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In M(atrix) theory, there exist membranes and longitudinal 5-branes (L5-branes) as extended objects.

Transverse components of these brane solutions are known to be described by fuzzy CPk (k ¼ 1, 2),

where k ¼ 1 and k ¼ 2 correspond to spherical membranes and L5-branes of CP2 � S1 world-volume

geometry, respectively. In addition to these solutions, we here show the existence of L7-branes of CP3 �
S1 geometry, introducing extra potentials to the M(atrix) theory Lagrangian. As in the cases of k ¼ 1, 2,

the L7-branes (corresponding to k ¼ 3) also break the supersymmetries of M(atrix) theory. The extra

potentials are introduced such that the energy of a static L7-brane solution becomes finite in the large N

limit where N represents the matrix dimension of fuzzy CP3. As a consequence, fluctuations from the L7-

branes are suppressed, which effectively describes compactification of M(atrix) theory down to 7

dimensions. We show that one of the extra potentials can be considered as a matrix-valued 7-form.

The presence of the 7-form in turn supports a possibility of Freund-Rubin type compactification. This

suggests that our modification of M(atrix) theory can also lead to a physically interesting matrix model in

four dimensions. In hope of such a possibility, we further consider compactification of M(atrix) theory

down to fuzzy S4 which can be defined in terms of fuzzyCP3. Along the way, we also find a new L5-brane

solution to M(atrix) theory which has purely spherical geometry in the transverse directions.

DOI: 10.1103/PhysRevD.81.046006 PACS numbers: 11.25.Mj

I. INTRODUCTION

There has been extensive interest in the matrix model of
M-theory or the so-calledM(atrix) theory since its proposal
by Banks, Fischler, Shenker and Susskind (BFSS) [1]. For
a review of M(atrix) theory, one may refer to [2]. In M
(atrix) theory, 9 dimensions out of 11 are described by
(N � N)-matrices, while the other dimensions correspond
to light-front coordinates. This structure arises as a natural
extension of matrix regularization of bosonic membranes
in light-front gauge. The ordinary time component and the
extra spatial direction, the so-called longitudinal one,
emerge from the light-front coordinates in M(atrix) theory.
The longitudinal coordinate is considered to be toroidally
compactified with a radius R. In this way, the theory can be
understood in 10 dimensions. This is in accordance with
one of the features of M-theory, i.e., as a strongly coupled
limit of type IIA string theory, since the radius R can be
related to the string coupling constant g by R ¼ gls where
ls is the string length scale. From a 11-dimensional view-
point, one can consider certain objects which contain a
longitudinal momentum N=R as a Kaluza-Klein mode.
Partly from these observations it has been conjectured
that the large N limit of M(atrix) theory should describe
M-theory in the large longitudinal momentum limit or in
the so-called infinite momentum frame (IMF). This BFSS
conjecture has been confirmed in various calculations,

especially in regard to perturbative calculations of graviton
interactions (see, e.g., [3,4]), capturing another feature of
M-theory, i.e., emergence of 11-dimensional supergravity
in the low energy limit. There also exits a related matrix
model by Ishibashi, Kawai, Kitazawa and Tsuchiya
(IKKT) [5] which corresponds to type IIB string theory.
This IKKT model has been investigated with a lot of
attention as well. For a review of this model, one may refer
to [6].
Besides gravitons, M(atrix) theory further contains ex-

tended and charged objects, namely, memberanes and 5-
branes. The membrane in matrix context appeared origi-
nally in the quantization of the supermembrane many years
ago by de Wit, Hoppe and Nicolai [7]. Membranes of
spherical geometry in M(atrix) theory have been obtained
in [8,9]. As regards 5-branes, they were obtained as longi-
tudinal 5-branes or L5-branes [10–12]. The L5-branes are
named after the property that one of their five dimensions
coincides with the longitudinal direction in M(atrix) the-
ory. One may think of the existence of transverse 5-branes
as opposed to L5-branes, but it turns out that there are no
classically conserved charges corresponding to the trans-
verse 5-branes. Thus it is generally believed that the L5-
branes are the only relevant 5-branes in M(atrix) theory at
least in the classical level [13]. In a modified M(atrix)
theory, i.e., the so-called plane wave matrix theory [14],
the existence of transverse 5-branes is discussed at a quan-
tum level [13]. L5-branes with spherical geometry in the
transverse directions have been proposed in [15]. Although
this spherical L5-brane captures many properties of M-
theory, it is as yet unclear how to include matrix fluctua-
tions contrary to the case of spherical membranes. The
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only other L5-brane that is known so far is an L5-brane
with CP2 geometry in the transverse directions [16].
Matrix configuration of this L5-brane is relevant to that
of the fuzzy CP2 [17].

Fuzzy spaces are one of the realizations of noncommu-
tative geometry [18] in terms of (N � N )-matrices, hence,
those extended objects in M(atrix) theory are possibly
described by the fuzzy spaces as far as the transverse
directions are concerned. Following this idea, in the
present paper we shall consider the fuzzy complex projec-
tive spaces CPk (k ¼ 1; 2; � � � ) as Ansätze to the extended
objects or the brane solutions in M(atrix) theory. This
approach towards a solution to M(atrix) theory was origi-
nally pursued by Nair and Randjbar-Daemi in [16] which,
among the other known brane solutions, revealed the ex-
istence of the L5-brane of CP2 � S1 geometry. The fuzzy
CPk ¼ SUðkþ 1Þ=UðkÞ can generally be constructed in
terms of matrix representations of the algebra of SUðkþ 1Þ
in the ðn; 0Þ-representation (or the totally symmetric rep-
resentation of rank n) under a certain set of algebraic
constraints [19]. This fact makes it relatively straightfor-
ward to include transverse fluctuations of branes with CP2

(or CPk) geometry in comparison with the case of the
spherical L5-brane. This point is one of the advantages to
consider the fuzzy CPk as Ansätze for the brane solutions.
Note that fluctuations of branes are described by gauge
fields on noncommutative geometry. This means that the
dynamics of the extended objects in M(atrix) theory can be
governed by gauge theories on fuzzy spaces. (For a general
review of noncommutative field theory, see, for instance,
[20]. For a recent review of fuzzy spaces in relation to the
M(atrix) theory as well as to the quantum Hall effect, see
[21].)

From a perspective of type IIA string theory, the grav-
itons, membranes and L5-branes of M-theory are, respec-
tively, relevant to D0, D2 and D4 brane solutions. Type IIA
string theory also contains a D6 brane. The D6 brane is
known to be a Kaluza-Klein magnetic monopole of 11-
dimensional supergravity compactified on a circle and is
considered to be irrelevant as a brane solution in M(atrix)
theory. Naively, however, since D6 branes are Hodge dual
to D0 branes in the same sense that D2 and D4 branes are
dual to each other, we would expect the existence of L7-
branes in M(atrix) theory. It is important to note that fuzzy
spaces can be constructed only for compact spaces. If we
parametrize branes by fuzzy spaces, the transverse direc-
tions are also all compactified in the largeN limit. As far as
the capture of a Kaluza-Klein mode in the scale of N=R is
concerned, one cannot distinguish the longitudinal direc-
tion from the transverse ones. The gravitons or the corre-
sponding D0 branes of M-theory would possibly live on the
transverse directions in this case. Thus we may expect the
existence of L7-branes as a Hodge dual description of such
gravitons in an M-theory perspective. Construction of L7-
branes (or transverse D6-branes) has been suggested in

[12,22], however, such extended objects have not been
obtained in the matrix model. Besides the fact that no
L7-brane charges appear in the supersymmetry algebra of
M(atrix) theory, there is a crucial obstruction to the con-
struction of L7-brane, that is, as shown by Banks, Seiberg
and Shenker [12], the L7-brane states have an infinite
energy in the large N limit, where the energy of the state
is interpreted as an energy density in the transverse direc-
tions. Indeed, as we shall discuss in the next section, an L7-
brane of CP3 � S1 geometry leads to an infinite energy in
the large N limit and, hence, one cannot make sense of the
theory with such an L7-brane.
In order to obtain an L7-brane as a solution to M(atrix)

theory, it would be necessary to introduce extra potentials
or fluxes to the M(atrix) theory Lagrangian such that the
brane system has a finite energy as N ! 1. Since M(atrix)
theory is defined on a flat space background, such an
additional term suggests the description of the theory in a
nontrivial background. The most notable modification of
the M(atrix) theory Lagrangian would be the one given by
Berenstein, Maldacena and Nastase (BMN) to describe the
theory in the maximally supersymmetric parallel-plane
(pp) wave background [14]. There has been a number of
papers on this BMN matrix model of M-theory. (For some
earlier papers, see [23].) Another important approach to the
modification of BFSS M(atrix) theory is to introduce a
Ramond-Ramond (RR) field strength as a background
such that it couples to brane solutions. Specifically, one
may have a RR 4-form as an extra potential from a IIA
string theory viewpoint. As shown by Myers [24], the
matrix equation of motion with this RR flux allows fuzzy
S2 ( ¼ CP1) as a static solution, meaning that the corre-
sponding IIA theory has a spherical D2-brane solution. The
RR field strength is associated with a charge of this D2
brane. The modified equation of motion also allows a
diagonal matrix configuration as a solution which corre-
sponds to N D0-branes, with N being the dimension of
matrices. One may interpret these solutions as bound states
of a spherical D2-brane and N D0-branes. From a D0-
brane perspective, the RR field strength is also associated
with a D0-brane charge. Thus the extra RR flux gives rise
to a D-brane analog of a dielectic effect, which is known as
Myers effect. A different type of flux, i.e., a RR 5-form
which produces bound states of N D1-branes and a D5-
brane with CP2 geometry, has been proposed by
Alexanian, Balachandran and Silva [25] to describe a
generalized version of Myers effect from a viewpoint of
IIB string theory. From a perspective of M(atrix) theory,
the D5 brane corresponds to the L5-brane of CP2 � S1

geometry. In this paper, we consider further generalization
along these lines of developments. Namely, we consider a
general form for all possible extra potentials that allows
fuzzy CPk as brane solutions or solutions of modified
matrix equations of motion. We find several such potentials
for k � 3.
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The extra potentials we shall introduce in the considera-
tion of a possible L7 brane solution to M(atrix) theory are
relevant to fluxes on a curved space of ðCP3 � S1Þ �M4

where M4 is an arbitrary four-dimensional manifold. We
shall show that one of the potentials can be interpreted as a
7-form flux in M(atrix) theory. According to Freund and
Rubin [26], existence of a 7-form in 11 dimensional (bo-
sonic) theories implies compactification of 7 or 4 spacelike
dimensions. The existence of the 7-form in M(atrix) theory
is interesting in a sense that it would lead to a matrix
version of Freund-Rubin type compactification. This
means that the introduction of the 7-form can also lead to
a physically interesting matrix model in four dimensions.
In hope of such a possibility, we also consider compacti-
fication of M(atrix) theory down to fuzzy S4 which can be
defined in terms of fuzzy CP3 [27].

The plan of the rest of this paper is as follows. In the next
section, following Nair and Randjbar-Daemi [16], we show
that the fuzzy CPk (k � 4) provide solutions to bosonic
matrix configurations in the M(atrix) theory Lagrangian.
Along the way we briefly present definitions and properties
of fuzzy CPk. We further discuss the energy scales of the
solutions and see that the energy becomes finite in the large
N limit only in the cases of k ¼ 1, 2, corresponding to the
membrane and the L5-brane solutions in M(atrix) theory.
In Sec. III, we examine supersymmetry of the brane solu-
tions for k � 3. We make a group theoretic analysis to
show that those brane solutions break the supersymetries in
M(atrix) theory. Our discussion is closely related to the
previous analysis [16] in the case of k¼2. In Sec. IV, we
introduce extra potentials to the M(atrix) theory
Lagrangian which are suitable for the fuzzy CPk brane
solutions. We consider the effects of two particular poten-
tials to the theory. These effects can be considered as
generalized Myers effects. We find a suitable form of
potentials for the emergence of static L7-brane solutions,
such that the potentials lead to finite L7-brane energies in
the large N limit. Section V is devoted to the discussion on
possible compactification models in nonsupersymmetric M
(atrix) theory. We show that one of the extra potentials
introduced for the presence of L7-branes can be interpreted
as a matrix-valued or fuzzy 7-form in M(atrix) theory.
Using the idea of Freund-Rubin type compactification,
this suggests the compactification down to 7 or 4 dimen-
sions. The compactification model down to 4 dimensions is
physically the more interesting and we consider, as a
speculative model of it, a compactified matrix model on
fuzzy S4. Lastly, we present brief conclusions.

II. FUZZY CPk AS BRANE SOLUTIONS TO M
(ATRIX) THEORY

The M(atrix) theory Lagrangian can be expressed as

L ¼Tr

�
1

2R
_X2
I þ

R

4
½XI;XJ�2þ�T _�þ iR�T�I½XI;��

�
(1)

where XI (I ¼ 1; 2; � � � ; 9) are Hermitian N � N matrices,
� denotes a 16-component spinor of SOð9Þ represented by
N � N Grassmann-valued matrices, and �I are the SOð9Þ
gamma matrices in the 16-dimensional representation. The
Hamiltonian of the theory is given by

H ¼ Tr

�
R

2
PIPI � R

4
½XI; XJ�2 � iR�T�I½XI; ��

�
(2)

where PI is the canonical conjugate to XI;
@L
@ _XI

. As dis-

cussed in the Introduction, we will be only interested in
those energy states that have finite energy in the limit of the
large longitudinal momentum N=R. Since the Hamiltonian
(2) leads to an infinite energy state in the limit of R ! 1,
we will consider the large N limit with a large, but fixed
value for R. With this limit understood, the theory is
defined by (1) or (2) with a subsidiary Gauss law constraint

½XI; _XI� � ½�; �T� ¼ 0: (3)

In this section, we shall consider the bosonic part of the
theory, setting the �’s to be zero. The relevant equations of
motion for XI are given by

1

R
€XI � R½XJ; ½XI; XJ�� ¼ 0 (4)

with a subsidiary constraint

½XI; _XI� ¼ 0: (5)

We shall look for solutions to these equations, taking the
following Ansätze

XI ¼
�
rðtÞQi for I ¼ i ¼ 1; 2; � � � ; 2k
0 for I ¼ 2kþ 1; � � � ; 9 (6)

where Qi denote the local coordinates of fuzzy CPk ¼
SUðkþ 1Þ=UðkÞ ðk ¼ 1; 2; � � �Þ. Since XI are defined for
I ¼ 1; 2; � � � ; 9, the Ansätze are only valid for k � 4.

A. Construction of fuzzy CPk: a review

The fuzzy CPk can be constructed in terms of certain

matrix generators of SUðkþ 1Þ as embedded in Rk2þ2k

under a set of algebraic constraints. Here we shall briefly
review such a construction, following a description in [27].

Let LA be NðkÞ � NðkÞ-matrix representations of SUðkþ 1Þ
generators in the ðn; 0Þ-representation (or the totally sym-
metric representation of rank n). The coordinates of fuzzy

CPk as embedded in Rk2þ2k are defined by

QA ¼ LAffiffiffiffiffiffiffiffi
CðkÞ
2

q (7)

with two constraints

QAQA ¼ 1 (8)

dABCQAQB ¼ ck;nQC (9)
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where 1 is the NðkÞ � NðkÞ identity matrix, dABC is the

totally symmetric symbol of SUðkþ 1Þ, CðkÞ
2 is the qua-

dratic Casimir of SUðkþ 1Þ in the ðn; 0Þ-representation

CðkÞ
2 ¼ nkðnþ kþ 1Þ

2ðkþ 1Þ (10)

and NðkÞ is the dimension of SUðkþ 1Þ in the
ðn; 0Þ-representation

NðkÞ ¼ dimðn; 0Þ ¼ ðnþ kÞ!
k!n!

: (11)

The coefficient ck;n in (9) is given by

ck;n ¼ ðk� 1Þffiffiffiffiffiffiffiffi
CðkÞ
2

q �
n

kþ 1
þ 1

2

�
: (12)

For k � n, we have

ck;n ! ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

kðkþ 1Þ

s
ðk� 1Þ (13)

and this leads to the constraints for the coordinates qA of
commutative CPk

qAqA ¼ 1; (14)

dABCqAqB ¼ ckqC: (15)

The second constraint (15) restricts the number of coordi-
nates to be 2k out of k2 þ 2k. For example, in the case of
CP2 ¼ SUð3Þ=Uð2Þ this constraint around the pole of A ¼
8 becomes d8BCq8qB ¼ 1ffiffi

3
p qC. Normalizing the 8-

coordinate to be q8 ¼ �2, we find that the indices of the
coordinates are restricted to 4, 5, 6, and 7 with the conven-
tional choice of the generators of SUð3Þ. Similarly, under
the constraints (9), the coordinates of fuzzy CPk are effec-
tively expressed by the local coordinates Qi (i ¼
1; 2; � � � ; 2k) rather than the global ones QA (A ¼
1; 2; � � � ; k2 þ 2k).

B. Local coordinates of fuzzy CPk

We now consider the commutation relations of the fuzzy
CPk coordinates Qi. By construction, they are embedded
in the SUðkþ 1Þ algebra. We first split the generators LA of
SUðkþ 1Þ into Li 2 SUðkþ 1Þ �UðkÞ and L� 2 UðkÞ,
where G denotes the Lie algebra of group G. The indices
i ¼ 1; 2; � � � ; 2k are then relevant to the CPk of our inter-
est, while the indices � ¼ 1; 2; � � � ; k2 correspond to a
UðkÞ subgroup of SUðkþ 1Þ. The SUðkþ 1Þ algebra,
½LA; LB� ¼ ifABCLC with the structure constant fABC, is
then expressed by the following set of commutation rela-
tions

½Qi;Qj� ¼ i
cij�ffiffiffiffiffiffiffiffi
CðkÞ
2

q Q� (16)

½Q�;Q�� ¼ i
f���ffiffiffiffiffiffiffiffi
CðkÞ
2

q Q� (17)

½Q�;Qi� ¼ i
f�ijffiffiffiffiffiffiffiffi
CðkÞ
2

q Qj (18)

where we use QA ¼ LA=
ffiffiffiffiffiffiffiffi
CðkÞ
2

q
and denote fij� by cij� to

indicate that it is relevant to the commutators ofQi’s. f���
is essentially the structure constant of SUðkÞ since theUð1Þ
part of the UðkÞ algebra can be chosen such that it com-
mutes with the rest of the algebra. We can calculate
c�ijc�ij as

c�ijc�ij ¼ f�ABf�AB � f���f��� ¼ ��� (19)

by use of the relations f�ABf�AB ¼ ðkþ 1Þ��� and

f���f��� ¼ k���. Notice that the result (19) restricts

possible choices of the CPk indices ði; jÞ. For example,
in the case of k ¼ 2 we have ði; jÞ ¼ ð4; 5Þ, (6, 7) with the
conventional choice of the structure constant fABC of
SUð3Þ. Similarly, in the case of k ¼ 3 we have ði; jÞ ¼
ð9; 10Þ, (11, 12), (13, 14). Under such restrictions, we can
also calculate cij�fj�k as

cij�fj�k ¼ cij�ckj� ¼ �ik: (20)

In what follows, we shall use the symbol cij� rather than

fij� to indicate that we are interested in this peculiar subset

of the SUðkþ 1Þ algebra.
We can also classify the totally symmetric symbol dABC

as follows:

dABC ¼
8><
>:
dij�
d���
0 otherwise

: (21)

Notice that symbols such as d��i and dijk do vanish. In

relation to the construction of CPk, it is useful to know the
fact that the symbol dii�, a subset of dij�, is expressed as

dii�
k2þ2k

and is identical regardless the index i. Here the

index i is relevant to a local coordinate of CPk and the
index �k2þ2k is a hypercharge-like index in a conventional
choice of SUðkþ 1Þ generators.
The normalization ofQA’s is taken as (8). Thus traces of

matrix products are expressed as

Tr ðQAQBÞ ¼ NðkÞ

k2 þ 2k
�AB; (22)

Tr ðQiQiÞ ¼ 2k

k2 þ 2k
NðkÞ; (23)

Tr ðQ�Q�Þ ¼ k2

k2 þ 2k
NðkÞ: (24)

These relations are also useful in later calculations.
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C. Fuzzy CPk solutions to M(atrix) theory

Using (16)–(20), we can easily find that ½Qj; ½Qi;Qj�� ¼
�Qi=C

ðkÞ
2 . Thus, with the fuzzy CPk Ansätze (6), the

equation of motion (4) becomes�
€r

R
þ R

CðkÞ
2

r3
�
Qi ¼ 0: (25)

This means that the equation of motion is reduced to an
ordinary differential equation of rðtÞ. Notice that the sub-
sidiary constraint (5) is also satisfied with the Ansätze (6).
The equation of motion therefore reduces to

€rþ R2

CðkÞ
2

r3 ¼ 0: (26)

A general solution to this equation is written as

rðtÞ ¼ Acn

�
�ðt� t0Þ;�2 ¼ 1

2

�
(27)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=CðkÞ

2

q
and cnðu;�Þ ¼ cnðuÞ is one of the

Jacobi elliptic functions, with � (0 � � � 1) being the
elliptic modulus. A and t0 are the constants determined
by the initial conditions. Using the following formula,

d

du
cnðu;�Þ ¼ �snðu;�Þdnðu;�Þ

¼ �uþ 1þ 4�2

3!
u3 � � � � ; (28)

we can express _r as

_r ¼ �A�snð�ðt� t0ÞÞdnð�ðt� t0ÞÞ: (29)

In the limit of large N (or n), _r is suppressed by _r� 1=n2.
Thus the solution (27) corresponds to a static solution in
the large N limit.

Evaluated on the fuzzy CPk, the potential energy of M
(atrix) theory is calculated as

VðrQÞ ¼ �Tr

�
R

4
½rQi; rQj�2

�
¼ Rr4

4CðkÞ
2

TrðQ�Q�Þ

¼ k2

k2 þ 2k

Rr4

4CðkÞ
2

NðkÞ � nk�2Rr4: (30)

From this result we can easily tell that for k ¼ 1, 2 we have
finite energy states in the large N limit. These states,
respectively, correspond to the spherical membrane and
the L5-brane of CP2 geometry in M(atrix) theory. By
contrast, for k ¼ 3, 4 we have infinite energy states.
Thus, although these may possibly correspond to L7 and
L9 brane solutions, they are ill-defined and we usually do
not consider such solutions in M(atrix) theory. The main
purpose of the present paper is to show that we can have L7
brane solutions by introducing extra potentials to the M
(atrix) theory Lagrangian (1). Notice that in this paper we

shall not consider the case of k ¼ 4 or a 9-brane solution to
M(atrix) theory. The 9-branes are supposed to correspond
to ‘‘ends of the world’’ which describe gauge dynamics of
the 9-dimensional boundary of M-theory. Thus these are in
general considered irrelevant as brane solutions to the
theory.

III. SUPERSYMMETRY BREAKING

In this section, we examine supersymmetry of the fuzzy
CPk brane solutions in M(atrix) theory for k � 3. As in the
previous section, we make an analysis, following the argu-
ment of Nair and Randjbar-Daemi in [16].
We have set the fermionic matrix variables � to be zero.

Now we consider the supersymmetry transformations of
the brane solutions in M(atrix) theory. The supersymmetric
variation of � is given by

��r ¼ 1

2
ð _XIð�IÞrs þ ½XI; XJ�ð�IJÞrsÞ�s þ �rs�s (31)

where � and � are 16-component spinors of SOð9Þ repre-
sented by N � N matrices (r; s ¼ 1; 2; � � � ; 16) and �I’s
are the corresponding gamma matrices as before. �IJ are
defined by �IJ ¼ 1

2 ½�I;�J�. With the fuzzy CPk Ansätze

(6), the Eq. (31) reduces to

��r ¼ 1

2

�
_rQið�iÞrs þ r2

icij�ffiffiffiffiffiffiffiffi
CðkÞ
2

q Q�ð�ijÞrs
�
�s þ �rs�s

(32)

where �i’s are the gamma matrices of SOð2kÞ under the
decomposition of SOð9Þ ! SOð2kÞ � SOð9� 2kÞ.
Accordingly, we here set i ¼ 1; 2; � � � ; 2k and r; s ¼
1; 2; � � � ; 2k. For the static solution we make _r� n�2 van-

ish. Indeed, if ��� n�2, we have Trð��T� _�Þ � NðkÞn�4 �
nk�4 and, for k ¼ 1, 2 and 3, this term vanishes in the large
N limit. The other term TrðiR��T�I½XI; ���Þ in the
Lagrangian vanishes similarly. Thus, for static solutions,
the condition �� ¼ 0 is satisfied when cij�Q��ij becomes

a c-number in the SOð2kÞ subspace of SOð9Þ such that the
�-term can be canceled by � in (32). In what follows, we
examine this Bogomol’nyi-Prasad-Sommerfield (BPS)-
like condition for k ¼ 1, 2, 3.
It is known that the spherical membrane solution breaks

all supersymmetries. Let us rephrase this fact by examining
the BPS condition (�� ¼ 0) for k ¼ 1. The 2-dimensional
gamma matrices are given by �1 ¼ 	1 and �2 ¼ 	2,
where 	i is the (2� 2)-Pauli matrices. The factor
cij�Q��ij becomes proportional to Q3	3 where Q3 is an

Nð1Þ � Nð1Þ matrix representing the Uð1Þ part of the SUð2Þ
generators in the spin-n=2 representation. Now the factor
	3 is not obviously proportional to identity in the SOð2Þ
subspace of SOð9Þ, so we can conclude that the BPS
condition is broken.
For k ¼ 2, we can apply the same analysis to the factor

of cij�Q��ij. We use the conventional choice for the

EMERGENCE OF LONGITUDINAL 7-BRANES AND FUZZY . . . PHYSICAL REVIEW D 81, 046006 (2010)

046006-5



structure constant of SUð3Þ where the group elements are
defined by g ¼ expði�a 
a

2 Þwith the Gell-Mann matrices 
a

(a ¼ 1; 2; � � � ; 8Þ. As discussed earlier, with this conven-
tion the set of ði; jÞ is restricted to ði; jÞ ¼ ð4; 5Þ or (6, 7).
The relevant cij�’s are given by c453 ¼ 1=2, c458 ¼

ffiffiffi
3

p
=2,

c673 ¼ �1=2 and c678 ¼
ffiffiffi
3

p
=2. Introducing the usual 4-

dimensional gamma matrices �i (i ¼ 4, 5, 6, 7)

�4 ¼ 0 1
1 0

� �
; �5 ¼ 0 �i	1

i	1 0

� �
;

�6 ¼ 0 �i	2

i	2 0

� �
; �7 ¼ 0 �i	3

i	3 0

� �
;

(33)

we can calculate the factor of interest as

c45�Q��45 � ðQ3 þ
ffiffiffi
3

p
Q8Þ i	1 0

0 �i	1

� �

c67�Q��67 � ð�Q3 þ
ffiffiffi
3

p
Q8Þ i	1 0

0 i	1

� � (34)

where Q3 and Q8 are Nð2Þ � Nð2Þ matrices representing
diagonal parts of SUð3Þ algebra in the totally symmetric
representation ðn; 0Þ. In either case, it is impossible to
make the factor cij�Q��ij be proportional to identity or

zero in terms of the (4� 4)-matrix which corresponds to
�i’s. This indicates that the brane solution corresponding to
k ¼ 2 breaks the supersymmetries of M(atrix) theory as
originally analyzed in [16].

The same analysis is applicable to the case of k ¼ 3 and
we can show that the brane solution corresponding to k ¼
3 also breaks the supersymmetries. For the completion of
discussion, we present the factors cij�Q��ij for ði; jÞ ¼
ð9; 10Þ, (11, 12), (13, 14) in suitable choices of cij� and 6-

dimensional gamma matrices:

c910�Q��910 � ð ffiffiffi
3

p
Q3 þQ8 þ 2

ffiffiffi
2

p
Q15Þ

�

	1 0 0 0

0 �	1 0 0

0 0 	1 0

0 0 0 �	1

0
BBBBB@

1
CCCCCA

c1112�Q��1112 � ð� ffiffiffi
3

p
Q3 þQ8 þ 2

ffiffiffi
2

p
Q15Þ

�

	1 0 0 0

0 	1 0 0

0 0 	1 0

0 0 0 	1

0
BBBBB@

1
CCCCCA

c1314�Q��1314 � ð�2Q8 þ 2
ffiffiffi
2

p
Q15Þ

1 0

0 �1

 !
(35)

where Q3, Q8 and Q15 are the N
ð3Þ � Nð3Þ matrices repre-

senting diagonal parts of SUð4Þ algebra in the
ðn; 0Þ-representation. In the last line, 1 denotes the 4� 4
identity matrix.

IV. L7-BRANES AND EXTRA POTENTIALS IN M
(ATRIX) THEORY

As we have seen in (30), the potential energy of a
prospective L7-brane with CP3 � S1 geometry is propor-
tional to n, leading to infinite energy in the largeN limit. In
this section, we introduce extra potentials to the bosonic
part of the M(atrix) theory Lagrangian so that the total
potential energy of the L7-brane becomes finite in the large
N limit. From (29) we have found _r� n�2. Thus the
kinetic energy of brane states with CPk � S1 geometry is

proportional to NðkÞ
R n�4. Since the kinetic energy is sup-

pressed by nk�4, we can consider the brane solution for any
of k ¼ 1, 2, 3 as a static solution. Consideration of poten-
tial energies will suffice for the stability analysis of brane
solutions. In what follows, we first present a general form
of the extra potentials which is appropriate for our fuzzy
CPk brane solutions. We then consider a few cases in
detail, eventually obtaining a suitable form of the extra
potential for the emergence of L7-branes.

A. Extra potentials: a general form

We consider the following form of potentials:

F2sþ1ðXÞ ¼ F½ij�s�TrðXi1Xj1Xi2Xj2 � � �XirXjrX�Þ (36)

F½ij�s� ¼ trð½ti1 ; tj1�½ti2 ; tj2� � � � ½tis ; tjs�t�Þ (37)

where tA (A ¼ i; �) are the generators of SUðkþ 1Þ in the
fundamental representation with normalization trðtAtBÞ ¼
1
2�AB. As discussed earlier, ti’s (including tj’s) correspond

to the elements of SUðkþ 1Þ �UðkÞ ði ¼ 1; 2; � � � ; 2kÞ
and t� correspond to the elements of a UðkÞ subalgebra
(� ¼ 1; 2; � � � ; k2). In the above expressions, s takes the
value of s ¼ 1; 2; � � � ; k and Xi’s represent arbitrary matrix
coordinates which are, eventually, to be evaluated by the
fuzzy CPk coordinates Xi ¼ rðtÞQi. Notice that the num-
ber of X’s is odd. This corresponds to the fact that F½ij�s�
are related to the rank-(2sþ 1) invariant tensors of SUðkþ
1Þ. We shall consider this point further in the next section.
In the following, we rather show the correctness of the
general form F2sþ1 in (36) for fuzzyCP

k brane solutions in
M(atrix) theory. The M(atrix) theory Lagrangian with the
extra potential F2sþ1 is given by

L ð2sþ1Þ ¼ L� 
2sþ1F2sþ1ðXÞ (38)

L ¼ Tr

� _X2
I

2R
þ R

4
½XI; XJ�2

�
(39)

whereL is the bosonic part of the original M(atrix) theory
Lagrangian (1) and 
2sþ1 is a coefficient of the potential
F2sþ1. The matrix equations of motion are expressed as

1

R
€XI � R½XJ; ½XI; XJ�� þ 
2sþ1

�

�XI

F2sþ1 ¼ 0: (40)
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Thus, in order to show the correctness of the general form
in (36), it is sufficient to see whether the term �

�XI
F2sþ1 is

proportional to the Qi when XI is evaluated by the Ansätze
(6).

B Modification with F3: Myers effect

For s ¼ 1, we have

F½ij�� ¼ trð½ti; tj�t�Þ ¼ i

2
cij� (41)

where we use the normalization trðt�t�Þ ¼ 1
2���. The

potential F3ðXÞ is then written as

F3ðXÞ ¼ i

2
cij� TrðXiXjX�Þ: (42)

Since cij� � �ij�, the addition of F3 to the M(atrix) theory

Lagrangian essentially leads to the so-called Myers effect
from a viewpoint of IIA string theory [24]. Now we can
calculate

�

�Xi

F3ðXÞjX¼rQ ¼ i

2
r2cij�QjQ� ¼

�
ir

2

�
2
Qi (43)

where we use the relation (19). Thus we find that the fuzzy
S2 remains the solution of M(atrix) theory modified with
the extra potential F3. As we shall see in a moment,
generalizations along these lines can be made for the
potentials with higher ranks.

C. Modification with F5

For s ¼ 2, we have

F½ij�2� ¼ trð½ti1 ; tj1�½ti2 ; tj2�t�Þ¼ ici1j1�1
ici2j2�2

trðt�1
t�2

t�Þ
¼ � 1

4
ci1j1�1

ci2j2�2
d�1�2� (44)

where we use the fact that t�1
and t�2

are commutative;

these generators correspond to ‘‘diagonal’’ elements of a
Uð2Þ algebra in terms of its matrix representation. The
symbol d�1�2� is called the totally symmetric symbol of

SUðkþ 1Þ and is defined by d��� ¼ 2 trðft�; t�gt�Þ. The
potential F5ðXÞ is then written as

F5ðXÞ ¼ � 1

4
ci1j1�1

ci2j2�2
d�1�2� TrðXi1Xj1Xi2Xj2X�Þ:

(45)

This is a natural generalization of the Myers term (42) to a
higher rank. Notice that F5 exists for any SUðkþ 1Þ with
k � 2. The variation of F5 with respect to Xi1 is expressed

as

�

�Xi1

F5ðXÞjX¼rQ ¼ � 1

4
r4ci1j1�1

ci2j2�2
d�1�2�Qj1

� Qi2Qj2|fflffl{zfflffl}
ði=2Þðci2j2�2=

ffiffiffiffiffiffi
CðkÞ
2

p
ÞQ�2

Q�

¼
�
i

2

�
3 r4ffiffiffiffiffiffiffiffi

CðkÞ
2

q ci1j1�1
d�1�2�Qj1Q�2

Q�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ck;nQj1

Q�1

¼
�
ir

2

�
4 ck;n

CðkÞ
2

Qi1 (46)

where we evaluate the variation with the fuzzy CPk

Ansätze (6), using the relations (9), (16), and (19). The
result (46) shows that the fuzzy CPk (k ¼ 2, 3) remain the
solutions of M(atrix) theory even if it is modified with the
extra potential F5ðXÞ.
In this case, the matrix equations of motion (40) become�

€r

R
þ R

CðkÞ
2

r3
�
1þ 
5r

16R
ck;n

��
Qi ¼ 0: (47)

This matrix equation is then reduced to an equation of rðtÞ
as in the case of the pure bosonic M(atrix) theory. We can
easily carry out the evaluation of F5 on the fuzzy CPk

Ansätze as

F5ðrQÞ ¼ � 1

4
r5ci1j1�1

ci2j2�2
d�1�2� TrðQi1Qj1Qi2Qj2Q�Þ

¼
�
i

2

�
4 r5

CðkÞ
2

d�1�2� TrðQ�1
Q�2

Q�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ck;n TrðQ�Q�Þ

¼ k2

k2 þ 2k

r5ck;n

16CðkÞ
2

NðkÞ � nk�2r5 (48)

where we use the relation (24). Notice that the n depen-
dence of (48) is the same as that of the M(atrix) theory
potential in (30).

D. Modification with F7

Since s � k and we are interested in k ¼ 1, 2, 3, the case
of s ¼ 3 is allowed only for k ¼ 3. In this case, we have

F½ij�3� ¼ trð½ti1 ; tj1�½ti2 ; tj2�½ti3 ; tj3�t�Þ
¼ �ici1j1�1

ci2j2�2
ci3j3�3

trðt�1
t�2

t�3
t�Þ (49)

where, as in the case of F5, t�’s are corresponding to
diagonal generators of Uð3Þ. Thus they are commutative
to each other. Anticommutation relations of these are given
by

ft�; t�g ¼ d���t� (50)

where the symmetric symbol d��� is that of SUðkþ 1Þ but
its indices refer only to aUð3Þ subgroup. Notice that aUð1Þ
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element is included in this subgroup; for SUð4Þ (corre-
sponding to k ¼ 3) the Uð1Þ element is conventionally
chosen by t15 and this choice would be used for any
SUðkþ 1Þ (k � 3). Using (50), we then find

F½ij�3� ¼ � i

4
ci1j1�1

ci2j2�2
ci3j3�3

d�1�2�d��3� (51)

F7ðXÞ ¼ F½ij�3� TrðXi1Xj1Xi2Xj2Xi3Xj3X�Þ: (52)

The variation of F7 with respect to Xi1 is then expressed as

�

�Xi1

F7ðXÞjX¼rQ ¼ � i

4
r6ci1j1�1

ci2j2�2
ci3j3�3

d�1�2�d��3�Qj1
Qi2Qj2|fflffl{zfflffl}

ði=2Þðci2j2�2=
ffiffiffiffiffiffi
CðkÞ
2

p
ÞQ�2

Qi3Qj3|fflffl{zfflffl}
ði=2Þðci3j3�3=

ffiffiffiffiffiffi
CðkÞ
2

p
ÞQ�3

Q�

¼ i

�
i

2

�
4 r6

CðkÞ
2

ci1j1�1
d�1�2�d��3�Qj1Q�2

Q�3
Q�

¼ i

�
i

2

�
4 r6

CðkÞ
2

ci1j1�1
c2k;nQj1Q�1

¼
�
ir

2

�
6 2c2k;nffiffiffiffiffiffiffiffi

CðkÞ
2

q 3
Qi1 (53)

where we use the relation (9), i.e., d���Q�Q� ¼ ck;nQ�, twice. Notice that the symmetric symbol d��i vanishes as
discussed in (21). The result (53) shows that the fuzzy CPk (k ¼ 3) remain the solutions of M(atrix) theory even if it is
modified with the extra potential F7ðXÞ. Lastly we can evaluate F7 on the fuzzy CPk Ansätze as

F7ðrQÞ ¼ � i

4
r6ci1j1�1

ci2j2�2
ci3j3�3

d�1�2�d��3� TrðQi1Qj1Qi2Qj2Qi3Qj3Q�Þ

¼ i

�
i

2

�
5 r7ffiffiffiffiffiffiffiffi

CðkÞ
2

q 3
d�1�2�d��3� TrðQ�1

Q�2
Q�3

Q�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c2
k;n

TrðQ�Q�Þ

¼ � k2

k2 þ 2k

r7c2k;n

32
ffiffiffiffiffiffiffiffi
CðkÞ
2

q 3
NðkÞ � nk�3r7: (54)

E. Emergence of L7-branes

To recapitulate, we are allowed to include the extra
potentials of the form F2sþ1ðXÞ (s � k, k ¼ 1; 2; 3) in the
M(atrix) theory Lagrangian as far as the brane solutions of
CPk geometry in the transverse directions are concerned.
Evaluated on the fuzzyCPk Ansätze, these extra potentials
are expressed as

F3ðrQÞ ¼ � k2

k2 þ 2k

r3

4
ffiffiffiffiffiffiffiffi
CðkÞ
2

q NðkÞ � nk�1r3 (55)

F5ðrQÞ ¼ k2

k2 þ 2k

r5ck;n

16CðkÞ
2

NðkÞ � nk�2r5 (56)

F7ðrQÞ ¼ � k2

k2 þ 2k

r7c2k;n

32
ffiffiffiffiffiffiffiffi
CðkÞ
2

q 3
NðkÞ � nk�3r7 (57)

VðrQÞ ¼ k2

k2 þ 2k

Rr4

4CðkÞ
2

NðkÞ � nk�2Rr4 (58)

where we include the M(atrix) theory potential in (30). As
mentioned earlier, we consider a static solution. Thus the
effective Lagrangian for the static solution is given by

L eff ¼ �VtotðrÞ
¼ �VðrQÞ � 
3F3ðrQÞ � 
5F5ðrQÞ � 
7F7ðrQÞ:

(59)

From (55)–(58), we can express VtotðrÞ as

VtotðrÞ ¼ k2

k2 þ 2k

R

CðkÞ
2

NðkÞvðrÞ � nk�2R (60)

vðrÞ ¼ r4

4
��3r

3 þ�5r
5 þ�7r

7 (61)

where
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�3 ¼ 
3

4R

ffiffiffiffiffiffiffiffi
CðkÞ
2

q
; �5 ¼ 
5

16R
ck;n;

�7 ¼ � 
7

32R

c2k;nffiffiffiffiffiffiffiffi
CðkÞ
2

q :
(62)

In the case of k ¼ 1, only F3 exists and the potential vðrÞ
becomes v3ðrÞ 	 r4

4 ��3r
3. This potential is relevant to

the Myers effect. In Myers’ analysis [24], the coefficient 
3

is determined such that it satisfies the equations of motion
@v3

@r ¼ r3 � 3�3r
2 ¼ 0. Thus we have �3 � r=3� 1 (r >

0), or 
3 � R=n. Analogously, we may require 
5 � R,

7 � nR such that vðrÞ � 1. Notice that we demand �5,
�7 > 0 so that the potential vðrÞ is bounded below; other-
wise the solutions become unphysical in the limit of large
r. We also demand �3 > 0 such that vðrÞ always has a
minimum at r > 0; regarding the range of r, we require r >
0 because it describes a size of each brain solution.

The total potential Vtotð�nk�2RÞ becomes finite for k ¼
1, 2 in the large n limit. In this limit, the brane solutions
corresponding to k ¼ 1, 2 therefore exist regardless the
value of vðrÞ. For k ¼ 3, however, VtotðrÞ diverges in the
large n limit unless vðrÞ ¼ 0.

To further investigate the case of k ¼ 3, we now con-

sider the following potential v7ðrÞ 	 r4

4 ��3r
3 þ�7r

7,

without a F5 term. The equation of motion for r is given by

@v7

@r
¼ 7�7r

2

�
r4 þ r

7�7

� 3�3

7�7

�
¼ 0: (63)

Denoting the nonzero solution by r
, we now plug this back

to v7ðrÞ; v7ðr
Þ ¼ r3

7 ð3r
4 � 4�3Þ. If we fix �3 as �3 ¼

3
16 r
, v7ðr
Þ vanishes. In this case, Vtotðr
Þ becomes finite

in the large n limit and the corresponding L7-branes are
allowed to present as a stable solution at the minimum r ¼
r
. The L7-branes exist for a particular value of �3. In this
sense, the strength of the F3 flux can be considered as a
controlling parameter for the emergence of L7-branes. The

same analysis applies to a potential without F7; v5ðrÞ 	
r4

4 ��3r
3 þ�5r

5. If we consider the full potential vðrÞ
with nonzero �2sþ1 (s ¼ 1, 2, 3), the existence of L7-
branes can be similarly shown at the minimum of vðrÞ,
with two of the three �2sþ1 serving as the controlling
parameters.

There are few remarks on the existence of the L7-brane
solutions. First, if we introduce fluctuations from the min-
ima, the potential vðrÞ becomes nonzero and consequently
the total potential VtotðrÞ diverges in the large n limit. In
other words, fluctuations from the stabilized L7-branes are
suppressed. Second, the involving extra potentials are ex-

pressed as F2sþ1ðrQÞ � Tr1 where 1 is the Nð3Þ � Nð3Þ
identity matrix. These can be regarded as constant
matrix-valued potentials. This fact suggests that the analy-
sis in the previous section also holds with F2sþ1ðrQÞ,
preserving the L7-brane solutions nonsupersymmetric.

Lastly, in terms of M(atrix) theory as a 11-dimensional
theory, the emergence of L7-branes and the suppression of
their fluctuations suggest a compactification of the theory
down to 7 dimensions. We shall discuss this point further in
the next section.

V. COMPACTIFICATION SCENARIOS IN M
(ATRIX) THEORY

As mentioned in the Introduction, the existence of a 7-
form suggests a compactification of the 11-dimensional
theory down to 7 or 4 dimensions. In this section, we first
show that the extra potential F7ðXÞ in (49) can be consid-
ered as a 7-form in M(atrix) theory. We then discuss that
the effective Lagrangian (59) with k ¼ 3 can be used for a
compactification model of M(atrix) theory down to 7 di-
mensions. We also consider a compactification scenario of
M(atrix)theory down to 4 dimensions by use of fuzzy S4

which can be defined in terms of fuzzy CP3 [27].

A. F2sþ1 as matrix differential forms: a cohomology
analysis

The general expression of F2sþ1ðXÞ in (36) is closely
related to differential (2sþ 1)-forms of SUðkþ 1Þ (s ¼
1; 2; � � � ; k). Differential forms of SUðkþ 1Þ are in general
constructed by the Lie algebra valued oneform

g�1dg ¼ �itAE
a
Ad�

a ¼ �itAEA (64)

where g ¼ expð�ita�aÞ is an element of SUðkþ 1Þ, �a ’s
are continuous group parameters, tA’s are generators of
SUðkþ 1Þ in the fundamental representation with normal-
ization trðtAtBÞ ¼ 1

2�AB, and EA ¼ Ea
Að�Þd�a are oneform

frame fields on SUðkþ 1Þ (a; A ¼ 1; 2; � � � ; k2 þ 2k). The

differential (2sþ 1)-forms �ð2sþ1Þ of SUðkþ 1Þ are then
defined as

�ð2sþ1Þ ¼ trðg�1dgÞ2sþ1

¼ ð�iÞ2sþ1trðtA1
tA2

� � � tA2sþ1
ÞEA1

^ EA2
^ � � �

^ EA2sþ1

¼ FA1A2���A2sþ1
EA1

^ EA2
^ � � � ^ EA2sþ1

; (65)

FA1A2���A2sþ1
¼ ð�iÞ2sþ1

2s
trð½tA1

; tA2
�

� ½tA3
; tA4

� � � � ½tA2s�1
; tA2s

�tA2sþ1
Þ: (66)

Notice that the invariant tensor FA1A2���A2sþ1
is essentially

the same as the tensor F½ij�s� defined in (37). The only

difference, apart from proportionality coefficients, is the
index assignments. A peculiar form in F½ij�s� arises from

the fact that we are interested in algebraic properties of
CPk¼SUðkþ1Þ=UðkÞ rather than the full SUðkþ 1Þ. In

EMERGENCE OF LONGITUDINAL 7-BRANES AND FUZZY . . . PHYSICAL REVIEW D 81, 046006 (2010)

046006-9



other words, F½ij�s� is a subset of the invariant tensor

FA1A2���A2sþ1
. The possible number of such tensors is k ð�

sÞ; these tensors are called the Casimir invariants for the
Lie group SUðkþ 1Þ.

Mathematically, it is known that the differential

(2sþ 1)-forms �ð2sþ1Þ of SUðkþ 1Þ are elements of
H 2sþ1ðSUðkþ 1Þ;RÞ, i.e., the (2sþ 1)-th cohomology
group of SUðkþ 1Þ (s ¼ 1; 2; � � � ; k) over the real num-
bers. The Casimir invariants FA1A2���A2sþ1

are in one-to-one

correspondence with cohomology classes for the Lie group
SUðkþ 1Þ. This correspondence is related to the so-called
Weil homomorphism between Casimir invariants and
Chern classes. For descriptions of these mathematical as-

pects of �ð2sþ1Þ, one may refer to [28].
From the above argument, we can interpret the poten-

tials F2sþ1ðXÞ in (36) as matrix-valued differential forms,

or as fuzzification of the differential forms�ð2sþ1Þ in (65);
the fuzzification may be carried out by replacing EA with
arbitrary matrices XA. In the following, we justify this
statement by showing cohomology properties of
F2sþ1ðXÞ evaluated on fuzzy CPk. In other words, we shall
see that F2sþ1ðXÞ, evaluated on fuzzy CPk, can be consid-
ered as matrix-valued forms that are closed but not exact.

As we have shown in (43), (46), and (53), variations of
F2sþ1ðXÞ (s ¼ 1, 2, 3) with respect to Xi are linear in Qi

when X’s are evaluated on the fuzzy CPk Ansätze Xi ¼
rðtÞQi. Since Qi are traceless matrices, this corresponds to
the fact that Fð2sþ1ÞðrQÞ are matrix-valued closed differ-

ential forms.
On the other hand, as shown in (55)–(57), F2sþ1ðrQÞ

(s ¼ 1, 2, 3) are nonzero constants. This arises from the
fact that Fð2sþ1ÞðrQÞ are matrix-valued nonexact differen-

tial forms. Notice that the nonexactness of an ordinary

differential form, say �ð3Þ, can be shown by
R
S3 �

ð3Þ �
0, where the integration is taken over SUð2Þ ¼ S3. (If �ð3Þ

is exact, i.e., �ð3Þ ¼ d�, Stokes’ theorem says
R
S3 �

ð3Þ ¼R
@S3 � where @S3 is the boundary of S3. Since S3 is a

compact manifold,
R
@S3 � ¼ 0. Thus�ð3Þ can not be exact.

One can similarly show the nonexactness of �ð2sþ1Þ in
general, using the fact that the volume element of SUðkþ
1Þ can be constructed in terms of the wedge products of

�ð2sþ1Þ’s.) F3ðQÞ is a fuzzy analogue of RS3 �
ð3Þ. Thus the

value of F3ðQÞ in (55) corresponds to the nonzero volume
element of a fuzzy version of S3. Locally, we may parame-
trize S3 as S3 � CP1 � S1. Thus F3ðrQÞ can also be seen
as the volume element of a fuzzy version of CP1 � S1.
Analogously, we can make a local argument to show that
F2kþ1ðrQÞ (k ¼ 2, 3) correspond to the volume elements of
fuzzy versions of S2kþ1 � CPk � S1. (Note that since
CPk ¼ S2kþ1=S1, we can locally express S2kþ1 as CPk �
S1 in general.) We can therefore interpret F2sþ1ðrQÞ as
matrix versions or fuzzifications of (2sþ 1)-forms

�ð2sþ1Þ, given that the invariant tensors FA1A2���A2sþ1
in

(66) are restricted to the form of F½ij�s� defined in (37).

B. Freund-Rubin type compactification

The fact that we can interpret Fð7ÞðrQÞ as a 7-form in M

(atrix) theory is interesting in search for a compactification
model of M(atrix) theory. As mentioned in the
Introduction, according to Freund and Rubin [26], exis-
tence of a differential d0-form in d-dimensional theories
suggests compactification of (d� d0) or d0 spacelike di-
mensions (d0 < d). Usually the Freund-Rubin type com-
pactification is considered in 11-dimensional supergravity
which contains a 4-form. Although this compactification
has a problem in regard to the existence of chiral fermions,
the Freund-Rubin compactification of M-theory has been
shown to avoid such a problem and presumably provides a
realistic model of M-theory in lower dimensions [29]. The
presence of the above-mentioned 7-form then supports a
possibility of the Freund-Rubin type compactification in M
(atrix) theory. It is not clear at this point how the effective
Lagrangian (59) relates to compactified 7-dimensional
supergravity in the low energy limit. However, as discussed
before, the Lagrangian (59) with k ¼ 3 does capture a
desirable physical property for the compactification of M
(atrix) theory down to 7 dimensions.
In terms of the 11-dimensional M-theory, the potential

F7ðrQÞ corresponds to a flux on a curved space of ðCP3 �
S1Þ �M4 geometry where M4 is some four-dimensional
manifold. The Freund-Rubin type compactification re-
quires that the manifold M4 be a positively curved
Einstein manifold. This suggests that we in fact have to
describe M4 by some fuzzy spaces, say, fuzzy CP2 or
fuzzy S4 in the context of M(atrix) theory. So far we have
neglected the contributions from M4 in the fuzzy CPk

brane solutions (6) where we squash irrelevant directions.
We can however include M4 contributions to the M(atrix)
theory potential (60) such that they do not affect the
existence condition for the L7-branes, namely, the finite-
ness of VtotðrÞ in the large n limit. Notice that there is
freedom to add an n-independent constant to VtotðrÞ. Such a
case is possible, for example, if we identify M4 with a
relatively small-size fuzzy S4.
It is known that fuzzy S4 can be represented by block-

diagonal matrices, with their full matrix dimensions given

by Nð3Þ [27]. Thus it is natural to parametrizeM4 by fuzzy
S4 for n-independent modifications of the Lagrangian (59)
with k ¼ 3. Notice that one of the four dimensions in M4

represents the time component in M(atrix) theory. Thus a
naive application of fuzzy S4 to the geometry ofM4 is not
suitable for the framework of M(atrix) theory. However, as
in the case of the IKKT model [5], one can consider the
time component in terms of a matrix. As far as a matrix
model building of M-theory in the large N limit is con-
cerned, we may then parametrizeM4 in terms of fuzzy S4.
Along the line of these considerations, we can therefore
interpret the Lagrangian (59) with k ¼ 3 as an effective
Lagrangian for a compactification model of M(atrix) the-
ory down to 7 dimensions.
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C. Construction of fuzzy S4: a brief review

Compactification of M(atrix) theory down to 4 dimen-
sions is also possible for the Freund-Rubin compactifica-
tion in the presence of the 7-form. In what follows, we shall
discuss this possibility by use of fuzzy S4. For this purpose,
we first give a brief review of the construction of fuzzy S4.
It is known that functions on fuzzy S4 can be constructed
from functions on fuzzy CP3 by imposing the following
constraint [27]:

½F ðQiÞ; Q~�� ¼ 0 (67)

where F ðQiÞ are arbitrary polynomial functions of the
fuzzy CP3 coordinates Qi (i ¼ 1; 2; � � � ; 6 or, in a conven-
tional choice of SUð4Þ generators, i ¼ 9; 10; � � � ; 14). The
index ~� corresponds to the algebra of ~H ¼ SUð2Þ �Uð1Þ
in terms of the decomposition of SUð4Þ ! SUð2Þ �
SUð2Þ �Uð1Þ. In this decomposition, two SUð2Þ’s and
one Uð1Þ are defined by

SUð2Þ 0
0 0

� �
;

0 0
0 SUð2Þ

 !
;

1 0
0 �1

� �
(68)

in terms of the (4� 4)-matrix generators of SUð4Þ in the
fundamental representation. In the above expressions,
SUð2Þ denotes the algebra of the SUð2Þ group in the

(2� 2)-matrix representation and 1 represents the (2�
2) identity matrix. With an imposition of (67), the func-
tions on fuzzy CP3, F ðQiÞ, are reduced to functions on
fuzzy S4.

As analyzed in [27], upon the imposition of (67) the
fuzzy CP3 coordinates Qi become fuzzy S4 coordinates,
say, Y� (� ¼ 1, 2, 3, 4). These are no longer represented

by full Nð3Þ � Nð3Þ matrices but by Nð3Þ � Nð3Þ block-
diagonal matrices. The block-diagonal matrix Y� is com-

posed of ðnþ 2�mÞ blocks of dimension m for m ¼
1; 2; � � � ; nþ 1 and can be expressed as

Y� ¼ block-diagð1; 1; � � � ; 1;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
nþ1

h2;h2; � � � ;h2;|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
n

� � � ;

hn;hn;hnþ1Þ
(69)

wherehm denotes a full (m�m) block matrix. Notice that
the matrix dimension of Y� remains as

Xnþ1

m¼1

ðnþ 2�mÞm ¼ 1

6
ðnþ 1Þðnþ 2Þðnþ 3Þ ¼ Nð3Þ;

(70)

while the number of nonzero matrix elements becomes

Xnþ1

m¼1

ðnþ 2�mÞm2 ¼ 1

12
ðnþ 1Þðnþ 2Þ2ðnþ 3Þ 	 NS4 :

(71)

We can in fact show that the numberNS4 corresponds to the
number of coefficients in a mode expansion of truncated

functions on S4. (For details of the correspondence be-
tween fuzzy S4 and truncated functions on S4, see [27].)
From the expression (69), we can easily tell that Y� com-

mute with Nð1Þ � Nð1Þ block matrices where Nð1Þ ¼ nþ 1
is the number of 1’s in (69). Furthermore, Q~� is in an

Nð1Þ � Nð1Þ matrix representation of SUð2Þ in terms of the

decomposition of SUð4Þ discussed in (68). Thus, from the
expression (69), we can check that Y� indeed satisfies the

constraint (67).
The configuration (69) may be the most natural one in

comparison with fuzzy CP3 but it is not the only one that
describes fuzzy S4. For example, we can locate the same-
size blocks in a single block, following some operation,
say, matrix multiplication or matrix addition, instead of
diagonally locating each block one by one. The dimension
of the alternative matrix configuration is then given by

Xnþ1

m¼1

m ¼ 1

2
ðnþ 1Þðnþ 2Þ ¼ Nð2Þ: (72)

This means that fuzzy S4 can also be described by Nð2Þ �
Nð2Þ block-diagonal matrices, say, ~Y�.

D. Emergence of fuzzy S4

We now consider an imposition of the constraint (67) on
the effective Lagrangian (59) with k ¼ 3. Since the poten-
tials F2sþ1ðrQÞ are proportional to the identity matrix, they
are not affected by the constraint (67) and the local coor-
dinates of fuzzy CP3 Qi are simply replaced by the fuzzy
S4 coordinates Y� after the imposition of (67).

Corresponding matrix equations of motion become linear
in Y�. Thus, as in the case of the L7-brane solutions, we

can similarly consider emergence of L5-branes with fuzzy
S4 geometry as brane solutions to modified M(atrix) theo-
ries. As before, the emergence of such L5-branes can be
argued by requiring that the potential energy of the branes
at minima of the total potential energy becomes finite.
In terms of the local coordinates of fuzzy CP3 Qi, the M

(atrix) theory potential is calculated as Tr Rr
4

4 ½Qi;Qj�2 ¼
� Nð3Þ

15
Rr4

Cð3Þ
2

. The sum of the extra potentials for the emer-

gence of L7-branes has been given by Nð3Þ
15

Rr4

Cð3Þ
2

where r

represent a minimum of vðrÞ in (61). In terms of the local
coordinates of fuzzy S4 Y�, a matrix Lagrangian for the

emergence of the spherical L5-branes is then expressed as

L S4�S1 ¼ Tr

�
_r2Y2

�

2R
þ Rr4

4
½Y�; Y��2 þ Rr4


15Cð3Þ
2

1Nð3Þ

�
(73)

where we include the kinetic term which is zero for static
solutions. The value of r
 is determined by the controlling
parameters for the emergence of the spherical L5-branes.
For example, consider the potential vðrÞ of the form
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v5ðrÞ ¼ r4

4 ��3r
3 þ�5r

5 where �3, �5 are given by (62)

with k ¼ 3. In this case, the controlling parameter is given

by �3 as discussed before. From @v5

@r jr
 ¼ 0 and v5ðr
Þ ¼
0, we can easily find r
 ¼ 8�3. Notice that r
 is indepen-
dent of n since �3 is an n-independent parameter.

In order to obtain compactification of M(atrix) theory
down to 4 dimensions, we simply eliminate the longitudi-
nal direction in the spherical L5-branes. The relevant brane
solution would be a transverse 4-brane of fuzzy S4 geome-
try. Apparently, this brane solution does not have a time
component in the framework of M(atrix) theory but, as
mentioned earlier, it is possible to express the time com-
ponent by a matrix as far as a matrix model building of M-
theory in the large N limit is concerned. Bearing this
possibility in mind, we can conjecture an action for such
a fuzzy S4 solution as

S 4 ¼ r4R

4
Tr

�
½Y�; Y��2 þ �

Cð3Þ
2

1Nð3Þ

�
; (74)

� ¼ 4

15

�
r

r

�
4 � 1: (75)

There are basically two fundamental parameters, R and

N ¼ Nð3Þ � n3. We consider that in the largeN=R limit the
matrix action (74) describes compactification of M-theory
in 4 dimensions. R is essentially the 11-dimensional Planck

length lp; remember that R is given by R ¼ gls ¼ g2=3lp
where g is the string coupling constant and ls is the string
length scale. There are no restrictions on the size parameter
r. This suggests conformal invariance of the theory of
interest. The parameter �, on the other hand, will be
determined by how we carry out flux compactifications
in terms of controlling parameters. Since the fuzzy S4

solutions are constructed from the L7-branes of CP3 �
S1 geometry on top of the algebraic constraint (67), these
solutions are also nonsupersymmetric. Lastly we would
like to emphasize that the above action can be used as a
physically interesting 4-dimensional matrix model of M-
theory compactification.

E. Purely spherical L5-branes as new solutions in M
(atrix) theory

As we have discussed in (72), fuzzy S4 can also be

represented by Nð2Þ � Nð2Þ block-diagonal matrices ~Y�.

Its matrix dimension is the same as that of fuzzy CP2.
Thus, as in the case of fuzzy CP2 solutions, there are no
problems on infinite energy and we can obtain an L5-brane
of S4 � S1 geometry as a solution to the original M(atrix)
theory without any extra potentials.

The transverse directions of this L5-brane are purely
spherical. Notice that it is different from the previously
proposed spherical L5-brane [15]. The previous solution
has been constructed under a condition [15]:

�ijklmXiXjXkXl � Xm (76)

where Xi’s (i ¼ 1; 2; � � � ; 5) denote matrix coordinates of
the brane solution, four out of five coordinates representing
the transverse directions. Owing to the Levi-Civita tensor,
the above condition makes sense when indices i; j; � � � ; m
are distinctive one another. Strictly speaking, the trans-
verse directions following the condition (76) do not de-
scribe S4 geometry but rather part of CP3 geometry. In the
context of fuzzy CP3 solutions developed in the present
paper, this can easily be seen by rewriting the above
condition as

cij�ckl�d���QiQjQkQl � d���Q�Q� �Q� (77)

where we replace �ijklm by cij�ckl�d��� and Xi’s by the

fuzzy CP3 coordinates Qi. As we have seen in (44),
cij�ckl�d��� corresponds to the rank-five invariant tensor

of SUð4Þ. Explicit proportionality in (77) can be read from
(46).
As discussed above, in order to obtain purely spherical

geometry, we need to impose an algebraic constraint onQi.
The resultant solution then becomes an L5-brane of fuzzy
S4 geometry in the transverse directions, Fluctuations of
this brane solution can naturally be described by Qi !
Qi þ Ai. As mentioned in the Introduction, there has been
a difficulty to include fluctuations in the previously pro-
posed spherical L5-branes [15]. Our version of a purely
spherical L5-brane avoids this difficulty and provides a
new brane solution to M(atrix) theory.

VI. CONCLUSIONS

In the present paper, some of the previously known
brane solutions in M(atrix) theory are reviewed in a sys-
tematic manner by use of the fuzzy complex projective
spaces CPk (k ¼ 1; 2; � � � ) as Ansätze for the solutions.
We show that this particular type of Ansätze for k � 4
indeed satisfies the M(atrix) theory equations of motion.
For the cases of k � 3, we have checked that the brane
solutions break all supersymmetries of M(atrix) theory. An
L7-brane solution corresponding to k ¼ 3 has an infinite
potential energy in the largeN limit. We can however make
it finite and can show the existence of static L7-brane
solutions with an introduction of extra potentials. Such
potentials, which are closely related to differential
(2rþ 1)-forms of SUðkþ 1Þ (r ¼ 1; 2; � � � ; k), can be sim-
plified to the identity matrices up to some constants. We
show that even with these potentials the fuzzyCPk (k � 3)
remain solutions to modified M(atrix) theories, possessing
finite potential energy in the large N limit. In the case of
k ¼ 3, this means that fluctuations from the L7-brane
solution are suppressed in the large N limit and that we
have a peculiar compactification scenario of M(atrix) the-
ory down to 7 dimensions. This model can be analyzed by
the effective Lagrangian given in (59) with k ¼ 3.
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In the context of Freund-Rubin type compactification of
M-theory, the very existence of the 7-form implies com-
pactification of the theory down to 7 or 4 spacetime di-
mensions. This suggests that our analysis can be used to
give a physically interesting compactification to 4 dimen-
sions. As an example of such possibility, we have conjec-
tured a compactified model of M(atrix) theory in 4
dimensions, utilizing the definition of fuzzy S4 in terms
of fuzzy CP3. The resultant action (74) is expressed in
terms of the coordinates of fuzzy S4 (69). Along the way,

we also find the existence of new L5-branes in M(atrix)
theory which have purely spherical geometry in the trans-
verse directions.
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