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We argue that the A4 symmetry as required by three flavors of fermions may well-embed in the

SUð3ÞC � SUð3ÞL � Uð1ÞX gauge model. The new neutral fermion singlets as introduced in a canonical

seesaw mechanism can be combined with the standard model lepton doublets to perform SUð3ÞL triplets.

Various leptoscalar multiplets such as singlets, doublets, and triplets as played in the models of A4 are

unified in single SUð3ÞL antisextets. As a result, naturally light neutrinos with various kinds of mass

hierarchies are obtained as a combination of type I and type II seesaw contributions. The observed

neutrino mixing pattern in terms of the Harrison-Perkins-Scott proposal is obtained by enforcing the A4

group. The quark masses and Cabibbo-Kobayashi-Maskawa mixing matrix are also discussed. By virtue

of very heavy antisextets, the nature of the vacuum alignments of scalar fields can be given.
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I. INTRODUCTION

The explanation of the smallness of the neutrino masses
and the profile of their mixing as required by experiment
[1–3] have been a great puzzle in particle physics beyond
the standard model (SM). The current experimental data
are consistent with the tribimaximal form as proposed by
Harrison-Perkins-Scott [4], which, apart from phase rede-
finitions, is given by
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It is an interesting challenge to formulate dynamical prin-
ciples that can lead to the tribimaximal mixing pattern
given in a completely natural way as a first approximation.
Along these lines the flavor symmetries have been exten-
sively studied. For the first time, Ma and Rajasekaran [5]
have advocated choosing A4, the symmetry group of a
tetrahedron, as a family symmetry group. An incomplete
list of interesting works that came later include Refs. [6–
10]. The key to its success is that the patterns of symmetry
breaking with preserved subgroups are A4 ! Z3 and A4 !
Z2 in the two different sectors—the charged lepton sector
and the neutrino sector, respectively. This misalignment
can further be explained by auxiliary symmetries and
particles or even in the context of extra dimensions (see,
for example, [7,8]).

Here we would like to extend the above application to
the SUð3ÞC � SUð3ÞL � Uð1ÞX (3-3-1) gauge model [11–
13], because it can give a partial explanation of the exis-
tence of just three fermion families in nature as a result of
the gauge anomaly cancellations required by the A4 sym-
metry. There are two typical variants of the 3-3-1 model as
far as the lepton sectors are concerned. In the minimal
version, three SUð3ÞL lepton triplets are of the form
ð�L; eL; e

c
RÞi¼1;2;3, where eiR are ordinary right-handed

charged leptons [11]. In the second version, the third
components of the lepton triplets include right-handed
neutrinos, respectively, ð�L; eL; �

c
RÞi¼1;2;3 [12]. Note that

Ref. [10] has considered the A4 symmetry in the 3-3-1
model with heavy charged leptons, which is a modification
of the minimal version.
In this work we will pay attention to the second version

and try to recover the tribimaximal form. By analysis, a
possibility close to the typical version is when we replace
the right-handed neutrinos by those with vanishing lepton
number [5,14,15]. The neutrinos thus gain masses only
from contributions of SUð3ÞL scalar antisextets. After con-
sidering the quark sector, the scalar sector is completed. In
this model, the antisextets contain tiny vacuum expectation
values (VEVs) in the first components, as in the case of the
standard model with scalar triplets. To avoid the decay of
the Z boson into the Majorons associated with these com-
ponents, the lepton-number violating scalar potential
should be taken into account. Therefore, the lepton number
is no longer of an exact symmetry; i.e. the Majorons can
get large enough masses to escape from the decay of Z
[14]. If the antisextets are supposed to be very heavy, the
potential minimization conditions can naturally give an
explanation of the expected vacuum alignments, and also
the smallness of the lepton-number violating VEVs as well
as the mentioned ones. Note that this dangerous decay

*pvdong@iop.vast.ac.vn
†lthue@grad.iop.vast.ac.vn
‡hnlong@iop.vast.ac.vn
xdvsoa@assoc.iop.vast.ac.vn

PHYSICAL REVIEW D 81, 053004 (2010)

1550-7998=2010=81(5)=053004(9) 053004-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.053004


channel of the Z boson has not been fully evaluated in the
versions of the 3-3-1 model that include the antisextets
[16].

The paper is organized as follows: In Sec. II, we intro-
duce the A4 family symmetry into the model and obtain the
mass mechanisms and mixing matrix of leptons. Section III
discusses the quark masses. The scalar sector is then
completed. Section IV is devoted to the scalar potential,
vacuum alignment problem for the scalar fields. In the last
section, Sec. V, we summarize our results and make con-
clusions. Finally, the appendixes provide the basics of A4

symmetry and the general scalar potential used in the text.

II. LEPTONS

The particle content of the 3-3-1 model under consid-
eration is collected from Ref. [5]. We will show that this
selection, with an appropriate A4 flavor symmetry, pro-
vides, in the framework, a consistent mixing pattern and
masses for the neutrinos. The leptons, under
ðSUð3ÞL;Uð1ÞX; A4Þ symmetries, transform as

c L ¼
�L

eL
�c
R

0
@

1
A� ð3;�1=3; 3Þ; (2)

e1R � ð1;�1; 1Þ; e2R � ð1;�1; 10Þ;
e3R � ð1;�1; 100Þ; (3)

where �iR (i ¼ 1, 2, 3) are three right-handed fermions
which are singlets under the standard model symmetry and
have zero lepton number, Lð�RÞ ¼ 0. The X charge of the
Uð1ÞX group is related to the electric charge operator as
Q ¼ T3 � 1ffiffi

3
p T8 þ X, where Ta (a ¼ 1; 2; . . . ; 8) are

SUð3ÞL charges. Our model is therefore a type of the
ones given in [11,12].

The lepton number in this model does not commute with
the gauge symmetry. It is thus better to work with a new
lepton chargeL related to the lepton number L by diagonal
matrices L ¼ xT3 þ yT8 þL. Applying L to the lepton

triplet, the coefficients are defined as x ¼ 0, y ¼ 2=
ffiffiffi
3

p
,

and thus L ¼ 2ffiffi
3

p T8 þL [17]. The L charges for the mul-

tiplets are as follows:
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L 2=3 1 1 1

To generate masses for the charged leptons, we intro-
duce the following scalar fields:
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The first three quantum numbers are well defined as before.
The last one is the L charge for � such that the following

Yukawa interaction is conserved:

L l ¼ �hijk �c iL�jekR þ H:c:; (5)

where
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with! ¼ e2�i=3. The lepton number for the components of
�, including the additional scalars as shown below, is
explicitly given in Appendix B.
The VEV of � is ðv1; v2; v3Þ under A4. The mass

Lagrangian for the charged leptons reads Lmass
l ¼

�ð �e1L; �e2L; �e3LÞMlðe1R; e2R; e3RÞT þ H:c:, where

Ml ¼
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0
@

1
A: (7)

We put v1 ¼ v2 ¼ v3 ¼ v so that A4 is broken down to Z3

(this is also a minimal condition for the Higgs potential as
shown below). The mass matrix is then diagonalized,
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where
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Notice that �c c
Lc L� is suppressed because of the

L-symmetry violation. Then �c c
Lc L can couple to

SUð3ÞL antisextets to generate masses for the neutrinos.
The antisextets in this model transform as
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The Yukawa interactions are
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L � ¼ �1
2xð �c c

1Lc 1L þ �c c
2Lc 2L þ �c c

3Lc 3LÞ�
� yð �c c

2Lc 3Ls1 þ �c c
3Lc 1Ls2 þ �c c

1Lc 2Ls3Þ þ H:c:

(12)

The VEVof s is set as ðhs1i; 0; 0Þ under A4 (which is also
a natural minimal condition for the Higgs potential). As
such, the group is broken down to Z2 in the neutrino sector,
where

hs1i ¼
u01 0 u1
0 0 0
u1 0 �1

0
@

1
A: (13)

The VEVof � is

h�i ¼
u0 0 u
0 0 0
u 0 �

0
@

1
A: (14)

The mass Lagrangian for the neutrinos is defined by

L mass
� ¼ � 1

2
��c
LM��L þ H:c:; �L � �L

�c
R

� �
;

M� � ML MT
D

MD MR

� �
;

(15)

where � ¼ ð�1; �2; �3ÞT . The mass matrices are then ob-
tained by

ML;R;D ¼
aL;R;D 0 0
0 aL;R;D bL;R;D
0 bL;R;D aL;R;D

0
@

1
A; (16)

with

aL ¼ xu0; aD ¼ xu; aR ¼ x�;

bL ¼ yu01; bD ¼ yu1; bR ¼ y�1:
(17)

Three active neutrinos gain masses via a combination of
type I and type II seesaw mechanisms derived from (15) as

Meff ¼ ML �MT
DM

�1
R MD ¼

a0 0 0
0 a b
0 b a

0
@

1
A; (18)

where

a0 ¼ aL � a2D
aR

;

a ¼ aL þ 2aDbD
bR

a2R � b2R
� ða2D þ b2DÞ

aR
a2R � b2R

;

b ¼ bL � 2aDbD
aR

a2R � b2R
þ ða2D þ b2DÞ

bR
a2R � b2R

:

(19)

We can diagonalize the mass matrix (18) as follows:

UT
�M

effU� ¼
aþ b 0 0
0 a0 0
0 0 a� b

0
@

1
A

¼
m1 0 0
0 m2 0
0 0 m3
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Combined with (9), the lepton mixing matrix yields the
tribimaximal mixing pattern as proposed by Harrison-
Perkins-Scott (up to a phase):
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where the phase matrix P� ¼ diagð1; 1; iÞ can be removed

by absorbing it into the neutrino mass eigenstates. This is a
main result of the paper.
With the aid of the results in (19), we identify u0, u01 as

the VEVs of the type II seesaw mechanism. The mecha-
nism works because, from Eq. (43) in Sec. IV, the sponta-
neous breaking of electroweak symmetry is already
accomplished by v; hence u0, u01 may be small, as long
as M is large. The parameter ��2 (which has the dimension
of mass) may also be naturally small, because its absence
enhances the symmetry of Vs� [14]. On the other hand, u,
u1 are the VEVs of the type I seesaw mechanism. Similar
to the case above, these VEVs are, however, much smaller
than v. But they can be larger than u0, u01 because v� > v

(notice that v� is the scale of the 3-3-1 symmetry breaking

into the SM). The TeV scale type I seesaw mechanism can
be achieved if we take v� ¼ 10 TeV, ��1 ¼ 100 ��2 [14].

It is noted that the lepton number L is really broken by
the small VEVs of the antisextets s1 and � since their
corresponding field components carry L; namely, the (11)
has L ¼ �2, the (13) has L ¼ �1, but the (33) has L ¼ 0.
Now u0 � 0 (or u01 � 0) by itself means that L is broken by
2 units; hence L ! ð�ÞL, as lepton parity is still conserved.
This is the case in most models of neutrino mass. The type I
seesaw mechanism gives no contribution. However, if u (or
u1) is also nonzero, then L is broken completely. Both the
seesaw mechanisms play this role.

III. QUARKS

It is well known that the 3-3-1 model is a good example
of the fermion number problem: Why are there only three
families of fermions in nature [11,12,17]? This perfectly
meets the criteria of three-family symmetry theories such
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as A4. The anomaly cancellation in the 3-3-1 models
requires the number of SUð3ÞL triplets to be equal to the
number of SUð3ÞL antitriplets; i.e., two families of quarks
have to transform differently from the other one. Hence,
the quark triplets and antitriplets of the three families
cannot lie in a 3 representation of A4. The right-handed
exotic quarks are the same. Here, the following two situ-
ations exist.

The first situation is that the above scalar � is respon-
sible for generating quark masses. The quark content is
obtained as follows:

Q3L ¼
u3L
d3L
TL

0
@

1
A� ð3; 1=3; 1;�1=3Þ; (23)

Q1L ¼
d1L
�u1L
D1L

0
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1
A� ð3�; 0; 10; 1=3Þ;

Q2L ¼
d2L
�u2L
D2L

0
@

1
A� ð3�; 0; 100; 1=3Þ;

(24)

TR � ð1; 2=3; 1;�1Þ; D1R � ð1;�1=3; 100; 1Þ;
D2R � ð1;�1=3; 10; 1Þ; (25)

uR � ð1; 2=3; 3; 0Þ; dR � ð1;�1=3; 3; 0Þ: (26)

From (23)–(25), it follows that the exotic quarks have a
single lepton number, i.e. LðTÞ ¼ �1 and LðDÞ ¼ þ1.
Hence, in the considered model the exotic quarks are
leptoquarks. With the above quark content, the scalar
triplet � is not enough to provide mass for all the quarks.
Hence the following extra scalar fields are needed to
provide masses for the remaining quarks [12]:

� ¼
�0
1

��
2

�0
3

0
B@

1
CA� ð3;�1=3; 3;�1=3Þ;

� ¼
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1
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(27)

The Yukawa interactions are

�Lq ¼ hd3
�Q3Lð�dRÞ1 þhu1

�Q1Lð��uRÞ100 þhu2
�Q2Lð��uRÞ10

þ hu3
�Q3Lð�uRÞ1 þhd1

�Q1Lð��dRÞ100
þ hd2

�Q2Lð��dRÞ10 þ f3 �Q3L�TR þ f1 �Q1L�
�D1R

þ f2 �Q2L�
�D2R þH:c: (28)

Suppose that the VEVs of� and� are ðv0; v0; v0Þ and v�,

with v0 ¼ h�0
1i, v� ¼ h�0

3i, h�0
3i ¼ 0, and h�0

1i ¼ 0. The

exotic quarks get masses directly from the VEV of �:
mT ¼ f3v�, mD1;2

¼ f1;2v�. In addition, v� has to be

much larger than those of � and �. The mass matrices
for ordinary up quarks and down quarks are, respectively,
obtained as follows:
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�hu1v �hu1!v �hu1!

2v
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0 hu3v
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Let us put
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We have then
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ffiffiffi
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p
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¼
md 0 0
0 ms 0
0 0 mb

0
@

1
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(31)

The unitary matrices, which couple the left-handed up and
down quarks to those in the mass bases, are Uu

L ¼ 1 and
Ud

L ¼ 1, respectively. Therefore we get the Cabibbo-
Kobayashi-Maskawa (CKM) matrix

UCKM ¼ Udy
L Uu

L ¼ 1: (32)

Note that the property in (32) is common for some models
based on the A4 group.
In the last situation the mentioned scalar field � is not

responsible for the quark masses. The ordinary right-
handed quarks are therefore in singlets under A4. In this
case, we might introduce three extra SUð3ÞL Higgs triplets
such as

� ¼
�0
1

��
2

�0
3

0
B@

1
CA� ð3;�1=3; 1;�1=3Þ;

	 ¼
	þ
1

	0
2

	þ
3

0
B@

1
CA� ð3; 2=3; 1;�1=3Þ;

(33)

and�, as in the first situation. A combination of such Higgs
scalar fields will give mass for all the quarks [12].
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However, all these scalar triplets as well as the quarks lie in
1 representations of A4. It is easy to check that all quarks
get masses in the same ordinary 3-3-1 model; namely,
v� ¼ h�0

1i provides the mass for u3, d1, and d2 quarks,

v	 ¼ h	0
2i for d3, u1, and u2 quarks, and v� ¼ h�0

3i for
exotic quarks T, D1, and D2.

Notice that, for both situations, if the lepton parity ð�ÞL
is broken, i.e. the lepton number L is broken completely,
then there is no longer a symmetry which protects �0

3 (L ¼
�1) and �0

1 (L ¼ 1) from acquiring VEVs. This will

induce mixing between the leptoquarks and the usual
quarks, which may lead to the effects of flavor changing
neutral currents. This kind of mixing in the 3-3-1 model
has been studied in a number of papers [18], so we will not
discuss it further. Anyway, the solution corresponding to
the residual symmetry ð�ÞL should be more natural.

In this model the first situation is quite natural because
the A4 triplet �, which may strongly couple to � via some
potential, will be aligned in the (1, 1, 1) VEV direction of
�, as assumed. Namely, we can check that those VEV
structures for � and � are an automatic solution from the
potential minimization conditions; no misalignment solu-
tion appears. But, in the following we will consider the
scalar and quark content of the second situation. The
results obtained can be similarly derived for the first situ-
ation. The scalar content and general scalar potential in the
case of interest are summarized in Appendix B. Note that,
in Ref. [10], only the lepton sector has been considered,
and the quark sector has not been mentioned.

IV. VACUUM ALIGNMENT

There are several scalar sectors where � is responsible
for charged lepton masses, � and s are responsible for
neutrino masses, and �, 	, � for quark masses, with the
vacuum structures shown above. If the first two sectors
such as � and s are strongly coupled, i.e. the couplings of
Vðs;�Þ in (B22) are turned on with enough strength, such
vacuum alignments for � and s would be broken. To
resolve this problem, we might include extra dimensions
as in [7] or supersymmetry as in [8]. However, in this work
we will provide an alternative explanation, following [5,6].

At the low-energy limit, the antisextets � and s are
decomposed into the ones of standard model symmetry.
Noting that 6� ¼ 3� � 2� � 1 under SUð2ÞL we get

� ¼ �0
11 �þ

12

�þ
12 �þþ

22

 !
� �0

13

�þ
23

 !
� �0

33;

s ¼ s011 sþ12
sþ12 sþþ

22

 !
� s013

sþ23

 !
� s033;

(34)

where the antitriplets have the lepton number L ¼ �2,
antidoublets L ¼ �1, and singlets L ¼ 0. Our effective
theory thus plays the same role as the previous well-known
proposals of A4, such as in Refs. [5,6]. The dynamics of the

antitriplets and antidoublets can further be found in [14].
Similar to those cases, � and s in the model may be very
heavy and are all integrated away, so they do not appear as
physical particles at or below the TeV scale. They have
interactions among themselves similar to those of the
potentials for � as shown below. Only their imprint at
low energy shows the VEV structures as given.
To see this, let us suppose that the antisextets � and s are

heavy, with masses �� and �s, respectively, and consider
the minimization conditions of a potential Vs� concerning
these antisextets. To obtain the desirable solution h�i � 0,
hs1i � 0, and hs2i ¼ hs3i ¼ 0, the lepton number L, as
well as A4, must be broken as given in (B31). The new
observation is that the following choice of soft scalar terms
of (B31) works in the Vs� potential:

Vs� ¼ VðsÞ þ Vð�Þ þ Vðs; �Þ þ ð ��1�
T��þ ��2�

T��

þ �
1�
ysy1�	þ �
2�

ysy1�	þ �
3�
ysy1�	þ H:c:Þ:

(35)

From Vs�, one solution to the minimization conditions is
hs2i ¼ hs3i ¼ 0, and

hs1i ¼
u01 0 u1
0 0 0
u1 0 �1

0
@

1
A; h�i ¼

u0 0 u
0 0 0
u 0 �

0
@

1
A: (36)

Here hs1i and h�i are the root of the @Vs�
min=@hs1i� ¼ 0 and

@Vs�
min=@h�i� ¼ 0 (with Vs�

min the minimum of Vs�),

whereas other similar conditions vanish due to hs2i ¼
hs3i ¼ 0. This is also an important result of our paper.
Since �, �1 are much larger than u, u0, u1, u01, from

the minimization conditions @Vs�
min=@�

�
1 ¼ 0 and

@Vs�
min=@�

� ¼ 0 we derive

�2
1 ’ ½2ð
� þ 
0sÞ�2

s � ð2
0s�
3 þ 2
s�

3 þ 
0s�
1 þ 
s�

1

þ 
s�
2 þ 
0s�

2 Þ�2
��=½ð2
0s�

3 þ 2
s�
3 þ 
0s�

1 þ 
s�
1

þ 
s�
2 þ 
0s�

2 Þð
0s�
2 þ 
0s�

1 þ 
s�
2 þ 
s�

1 þ 2
0s�
3

þ 2
s�
3 Þ � 4ð
� þ 
0sÞ � ð
0s

1 þ 
0s
2 þ 
s

1 þ 
s
2Þ�;
(37)

�2 ’ ½2ð
0s
1 þ 
0s

2 þ 
s
1 þ 
s

2Þ�2
� � ð
0s�

2 þ 
0s�
1 þ 
s�

2
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s�
1 þ 2
0s�

3 þ 2
s�
3 Þ�2

s�=½ð2
0s�
3 þ 2
s�

3 þ 
0s�
1

þ 
s�
1 þ 
s�

2 þ 
0s�
2 Þð
0s�

2 þ 
0s�
1 þ 
s�

2 þ 
s�
1

þ 2
0s�
3 þ 2
s�

3 Þ � 4ð
� þ 
0sÞð
0s
1 þ 
0s

2

þ 
s
1 þ 
s

2Þ�; (38)

i.e. � and �1 are on the scale of the antisextet masses ��,
�s. However, u, u1, u

0, and u01 get very small values [6,14]
derived from the remaining minimization conditions as
given by
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u0 ’ ½�2
s þ 2ð
0s

1 þ 
0s
2 Þ�2

1 þ 
0s�
1 �2�v2

� ��2 þ ð
0s�
2 þ 2
0s�

3 Þ��1v�v	v�
�
1

ð�2
� þ 2
0��2 þ 
0s�

1 �2
1Þ½�2

s þ 2ð
0s
1 þ 
0s

2 Þ�2
1 þ 
0s�

1 �2� � ð
0s�
2 þ 2
0s�

3 Þ2�2�2
1

; (39)

u01 ’
�ð
0s�

2 þ 2
0s�
3 Þ��1v

2
� ��2 � ð�2

� þ 2
0��2 þ 
0s�
1 �2

1Þv�v	v�
�
1

ð�2
� þ 2
0��2 þ 
0s�

1 �2
1Þ½�2

s þ 2ð
0s
1 þ 
0s

2 Þ�2
1 þ 
0s�

1 �2� � ð
0s�
2 þ 2
0s�

3 Þ2�2�2
1

; (40)

u ’ f½2�2
s þ 4ð
s

1 þ 
0s
1 þ 
s

2 þ 
0s
2 Þ�2

1 þ ð
s�
1 þ 2
0s�

1 þ 
s�
2 Þ�2�v�v� ��1 � ð
s�

1 þ 
s�
2 þ 2
0s�

2 þ 4
s�
3 þ 4
0s�

3 Þ
���1v	ðv2

�
�
2 � v2

�
�
3Þg=f½2�2

� þ 4ð
� þ 
0�Þ�2 þ ð
s�
1 þ 2
0s�

1 þ 
s�
2 Þ�2

1�½2�2
s þ 4ð
s

1 þ 
0s
1 þ 
s

2 þ 
0s
2 Þ�2

1

þ ð
s�
1 þ 2
0s�

1 þ 
s�
2 Þ�2� � ð
s�

1 þ 
s�
2 þ 2
0s�

2 þ 4
s�
3 þ 4
0s�

3 Þ2�2�2
1g; (41)

u1 ’ f½2�2
� þ 4ð
� þ 
0�Þ�2 þ ð
s�

1 þ 2
0s�
1 þ 
s�

2 Þ�2
1�v	ðv2

�
�
2 � v2

�
�
3Þ � ð
s�

1 þ 
s�
2 þ 2
0s�

2 þ 4
s�
3 þ 4
0s�

3 Þ
���1v�v� ��1g=f½2�2

� þ 4ð
� þ 
0�Þ�2 þ ð
s�
1 þ 2
0s�

1 þ 
s�
2 Þ�2

1�½2�2
s þ 4ð
s

1 þ 
0s
1 þ 
s

2 þ 
0s
2 Þ�2

1

þ ð
s�
1 þ 2
0s�

1 þ 
s�
2 Þ�2� � ð
s�

1 þ 
s�
2 þ 2
0s�

2 þ 4
s�
3 þ 4
0s�

3 Þ2�2�2
1g: (42)

Let us put �, �1, ��, �s �M. Suppose that all the terms existing in the same numerator are the same order, i.e. v� �
v	ð�vÞ, v�

�
1 � ��2, and v�
�
3 � ��1. We derive

u0 � u01 �
��2v

2

M2
; u� u1 �

��1vv�

M2
: (43)

(See also the remarks in Sec. II for completion.)
The potential concerning �, after integrating out over the heavy fields as mentioned, can be identified as V� ¼

Vð�Þ þ Vð�;	Þ þ Vð�;�Þ þ Vð�;�Þ. The minimum of the potential is given by

V�
min ¼ ðm2 � 2


�	
3 v2

	Þðjv1j2 þ jv2j2 þ jv3j2Þ þ 
�
1 ðjv1j2 þ jv2j2 þ jv3j2Þ2 þ 
�

2 ðjv1j2 þ!2jv2j2 þ!jv3j2Þ
� ðjv1j2 þ!jv2j2 þ!2jv3j2Þ þ 
�

3 ðjv2j2jv3j2 þ jv3j2jv1j2 þ jv1j2jv2j2Þ þ f
�
4 ðv�

2v3Þ2 þ ðv�
3v1Þ2

þ ðv�
1v2Þ2 þ 
�	

3 v2
	½ðv�

1Þ2 þ ðv�
2Þ2 þ ðv�

3Þ2� þ ð
�	
4 þ 
�	

5 Þv�
	½v�

1v2v3 þ v1v
�
2v3 þ v1v2v

�
3� þ c:c:g: (44)

Here we have defined m2 ¼ �2
� þ 


��
1 jv�j2 þ 


��
1 jv�j2 þ ð
�	

1 þ 

�	
2 Þjv	j2 þ 2


�	
3 v2

	, with v� ¼ h�i, v	 ¼ h	i, and
v� ¼ h�i. The minimization conditions on vi are given by

@V�
min

@v�
1

¼ ðm2 � 2
�	
3 v2

	Þv1 þ 2
�
1 v1ðjv1j2 þ jv2j2 þ jv3j2Þ þ 
�

2 v1ð2jv1j2 � jv2j2 � jv3j2Þ þ 
�
3 v1ðjv2j2 þ jv3j2Þ

þ 2
�
4 v

�
1ðv2

2 þ v2
3Þ þ 2
�	

3 v2
	v

�
1 þ ð
�	

4 þ 
�	
5 Þ½v�

	v2v3 þ v	ðv�
2v3 þ v2v

�
3Þ�; (45)

and other similar equations. One solution to these equations is

v1 ¼ v2 ¼ v3 ¼
�3v	ð
�	

4 þ 
�	
5 Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9jv	j2ð
�	

4 þ 
�	
5 Þ2 � 8m2ð3
�

1 þ 
�
3 þ 2
�

4 Þ
q

4ð3
�
1 þ 
�

3 þ 2
�
4 Þ

: (46)

Let us note that such vacuum alignment does not change
when the terms � in (B31), except for those coupled to s,
are included.

V. CONCLUSIONS

We have constructed the SUð3ÞC � SUð3ÞL � Uð1ÞX
gauge model based on A4 flavor symmetry. This 3-3-1
model is different from previous proposals [10–12] be-
cause it includes the new neutral fermion singlets with
zero lepton number following [5] into the third components

of the SUð3ÞL lepton triplets, as well as the scalar anti-
sextets as required to generate the masses for the neutrinos.
The charged leptons gain masses from the Yukawa

interactions of the SUð3ÞL triplet �. The neutrinos and
neutral fermion singlets gain masses from contributions
of the antisextets � and s. The three active neutrinos have
naturally small masses as a result of the interplay of type I
and II seesaw mechanisms. The quark masses exist in one
of the two cases. The first case is induced by contributions
from �, where the CKM matrix may be unity at the first
approximation. In contrast, the second case is due to a
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discriminative scalar sector of the �, 	, � triplets. The
resulting masses and mixing matrix of quarks are the same
as in the ordinary 3-3-1 model.

The separation of the two A4 triplets � and s, which
generate masses for charged leptons and neutrinos, respec-
tively, is evaluated. We have shown that if the antitriplets�
and s are heavy, small lepton-number violating vacuum
expectation values may be induced via the lepton-number
violating scalar potentials as well as the scalar soft terms of
A4. The vacuum alignment for these antisextets exists as a
result. The scalar potential concerning � at or below the
TeV scale is obtained by integrating out from the very
heavy antisextets, which naturally yields the vacuum struc-
tures as expected. Remember that in this case the type I
seesaw scale is very large, corresponding to those of the
antisextets. To achieve a TeV seesaw scale, other mecha-
nisms, such as ones [7,8] for separating � and s, should be
used.

Finally, since in our model one family of quarks is
different from the other two, other flavor symmetry groups
which contain 2 representations such as S4 may be pre-
ferred. This subject is dedicated to future studies.
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APPENDIX A: A4 SYMMETRY

For three families of fermions, we should look for a
group with an irreducible 3 representation which acts on
the family indices, the simplest of which is A4, the group of
even permutation of four objects. It is also the symmetry
group of a regular tetrahedron.

The group has 12 elements and four equivalence classes
with three inequivalent one-dimensional representations
and one three-dimensional one. Its character table is given
in Table I. The multiplication rule for 3 representations is

3 � 3 ¼ 1ð11þ 22þ 33Þ � 10ð11þ!222þ!33Þ
� 100ð11þ!22þ!233Þ � 3ð23; 31; 12Þ
� 3ð32; 13; 21Þ: (A1)

Further, we can denote, on the right-hand side, the first 3 as
3s and the second 3 as 3a.

APPENDIX B: SCALAR SECTOR

1. Scalar content

Let us summarize the Higgs content of the model:

� ¼
�þ

1

�0
2

�þ
3

0
B@

1
CA� ð3; 2=3; 3;�1=3Þ; (B1)

� ¼
�0
1

��
2

�0
3

0
B@

1
CA� ð3;�1=3; 1;�1=3Þ; (B2)

	 ¼
	þ
1

	0
2

	þ
3

0
B@

1
CA� ð3; 2=3; 1;�1=3Þ; (B3)

� ¼
�0
1

��
2

�0
3

0
B@

1
CA� ð3;�1=3; 1; 2=3Þ; (B4)

� ¼
�0

11 �þ
12 �0

13

�þ
12 �þþ

22 �þ
23

�0
13 �þ

23 �0
33

0
B@

1
CA� ð6�; 2=3; 1;�4=3Þ; (B5)

s ¼
s011 sþ12 s013
sþ12 sþþ

22 sþ23
s013 sþ23 s033

0
B@

1
CA� ð6�; 2=3; 3;�4=3Þ; (B6)

where the parentheses denote the quantum numbers based
on ðSUð3ÞL; Uð1ÞX; A4; Uð1ÞLÞ symmetries, respectively.
The subscripts to the component fields are indices of
SUð3ÞL. The 3 indices of A4 for � and s are discarded
and understood. For convenience, we also list the lepton
number (L) for the component particles:

Scalars L

�þ
1 , �

0
2, �

0
1, �

�
2 , 	

þ
1 , 	

0
2, �

0
3, �

0
33, s

0
33 0

�þ
3 , �

0
3, 	

þ
3 , �

0�
1 , �þ

2 , �
0
13, �

þ
23, s

0
13, s

þ
23 �1

�0
11, �

þ
12, �

þþ
22 , s011, s

þ
12, s

þþ
22 �2

2. Scalar potential

We can separate the general scalar potential into

Vscalar ¼ V1 þ V2 þ �V3; (B7)

in which the first and second terms conserve the L charge
whereas the third term violates this charge. Moreover, V1

consists of all terms of�,�, 	, �, without� and s; V2 is all
the terms having at least a � or s. V1 is a sum of

TABLE I. Character table of A4, where ! ¼ e2�i=3 is the cube
root of unity.

Class n �1 �10 �100 �3

C1 1 1 1 1 3

C2 4 1 ! !2 0

C3 4 1 !2 ! 0

C4 3 1 1 1 �1
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Vð�Þ ¼ �2
�ð�y�Þ1 þ 
�

1 ð�y�Þ1ð�y�Þ1
þ 
�

2 ð�y�Þ10 ð�y�Þ100
þ 
�

3 ð�y�Þ3sð�y�Þ3a
þ ½
�

4 ð�y�Þ3sð�y�Þ3s þ H:c:�; (B8)

Vð�Þ ¼ �2
��

y�þ 
�ð�y�Þ2; (B9)

Vð	Þ ¼ �2
		

y	þ 
	ð	y	Þ2; (B10)

Vð�Þ ¼ �2
��

y�þ 
�ð�y�Þ2; (B11)

Vð�;�Þ ¼ 

��
1 ð�y�Þ1ð�y�Þ þ 


��
2 ð�y�Þð�y�Þ;

(B12)

Vð�;	Þ ¼ 

�	
1 ð�y�Þ1ð	y	Þ þ 


�	
2 ð�y	Þð	y�Þ

þ ½
�	
3 ð�y	Þð�y	Þ þ 
�	

4 ð	y�Þð�y�Þ3s
þ 
�	

5 ð	y�Þð�y�Þ3a þ H:c:�; (B13)

Vð�;�Þ ¼ 

��
1 ð�y�Þ1ð�y�Þ þ 


��
2 ð�y�Þð�y�Þ;

(B14)

Vð�;	Þ ¼ 
�	
1 ð�y�Þð	y	Þ þ 
�	

2 ð�y	Þð	y�Þ; (B15)

Vð�;�Þ ¼ 

��
1 ð�y�Þð�y�Þ þ 


��
2 ð�y�Þð�y�Þ; (B16)

Vð	; �Þ ¼ 
	�
1 ð	y	Þð�y�Þ þ 
	�

2 ð	y�Þð�y	Þ; (B17)

Vð�; 	; �Þ ¼ �1�	�þ H:c: (B18)

V2 is a sum of

VðsÞ ¼ TrfVð� ! sÞ þ 
0s
1 ðsysÞ1 TrðsysÞ1

þ 
0s
2 ðsysÞ10 TrðsysÞ100 þ 
0s

3 ðsysÞ3s TrðsysÞ3a
þ ½
0s

4 ðsysÞ3s TrðsysÞ3s þ H:c:�g; (B19)

Vð�Þ ¼ Tr½Vð� ! �Þ þ 
0�ð�y�ÞTrð�y�Þ�; (B20)

Vðs; �Þ ¼ TrfVð� ! s; 	 ! �Þ þ 
0s�
1 ðsysÞ1 Trð�y�Þ

þ 
0s�
2 ðsy�ÞTrð�ysÞ þ ½
0s�

3 ðsy�Þ
� Trðsy�Þ þ 
0s�

4 ð�ysÞTrðsysÞ3s
þ 
0s�

5 ð�ysÞðsysÞ3a þ H:c:�g; (B21)

Vðs;�Þ ¼ Trf
�s
1 ð�y�Þ1ðsysÞ1

þ ½
�s
2 ð�y�Þ10 ðsysÞ100 þ 
�s

3 ð�y�Þ3sðsysÞ3a
þ 
�s

4 ð�y�Þ3sðsysÞ3s þ H:c:�
þ 
�s

5 ð�ysyÞ1ðs�Þ1 þ 
�s
6 ð�ysyÞ10 ðs�Þ100

þ 
�s
7 ð�ysyÞ3sðs�Þ3a þ ½
�s

8 ð�ysyÞ3sðs�Þ3s
þ H:c:�g; (B22)

Vðs; �Þ ¼ Tr½Vð� ! sy; � ! �Þ�; (B23)

Vðs; 	Þ ¼ Tr½Vð� ! sy; � ! 	Þ�; (B24)

Vðs; �Þ ¼ Tr½Vð� ! sy; � ! �Þ�; (B25)

Vð�;�Þ ¼ Tr½Vð� ! �;� ! �yÞ�; (B26)

Vð�;�Þ ¼ Tr½Vð� ! �;	 ! �yÞ�; (B27)

Vð�; 	Þ ¼ Tr½Vð� ! 	; 	 ! �yÞ�; (B28)

Vð�;�Þ ¼ Tr½Vð� ! �;	 ! �yÞ� þ ½�2�
T��þ H:c:�;

(B29)

Vðs;�; �; �Þ ¼ 
1�
ysy��þ H:c: (B30)

Notice that ðTrAÞðTrBÞ ¼ TrðATrBÞ and VðX ! X1; Y !
Y1Þ � VðX; YÞjX¼X1;Y¼Y1

.

The third term �V3 is given by

�V 3 ¼ ��1�
T��þ ��2�

T��þ �
1�
ysy��þ �
2�

ysy��

þ �
3�
ysy��þ �
4�

ysys�þ �
5�
y�y��

þ ½ �
6 Trð�y�Þ þ �
7 TrðsysÞ þ �
8�
y�þ �
9�

y�

þ �
10	
y	þ �
11�

y�þ �
12�
y�þ ��2

3��y�

þ �
13ð�y	Þð	y�Þ þ �
14ð�y�Þð�y�Þ þ H:c:

(B31)

There may exist soft terms in �V explicitly violating the A4

symmetry. But, only some of them are mentioned in the
text.
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