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Previous solar system constraints of the Brans-Dicke (BD) parameter ! have either ignored the effects

of the scalar field potential (mass terms) or assumed a highly massive scalar field. Here, we interpolate

between the above two assumptions and derive the solar system constraints on the BD parameter! for any

field mass. We show that for ! ¼ Oð1Þ the solar system constraints relax for a field mass m * 20�
mAU ¼ 20� 10�27 GeV.
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Scalar-tensor (ST) theories [1] constitute a fairly generic
extension of general relativity (GR) where the gravitational
constant is promoted to a field whose dynamics is deter-
mined by the following action [1,2]

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p ðFð�ÞR� Zð�Þg��@��@��

� 2Uð�ÞÞ þ Sm½c m;g���: (1)

where G is the bare gravitational constant, R is the scalar
curvature of the metric g�� and Sm is the action of matter

fields. The variation of the dimensionless function Fð�Þ
describes the variation of the effective gravitational con-
stant. This variation (spatial or temporal) is severely con-
strained by solar system experiments [3–5]. The GR limit
of ST theories is obtained either by fixing Fð�Þ ¼ �0 ’ 1
(�0 is a constant) or by freezing the dynamics of � using
the function Zð�Þ or the potential Uð�Þ. For example a
large and steep Zð�Þ makes it very costly energetically for
� to develop a kinetic term while a steep Uð�Þ (massive
�) can make it very costly energetically for � to develop
potential energy. In both cases we have an effective freez-
ing of the dynamics which reduces the ST theory to GR.

ST theories have attracted significant attention recently
as a potentially physical mechanism [2,6,7] for generating
the observed accelerating expansion of the universe (see
Ref. [8,9] and references therein). A significant advantage
of this mechanism is that it can naturally generate an
accelerating expansion rate corresponding to an effective
equation of state parameter weff that crosses the phantom
divide linew ¼ �1 [6,10,11]. Such a crossing is consistent
with cosmological observations and is difficult to obtain in
the context of GR [12]. In addition ST theories naturally
emerge in the context of string theories [13] and in Kaluza-
Klein [14] theories with compact extra dimensions [15].

A special case of ST theories is the Brans-Dicke (BD)
theory [16] where

Fð�Þ ¼ �; (2)

Zð�Þ ¼ !

�
: (3)

For a massive BD theory we also assume a potential of the
form

Uð�Þ ¼ 1

2
m2ð���0Þ2: (4)

Clearly, the spatial dynamics of� can freeze for! � 1 or
for m � r�1 where r is the scale of the experiment or
observation testing the dynamics of �. For solar system
scale observations, the relevant scale is the Astronomical
Unit (AU ’ 108 km) corresponding to a mass scale mAU ’
10�27 GeV. Even though this scale is small for particle
physics considerations, it is still much larger than the
Hubble mass scale mH0

’ 10�42 GeV required for non-

trivial cosmological evolution of � [7,17].
Current solar system constraints [4,18] of the BD pa-

rameter ! have been obtained under one of the following
assumptions:
(i) Negligible mass of the field � (m � mAU): In this

case the relation between the observable Post-
Newtonian parameter � (measuring how much space
curvature is produced by a unit rest mass) [18] and!
is of the form [4,19,20]

�ð!Þ ¼ 1þ!

2þ!
: (5)

This relation combined with the solar system con-
straints of the Cassini mission [5]

�obs � 1 ¼ ð2:1� 2:3Þ � 10�5 (6)

which constraint � close to its GR value � ¼ 1, leads
to the constraint on !

!> 4� 104 (7)

at the 2� confidence level. Equation (5) however
should not be used in the case of massive BD theo-
ries as was attempted recently in version 2 (v.2) of
Ref. [21] (this error has been corrected in v.3 of
Ref. [21]).

(ii) Very massive scalar field � (m � mAU): In this
case the spatial dynamics of � is frozen on solar
system scales by the potential term and all values of
! are observationally acceptable even though rapid
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oscillations of the field can lead to interesting non-
trivial effects [22–24].

In this study we fill the gap between the above two as-
sumptions and derive the form of the predicted effective
parameter � for all values of the field massm. In particular,
we derive the form of �ð!;m; rÞ where r is the scale of the
experiment-observation constraining �. We then use the
current solar system constraints (6) to obtain the ð!;mÞ
parameter regions allowed by observations at the 1� and
2� confidence level.

The dynamical equations obtained for the field � and
the metric g�� by variation of the action (1) in the massive

BD case defined by Eqs. (3) and (4) are of the form [2]

�

�
R�� � 1

2
g��R

�
¼ 8�GT�� þ !

�

�
@��@��

� 1

2
g��ð@��Þ2

�
þr�@�Fð�Þ

� g��h�� g��

1

2
m2ð���0Þ2;

(8)

ð2!þ 3Þh� ¼ 8�GT þ 2m2ðð���0Þ2 þ ð���0Þ�Þ:
(9)

Considering the physical setup of the solar system involv-
ing a weak gravitational field we expand around a constant-
uniform background field �0 and a Minkowski metric
��� ¼ diagð�1; 1; 1; 1Þ1

� ¼ �0 þ ’ (10)

g�� ¼ ��� þ h�� (11)

The resulting equations for ’ and h�� obtained from (8),

(9), (11), and (10) in the gauge h�� ;� � 1
2 h

�
�;�¼ 1

�0
’;� are

�
h� 2m2�0

2!þ 3

�
’ ¼ �8�G

�� 3p

2!þ 3
; (12)

��0

2

�
h

�
h�� � ���

h

2

��
¼ 8�GT�� þ @�@�’

� ���h’; (13)

where T�� ¼ diagð�; p; p; pÞ and h ¼ h
�
�. Since we are

interested in approximately static solutions corresponding
to a gravitating mass such as the Sun or the Earth we ignore
time derivatives and set p ’ 0. Thus Eqs. (12) and (13)
become

r2’� 2m2�0

2!þ 3
’ ¼ �8�G

�

2!þ 3
; (14)

�0r2h00 �r2’ ¼ �8�G�; (15)

�0r2hij � 	ijr2’ ¼ �8�G�	ij: (16)

These equations are consistent with corresponding results
of Ref. [22,23,25] even though our notation and assump-
tions are somewhat different. Setting � ¼ Ms	ðrÞ we ob-
tain the following solution

’ ¼ 2GMs

ð2!þ 3Þr e
� �mð!Þr; (17)

h00 ¼ 2GMs

�0r

�
1þ 1

2!þ 3
e� �mð!Þr

�
; (18)

hij ¼ 2GMs

�0r
	ij

�
1� 1

2!þ 3
e� �mð!Þr

�
; (19)

where �mð!Þ �
ffiffiffiffiffiffiffiffiffiffi
2�0

2!þ3

q
m (�0 is dimensionless). Using now

the standard expansion of the metric in terms of the � Post-
Newtonian parameter

g00 ¼ �1þ 2u; (20)

gij ¼ ð1þ 2�uÞ	ij; (21)

where u is the Newtonian potential we find (see also [25])

�ð!;m; rÞ ¼ hijji¼j

h00
¼ 1� e� �mð!Þr

2!þ3

1þ e� �mð!Þr
2!þ3

: (22)

In the special case ofm ¼ 0we obtain the familiar result of
Eq. (5).
The effective mass �mð!Þ imposes a range �mð!Þ�1 to the

gravitational interaction in BD theories. In these theories,
the Newtonian potential is

h00 ¼ 2u ¼ 2GeffMs

r
(23)

with

Geff ¼ G

�0

�
1þ 1

2!þ 3
e� �mð!Þr

�
: (24)

The dependence of the effective parameter � on the scale
should be interpreted as a dependence on the scale of the
experiment-observation imposing a bound on �. For ex-
ample, for solar system constraints we have r ’ 1AU ’
108 km which corresponds to the mass scale mAU ’
10�27 GeV. For �mð!Þ * mAU, the value of � predicted
by BD theories for solar system scale observations
(Eq. (22)) is significantly different from the standard ex-
pression (5). The other major Post-Newtonian parameter 

(measuring how much ‘nonlinearity’ there is in the super-
position law of gravity) is not discussed in this study but it

1Cosmological considerations would allow a slow evolution of
�0 ¼ �0ðtÞ on cosmological time scales but since these time
scales are much larger than the solar system time scales we may
ignore that evolution for our physical setup.
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is anticipated to remain at its GR value
 ¼ 1 as in the case
of massless BD theories [4] since the mass term can only
improve the consistency with GR.

In order to constrain the allowed !�m parameter
region we use the recent observational estimates of
Eq. (6) obtained by the Cassini spacecraft delay into the
radio waves transmission near the solar conjuction [5].
Equation (6) implies lower bound constraints on the pa-
rameter � i.e.

�ð!;m;m�1
AUÞ> 1� 0:2� 10�5 (25)

�ð!;m;m�1
AUÞ> 1� 2:5� 10�5 (26)

at the 1� and 2� levels, respectively.2 Using Eqs. (22),
(25), and (26) we may find the observationally allowed
range of! for each value ofm (measured in units ofmAU ’
10�27 GeV) at the 1� and 2� confidence levels. This
allowed range at 2� confidence level is shown in Fig. 1
(regions above and on the right of the thick line). The thick
line of Fig. 1 is obtained by equating the expression of
�ð!;m; rAUÞ ¼ �ð!;m;m�1

AUÞ [Eq. (22)] with the 2� limit

of Eq. (26) and plotting the corresponding contour in the
ð!;m=mAUÞ parameter space. The dashed line of Fig. 1 is

obtained in a similar way using the 1� limit of Eq. (25).
Clearly, for ! ¼ Oð1Þ and m

mAU
* 20 the solar system con-

straints relax and values of ! ¼ Oð1Þ are allowed by solar
system observations at the 2� level. Form ¼ 0we reobtain
the familiar bound ! * 40000 at 2� level while for m *
200mAU all values of ! are allowed. The plot of Fig. 1 can
be used for any experiment-observation constraining the
parameter � on a scale r by proper reinterpretation of the
units of the m axis.
In conclusion, we have used solar system constraints of

the Post-Newtonian parameter � to find the allowed ð!;mÞ
parameter region of massive BD theories for all values of
the scalar field mass m including the mass scale mAU

corresponding to the solar system distance scale. This
result, fills a gap in the literature where only the casesm �
mAU and m � mAU had been considered. We have found
that form ’ mAU ’ 1027 GeV, the observationally allowed
range of ! at the 2� level is practically identical to the
corresponding range corresponding to the m ¼ 0 range of
Eq. (7). However, for m * 200mAU all values of !>
�3=2 are observationally allowed.
An interesting extension of the present study would be

the generalization of the well known expression of � in
scalar-tensor theories

�ðF; ZÞ � 1 ¼ � ðdFð�Þ=d�Þ2
Zð�ÞFð�Þ þ 2ðdFð�Þ=d�Þ2 (27)

which like Eq. (5) ignores the possible stabilizing effects of
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FIG. 1. (a) The observationally allowed regions for the parameters! andm0 �
ffiffiffiffiffiffiffiffiffi
2�0

p
m ’ m at 1� 68% confidence level (above and

right of dashed line) and 2� 95% confidence level (above and right of thick line). Notice that for m0

mAU
* 200 all values of ! are

observationally allowed at the 2� level. (b) Same a Fig. 1(a) focused on a region close to the origin. Notice that for ! ¼ Oð1Þ solar
system constraints relax for m0

mAU
* 20 at the 2� level (thick line).

2Eqs. (25) and (26) are obtained by subtracting the 1� error
(	� ¼ 2:3� 10�5) and the 2� error (2	� ¼ 4:6� 10�5), re-
spectively, from the mean value of ��obs ¼ 1þ 2:1� 10�5 of
Eq. (6).
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the scalar field potential. Such a generalization would lead
to an expression of the effective scale dependent parameter
� in terms of Fð�Þ, Zð�Þ and Uð�Þ.
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