119 MeV
GA? =13.35 HAS = —273.7.
(3D
Our numerical results are presented in Table I. For
comparison, in the last column of this table we quote the
measured values of meson masses, and the ranges in which
the decay constants and mixing angles should fall accord-
ing to most popular phenomenological approaches. Entries
marked with an asterisk are those that we have taken as
input values to fix the model parameters. From Table I it is
seen that in general there is a reasonable agreement be-
tween the predicted meson masses and the empirical values
quoted by the Review of Particle Physics [29]. In addition,
the obtained mass ratio m,/m = 23.8 is close to the cor-
responding current algebra prediction, namely m,/m =
(2m% — m%)/m% =~ 25. We point out that in the case of
the mass of the « scalar meson the equation G, (—x2, 0) =
0 has no solution in the real x axis. Hence we have defined
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TABLE I. T = 0 model predictions for various meson proper-
ties: masses, mixing angles, decay constants and quark-meson
couplings.

Our Model Empirical & Phenomenological

m [MeV] 5% (3.4-74)
m, [MeV] 119 (108-209)
m, [MeV] 139% 139
myg [MeV] 495° 495
m, [MeV] 523 547
m, [MeV] 958 958
mg, [MeV] 900 980
m, [MeV] 1380 1425
my [MeV] 566 400-1200
myg, [MeV] 1280 980
Gy 3.98
Gg, 4.30
Gy 3.93
Gy 2.83
0, —2.3°
0.,y —40.3°
Og —24° —(22°-19°)
0o =7.7° —(10°-0°)
f» [MeV] 92.4% 92.4
fxlfw 1.17 1.22

8
pro W ame

n/ fr . . .
3/ —0.49 —(0.42-0.46)
A1 1.16 (0.98-1.16)

“Input values.

the mass m, as the point where the absolute value of
G (—x?%,0) becomes minimal. A more sophisticated defi-
nition could be done by extending x to the complex plane,
thus introducing a finite « width. In any case, this would
not change significantly the mass value. A detailed analysis
of the regularization prescriptions for the evaluation of
loop integrals like those in Eqgs. (14) and (27) has been
carried out in Ref. [23].

Concerning the pseudoscalar meson decay constants, we
notice that the predicted value for f is also phenomeno-
logically acceptable. In fact, it turns out to be significantly
better than that obtained in the standard NJL model, where
the kaon and pion decay constants are found to be approxi-
mately equal to each other [9] in contrast with experimen-
tal evidence. Regarding the mixing angles and decay
constants for the ng — 1, system, the problem of defining
and (indirectly) fitting these parameters has been revisited
several times in the literature (see e.g. Ref. [30], and
references therein). As stated in the previous section, in
general one has to deal with two different state mixing
angles 6p and four decay constants f%, where P = 7, 1/
and a = 0, 8. This means that i and 7’ states do not need
to be orthogonal, and the same occurs with (f%, ffl,) and

97, f?],) [31-33]. For the sake of comparison with phe-
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nomenological values of these parameters, we follow here
Ref. [31] and express the four decays constants f§ in terms
of two decay constants f,, and two mixing angles 6, where

a=0,8:

5o e\ (f8 cosfy  —fo SinHO)

8 0 | = . . (32)

f,,]/ f,,]/ fg Slneg fO COS&()
In our framework the decay constants f% can be calculated
from Eqs. (26). As shown in Table I, both the values
obtained for fg, 6, as well as those obtained for the decay
constants in the 1 — n’ sector are in agreement with
phenomenological results. These have been taken from
the analysis in Ref. [30], in which the values obtained
from different parametrizations have been translated to
the four-parameter decay constant scheme given by
Eq. (32). Notice that 65 and 6, are significantly different
to each other, as occurs with the mixing angles 6, and 6,,
[which can be calculated from Eq. (22)]. This is in agree-
ment with the analysis in Ref. [31], carried out within next-
to-leading order Chiral Perturbation Theory and large N,
which leads to g = —20.5°, 6, = —4°.

IV. FINITE TEMPERATURE RESULTS

Taking the parameters in Eq. (31), one can solve Egs. (9)
to calculate the mean field values &, & and ¢ at finite
temperature. The behavior of effective quark masses and
condensates, as well as the curves for the traced Polyakov
loop @, are similar to those obtained in Ref. [16] within an
ILM-motivated nonlocal chiral model. The discussion of
those results is qualitatively the same as in our case, there-
fore it will not be repeated here. We just state that, as
expected, there is a crossover phase transition in which
chiral symmetry is restored, and consequently one finds a
sharp peak in the chiral susceptibility. The transition tem-
perature (defined as the position of this peak) is found to be
T, = 202 MeV. This value is in much better agreement
with lattice results, 70 = 160-200 MeV [34], than the
value recently obtained in the local SU(3) PNJL model,
Té" NIL) — 259 MeV [35]. In addition one finds a decon-
finement phase transition, which occurs at about the same
critical temperature.

We concentrate here in the evolution of meson masses
and decay constants with temperature, which has not been
previously addressed in the context of SU(3) nonlocal
models. Pseudoscalar meson masses can be determined
by solving Egs. (21), while the same procedure applies to
the scalar meson sector replacing upper indices “— ““ by
“+” in Egs. (18) and (19). As discussed in Sec. II, these
values correspond to the spatial screening-masses of the
mesons’ zeroth Matsubara modes. Our numerical results
are shown in Fig. 1, where we quote the values of meson
masses as functions of the temperature. In Fig. 1(a) we
show the behavior of the pseudoscalar mesons 7 and 7
together with the curves for the scalar mesons o and a,
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FIG. 1 (color online).  Solid lines quote scalar and pseudoscalar
meson masses as functions of the temperature. Dotted and
dashed-dotted lines stand for the value m,; = 2(#T — ¢3) and
the gg production threshold, respectively, (see text).

which are chiral partners of the former. It is seen that
pseudoscalar meson masses remain approximately con-
stant up to the critical temperature (this is reasonable, since
they are protected from chiral symmetry), while scalar
meson masses begin to drop at about 150 MeV. Above T.
pseudoscalar masses get increased, in such a way that they
become degenerate with the masses of their chiral partners,
as expected from chiral restoration. In particular, the fact
that this occurs right after the transition in the case of the
(m, ay) pair indicates that the strange contents of the 1 and
ap mesons become suppressed above the critical tempera-
ture. When the temperature is further increased, all four
masses are found to rise continuously, showing that now
the mass is basically dominated by thermal energy. At very
large temperatures the curves should approach asymptoti-
cally the value corresponding to a gg pair of uncorrelated

PHYSICAL REVIEW D 81, 054005 (2010)

massless quarks m}{; = 27T [36]. At T = 300 MeV, how-
ever, the Polyakov loop has not yet reached its asymptotic
value ¢3/T |7 = 0, and it still provides a non-negligible
correction to the quark screening mass. In fact, we find
&3/ T|r—300 = 0.93. Thus, around this temperature we ex-
pect my} = 2(7wT — ¢3), which is shown by the dotted
lines in Figs. 1(a)-1(c). For vanishing quark dynamical
masses, this value of m;, corresponds to a pole in the n =
0 mode for the integrals in the functions C;;(—k?, 0), see
Eq. (14). Indeed, as discussed in Ref. [37], Eqs. (21) can be
satisfied only in the vicinities of these poles. On the other
hand, in general it is seen that the functions Ci(—kz, 0)
[and therefore also the functions G,,(—k? 0)] are well
defined for low values of k. If k is increased, at some
critical point k., usually called “pinch point”, the inte-
grals become divergent and need some regularization pre-
scription. In the present work we follow the prescription
discussed in the Appendix of Ref. [23], conveniently ex-
tended to the finite temperature case. The pinch point
occurs when both effective quarks are simultaneously on
shell, thus it can be interpreted as a threshold above which
mesons could decay into two massive quarks. In Fig. 1(a)
this threshold is represented with the dashed-dotted curve
(above T,, it approximately matches the value of m)/
mentioned previously). It can be seen that all four meson
masses in Fig. 1(a) remain below the threshold for the
temperature range considered.

In Fig. 1(b) we represent the curves for the masses of the
pseudoscalar mesons K, and their scalar partners k. It is
seen that for some temperature range the equation
G,(—k* 0) = 0 has no solution for real k, therefore the
mass is defined as the minimum of the function
G.(—k?,0), as discussed in the previous section. These
mass values correspond to the dashed stretch of the corre-
sponding curve. It is worth to notice that the K and «
meson masses match only at 7 = 225 MeV, i.e. at a tem-
perature somewhat larger than 7. This is clearly a con-
sequence of the large current strange quark mass, which is
expected to move the SU(3) chiral restoration to higher
temperatures. Finally, in Fig. 1(c) we quote the temperature
dependence of f, and 7n' masses. As before, dashed
stretches in the curves indicate the regions in which the
corresponding function G,,(—k?, 0) has no zero for real k
and, therefore, the mass m,, is defined by the position of its
minimum. Let us first focus on the behavior of the 1’ mass.
In contrast with some results found in Ref. [38], where the
corresponding temperature dependence has been studied in
the framework of a Dyson-Schwinger approach, we do not
observe any kind of enhancement of m,, around T,. It
should be noticed that in the framework of Ref. [38] the
effect of the U(1), anomaly is modeled in a simpler way,
namely, by considering it only at the level of mass shifts. In
this sense our result is consistent with the analyses of the 7’
pole mass performed within the local SU(3) PNJL model
[35] and the quark-meson model [39], where no enhance-
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ment was found either. Concerning the degeneracy of 7’
with its chiral partner f(), we see that such a degeneracy is
achieved only at 7 = 300 MeV. This a consequence of the
strange quark contents of these mesons, which, as we will
see below, become larger as the temperature increases.
Next, in Fig. 2 we quote the behavior of pseudoscalar
meson decay constants, which can be calculated from
Egs. (26) and (28). Figure 2(a) shows the curves corre-
sponding to the decay constants f, and f. It is seen that
both decay constants drop at the phase transition. We
observe, however, that due to the strange quark content
of the kaon the corresponding decay constant shows a
slower decrease after the transition. The behavior of the
decay constants associated with n — 7’ system is shown in
Fig. 2(b). In the case of f, and f, such a behavior is
similar to that of f ., while the decrease after the transition
is less pronounced for f s Again, this behavior of the 7’

decay constants can be understood in terms of its larger
strange quark content. Here we have left blank the range in
which the 7’ mass is not well defined.

In Fig. 3(a) we plot the behavior of the mixing angles 6,
and 6,/, which can be calculated from Eq. (22). It is seen
that above the phase transition both angles tend to a
common value, which is natural since meson masses also
tend to unify. More interestingly, they converge to the so-
called ““ideal” mixing angle 64y = tan~'v/2 = 54.7°
(dashed line in the figure). This means that, as suggested
above, the n meson becomes approximately non-strange,
while 7’ approaches to an §s pair. The same happens with
the o — f, pair (in the figure we have quoted only 6,
since the f; meson mass lies above the gg threshold). The
fact that the mixing angles go to the ideal value for large
temperatures implies that the U(1), anomaly tends to
vanish in this limit. Another signature of this fact is that
axial chiral partners (7, ) and (o, ag) become almost
degenerate at 7 =~ 300 MeV. However, perhaps the best
indication of the vanishing of the U(1), anomaly is pro-
vided by the topological susceptibility y which, in pure
color SU(3) theory, is related to the 1/, 7 and K masses

f [MeV]

100 150 200 250

T [MeV]
(a)

0 50

300

FIG. 2 (color online).
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through the Witten-Veneziano formula
6
f_i)(

Various existing lattice calculations [40] show a sharp

decrease of y at the critical temperature. In our framework,
the topological susceptibility can be calculated from

_H? 2 [SM(EM +2S,)
8 3 V2

<(Ge) 55 - 50(S) ] 6

[P (G ) e sus-sa( )]}
(34)

= m%], + m% - 2m%(. (33)

X = {2C;u§%,§§ + C, 8% —

where G is a2 X 2 matrix whose matrix elements are given
in Eq. (19), and all functions are evaluated at (g2, v2,) =
(0, 0). This expression has been obtained following similar
steps as those described in Ref. [41] for the case of the
(local) NJL model. The numerical results are shown in
Fig. 3(b). To be able to compare with the result obtained
in the local PNJL SU(3) model [35] (where, as already
mentioned, 7, turns out to be too high), we show the
normalized value of y'/* as a function of 7/T.. For both
models one finds a sharp decrease in the topological sus-
ceptibility at the critical temperature, this decrease being
steeper in the nonlocal model. Indeed, at T/T,. = 1.5 the

ratio y'/*/ X(l%io) is about 11% for the local PNJL model,

while for the nonlocal model it is roughly one half of this
value. The value of X(%io) is found to be about 162 MeV in

the nonlocal model, while one gets =~ 180 MeV in the
PNJL. Recent lattice calculations (see Ref. [42] and refer-

(1410) = 190 MeV in pure

gauge theories. However, light dynamical quarks are ex-
pected to suppress the topological susceptibility [43]. For
example, in the lattice calculation carried out in Ref. [44]

ences therein) indicate that y

the authors find X(%io) =~ 163 MeV for a two-flavor case in
120 -
100
— 80}
>
§ 60
20
0 1
0 50

T [MeV]
(b)

Behavior of pseudoscalar meson decay constants as functions of the temperature.
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(a) Behavior of meson mixing angles as functions of the temperature. The dashed line shows the ideal mixing

angle 6,4cq = tan~'+/2. (b) Behavior of the topological susceptibility relative to its 7 = 0 value as function of the temperature in the
nonlocal model (solid) and in the PNJL SU(3) model [35] (dotted).

GMq [MeV ]

1 Y5 1 1 1 1
0 50 100 150 200

T [MeV]

250 300

FIG. 4 (color online).

the region where the current quark masses are around
20 MeV.

For completeness, we conclude our description by quot-
ing in Fig. 4 the behavior of the quark-meson couplings
G y4- These can be calculated from Egs. (23) and (24) for
pseudoscalar mesons, and similar relations hold for the
scalar meson sector with the appropriate changes in the
functions C;;(g% 0).

V. SUMMARY AND CONCLUSIONS

In the present work we have studied the finite tempera-
ture behavior of light scalar and pseudoscalar meson prop-
erties in the context of three-flavor nonlocal chiral models
that include mixing with active strangeness degrees of
freedom. The effect of gauge interactions has been intro-
duced by coupling the quarks with a background gauge
field, and the deconfinement transition has been studied
through the behavior of the traced Polyakov loop. For a
given parametrization of the nonlocality—which, for sim-
plicity, here is introduced through an exponential form
factor—, at zero temperature the model has five free pa-

5,0 T T T T T

25+ 4

Gy, [MeV]

201 4

1 ’5 1 1 1 1
0 50 100 150 200

T [MeV]

250 300

Behavior of quark-meson couplings as functions of the temperature.

rameters. We have chosen to fix the average non-strange
quark mass m to a phenomenologically sound value of
m =15 MeV, whereas the remaining four parameters
have been determined by requiring that the model repro-
duces correctly the measured values of the masses of the
pion, kaon and 1’ pseudoscalar mesons, and the pion decay
constant f.. Using this set of parameters one can obtain a
very good description of the remaining zero temperature
pseudoscalar meson properties, as well as adequate values
for the scalar meson masses.

In the extension to finite temperature the former parame-
ter values have been kept fixed, while those appearing in
the Polyakov loop potential have been taken from a fit to
lattice results. As expected, the model shows a fast cross-
over phase transition, corresponding to the restoration of
SU(2) chiral symmetry. The transition temperature (de-
fined as the position of the peak of the corresponding chiral
susceptibility) is found to be T,. = 202 MeV. This value is

in better agreement with lattice results, namely Tﬁla‘t) =
160-200 MeV [34], than the value recently obtained in the

local SU(3) PNJL model, 7Y =259 MeV [35]. In
addition one finds a deconfinement phase transition, which
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occurs at about the same critical temperature. Concerning
the behavior of meson masses with temperature, it is seen
that pseudoscalar meson masses remain approximately
constant up to 7., while scalar meson masses begin to
drop at about 150 MeV. Beyond T, pseudoscalar masses
get increased, in such a way that they become degenerate
with the masses of their chiral partners, as expected from
chiral restoration. The temperature at which chiral partners
meet depend on the strange quark composition of the
corresponding mesons, i.e. the masses of mesons contain-
ing no strange quarks match almost immediately after 7.,
while f, and 1’ masses meet only at about 1.57T,, the
situation being intermediate for K and « mesons.
Regarding the properties of the n — n' sector, it is seen
that the corresponding mixing angles tend to converge to
the so-called ideal mixing, which indicates that the U(1),
anomaly tends to vanish as the temperature increases. This

PHYSICAL REVIEW D 81, 054005 (2010)

is also seen in the behavior of the topological susceptibility
which, as expected from lattice calculations, shows a sharp
decrease after the chiral phase transition. It should be
noticed, however, that in the present nonlocal model such
a decrease is faster than that obtained in the local PNJL
SU(3) [35]. Finally, we notice that, in agreement with the
local model—and in contrast with what was suggested in
the framework of a Dyson-Schwinger approach [38]—we
do not observe any kind of enhancement of the n’ mass
around the critical temperature.
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