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The lower bound of the shear viscosity to entropy density ratio is examined using an exact

representation of the ratio through the density of states. Under certain assumptions it can be shown

that the lower bound of the ratio is not universal; its value is determined by the entropy density. Some

examples of physical systems are discussed in the paper where one can expect violation of the conformal

1=4� value.
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I. INTRODUCTION

Experimental evidence from the Relativistic Heavy Ion
Collider (RHIC) [1,2] suggests [3,4] that the QCD matter
near the (would-be) critical temperature is very close to an
ideal fluid, and the shear viscosity to entropy density ratio
is �=s < 0:2 [5,6]. Such small values suggest very strong
interactions, and it is therefore a big theoretical challenge
to explain the actual �=s in this system. Direct calculations
with weak coupling resummed perturbation theory in vari-
ous models [7–11] and resummations with Boltzmann
equations [12,13] suffer generally from the problem that
the unperturbed system, i.e. the free gas has infinite vis-
cosity, and so small perturbations necessarily remain in the
large viscosity regime. This is reflected in the result �=s�
1=ðg4 loggÞ which is large if the coupling is small. At
stronger coupling subleading corrections may alter this
result: for example, the inclusion of 2–3 Bremsstrahlung
processes into the Boltzmann equation results in a signifi-
cant difference near the critical region of QCD [14,15].

Since perturbation theory is not well controlled in the
strong coupling regime, one has to look for alternative
methods. A potentially exact method is lattice
Monte Carlo (MC) simulations. However the actual mea-
surement of the transport coefficients is plagued by the
necessity of analytic continuation from imaginary to real
time based on a discrete set of data. The inversion of the
integral equation for the analytic continuation then has
very little sensitivity to the important infrared physics
[16]. Therefore existing MC results [17] depend on not
fully controlled assumptions.

A completely different strategy is when one uses a dual
description of the theory, where the strong coupling limit is
mapped to the small coupling limit of the dual theory. In
case of QCD-like theories this is possible only with a much
larger symmetry group, theN ¼ 4 supersymmetric Yang-
Mills (SYM) theories, where supersymmetry together with
the holographic principle makes possible to work, at large
Nc and large ’t Hooft coupling, in a five-dimensional
gravity with anti–de Sitter (AdS) metric [18]. There the
shear viscosity of the conformal field theory can be calcu-
lated from graviton absorption [19], resulting in the cele-

brated 1=4�. In a large class of AdS models this seems to
be a lower bound [20,21].
Although N ¼ 4 SYM is not QCD, one can argue

independently that there is a lower bound in QCD itself
[22]. Then the value of this lower bound may come uni-
versally from the large Nc large ’t Hooft coupling super-
symmetric case [19].
The statement that 1=4� would be the lower bound in

any system for the �=s ratio is, however, not really proven,
only argued for, and it is supported by the fact that we
never encountered systems where this bound was violated.
But the argumentation has weak points, which suggest that
it is not so general as it is commonly believed. First, in the
gravity side one can find higher curvature AdS models,
where this conclusion fails [23–25]. In the framework of
nonrelativistic gases one can also construct counterexam-
ples [26,27]. Although these examples may describe meta-
stable states [28], the question of the applicability range of
the result is not answered reassuringly.
More importantly, the argumentation is strongly based

on the quasiparticle picture. The generic argumentation
says [19] that �=s� E�, where E is the energy of an
excitation, � is the lifetime, and the uncertainty principle
states that E� * @ which yields �=s * @. But the uncer-
tainty principle, in fact, states that the uncertainty of the
energy measurement is related to the lifetime, not the
energy value itself. In the quasiparticle picture the uncer-
tainty cannot be larger than the energy value itself, but in a
generic theory this may not be the case. So, in fact the
restriction E� * @ is not a law of nature, but rather the
applicability range of the quasiparticle picture. If the
small-width quasiparticle approximation cannot be ap-
plied, then we have no real arguments in favor of the lower
bound. Recently in [29] the authors have shown that the
presence of a continuum in the particle spectrum has an
important effect on the shear viscosity to entropy density
ratio.
To clarify these issues one would need exact statements

about the lower limit of �=s in physical systems. This is
what is attempted in this work, using first principles. For
the derivation we have to make some assumptions about
the (nonperturbative) value of some current matrix ele-
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ments. If these are true, then one can show that if the
transport is dominated by a finite number of quantum
channels (i.e. there are no large numbers of particle spe-
cies), then at finite entropy density the �=s ratio has a
lower bound. This lower bound, however, depends on the
entropy itself; for the small entropy density case it is

�

s

��������min
� 1

NQ

s

T3

1

LT
; (1)

where NQ is the number of dominant quantum channels,

and L is the ‘‘interaction range.’’ This latter can be defined
so that parts of the system separated more than L do not
interact, or interact weakly; in other words, in systems
larger than L the entropy is an extensive quantity. For
more details and for general s formulas, see Sec. III and
(46).

The mathematical reason why �min � s2 depends quali-
tatively on the fact that, as will be explained in the paper in
detail, the transport coefficients come from integrals de-
pending quadratically on the energy density of states %,
while the entropy density, for low values of s, depends
linearly on %. Since these integrals have positive kernels,
we can treat them as some averaging. So, up to normaliza-
tion factors �� h%2i and s� h%i. This implies that with
this normalization � � s2, and the minimum is therefore
proportional to s2.

In a finite degree of freedom quasiparticle system the
entropy density is proportional to T3 and the interactions
are screened at most at a scale of the temperature, and so
the right-hand side is constant. The value of this constant
cannot be determined from a general argumentation, but by
the argumentation of [19,22] it may be 1=4�. But as a
mathematical statement we can claim that there is no lower
bound for the shear viscosity to entropy density ratio.

The above formula also tells us where can we expect to
have small �=s ratio: if the number of dominant quantum
channels is large (cf. [26,27]), if the system interacts on
very large scales (i.e. large-width systems, where the width
is not connected to the temperature), or if we are at low
temperatures and the entropy density vanishes faster than
T3.

In the paper we discuss some systems, where possibly
violations of the 1=4� value are present. These are systems
with strong wave function renormalization, large-width
finite temperature systems, and low temperature nonqua-
siparticle systems. All of these cases can appear in real
systems: strong wave function renormalization shows up in
strongly coupled quasiparticle systems; at finite tempera-
ture QCD we expect large-width systems [30]. Finally in
systems where there are zero mass excitations, the spectral
function must not have a separated Dirac-delta peak even
at zero temperature.

The structure of the paper is the following. We first
derive exact expressions for the Kubo formula and for
the entropy (Sec. II) through the density of states. In

Sec. III we study the mathematical structure of the �=s
ratio and determine its minimum. Next we study the qua-
siparticlelike systems and discuss the small-width quasi-
particle case in Sec. IV. In Sec. V we examine different
situations where the excitations are not small-width quasi-
particles, and discuss the impact of the off-shell effects on
transport. We finish with conclusions in Sec. VI.

II. THE CURRENT-CURRENT CORRELATOR AND
THE ENTROPY DENSITY

In this section we derive exact representations for the
Kubo formula and the entropy density using the density of
states (or energy spectral functions).

A. Kubo formula

The shear viscosity, the linear response coefficient for
the transversal momentum difference in a plasma, is de-
fined through the Kubo formula in the framework of quan-
tum field theory. We introduce

CðxÞ ¼ h½�xzðxÞ; �xzð0Þ�i; �ij ¼ Tij � 1
3�ijT

‘
‘ ;

i; j ¼ 1; 2; 3;
(2)

where T is the energy-momentum tensor of the system, and
the expectation value has to be taken in the equilibrium
system:

hQ̂i ¼ 1

Z
Tre��HQ̂; Z ¼ Tre��H: (3)

The viscosity is obtained after Fourier transformation as

� ¼ lim
p0!0

Cðp0;p ¼ 0Þ
p0

: (4)

This discussion can be generalized by using instead of�ij a

general conserved current Ji, and look at the linear re-
sponse function

CJðxÞ ¼ h½JiðxÞ; Jið0Þ�i (5)

(there is no summation on indices i). Because of rotational
invariance of the equilibrium system, only the diagonal
elements are nonzero here. The corresponding transport
coefficient will be called �J.
We continue by inserting energy eigenstates into the

expectation value above:

CJðxÞ ¼ 1

Z

X
n;m

fhnje��HJiðxÞjmihmjJið0Þjni

� hmje��HJið0ÞjnihnjJiðxÞjmig

¼ 1

Z

X
n;m

ðe��En � e��EmÞhnjJiðxÞjmihmjJið0Þjni:

(6)

The possible states in the system are characterized by their
total energy k0, total momentum k, and other quantum
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numbers K,

jni ¼ jk0;k;Ki: (7)

Similarly we denote jmi ¼ jq0;q;Qi. We will also use the
four-momentum notation k ¼ ðk0;kÞ and q ¼ ðq0; qÞ.

In a realistic quantum field theory the allowed energy
eigenvalues can form a continuum, and at finite tempera-
ture this is always the case. Therefore it is more adequate to
write the sum over the energy in the above expression as an
integral over a spectral density. In finite volume spatial
momenta form a discrete set, but at larger volumes a
continuum representation is applicable for them, while
other quantum numbers remain discrete:

1 ¼ X
n

jnihnj ¼ X
k;K

Z dk0
2�

%KðkÞjk;Kihk;Kj

¼ V
X
K

Z d4k

ð2�Þ4 %KðkÞjk;Kihk;Kj: (8)

Since the state jk;Ki is dimensionless in our normaliza-
tion, % has the dimension of inverse energy. With the
energy density of states we can write

CJðxÞ ¼ V2

Z

X
K

Z d4k

ð2�Þ4 %KðkÞX
Q

Z d4q

ð2�Þ4

� %QðqÞðe��k0 � e��q0Þhk;KjJiðxÞjq;Qi
� hq;QjJið0Þjk;Ki: (9)

Using the generator of the space-time translation we
write

hk;KjJiðxÞjq;Qi ¼ eiðk�qÞxhk;KjJið0Þjq;Qi; (10)

then the Fourier transformation yields

CJðpÞ ¼ V2

Z

X
K

Z d4k

ð2�Þ4 %KðkÞX
Q

Z d4q

ð2�Þ4 %QðqÞð2�Þ4

� �ð4Þðk� qþ pÞðe��k0 � e��q0Þ
� jhk;KjJið0Þjq;Qij2: (11)

The transport coefficient reads

�J ¼ �
V2

Z

X
K;Q

Z d4k

ð2�Þ4 %KðkÞ%QðkÞ

� e��k0 jhk;KjJijk;Qij2: (12)

Since Ji cannot change the quantum channel without mak-
ing any change in both energy and momentum, the nonzero
result comes only from K ¼ Q:

�J ¼ �
V2

Z

X
K

Z d4k

ð2�Þ4 %
2
KðkÞe��k0 jhk;KjJijk;Kij2:

(13)

The (temperature-independent) matrix element of Ji can
be calculated in the free theory with the result

hkjJijki0 ¼ q
ki
k0V

; (14)

where q is the charge carried by the current. In case of the
energy-momentum tensor q ¼ kj:

hkjTxzjki0 ¼ kxkz
Vk0

: (15)

In general, we expect an expression of similar structure,
since the external momentum carries the Lorentz index of
the current, and by dimensional reasons it must be divided
by an energylike quantity. There can still be a Lorentz-
invariant factor:

hk;KjJijk;Ki ¼ q
ki
k0V

JKðk2Þ; or

hk;KjTxzjk;Ki ¼ kxkz
Vk0

TKðk2Þ:
(16)

The reduced current matrix element JK depends on the
system under consideration, and we cannot tell much more
on a generic ground. We will assume, however, that JK
does not grow at large k0 exponentially.
Since the only directional dependence is in the current,

we can average angular dependence using (16). Since

cos2� ¼ 1=3 and sin2�cos2�cos2� ¼ 1=15, we can write

�J ¼ �

3Z

X
K

Z d4k

ð2�Þ4
k2

k20
e��k0ðJKðkÞ%KðkÞÞ2; (17)

and for the shear viscosity

� ¼ �

15Z

X
K

Z d4k

ð2�Þ4
ðk2Þ2
k20

e��k0ðTKðkÞ%KðkÞÞ2: (18)

The volume dependence canceled, and so we interpret
these formulas as infinite volume limit results.

B. The entropy

To calculate the entropy density we start by computing
the free energy as

Z ¼ e��F ¼ Tre��H ¼ X
n

e��En

¼ X
k;K

Z dk0
2�

%KðkÞe��k0

¼ V
X
K

Z d4k

ð2�Þ4 %KðkÞe��k0 : (19)

In a strongly coupled system the volume dependence of the
free energy can be arbitrary. When we increase the linear
size of the system, after a certain scale L one can observe
more and more accurately the linear volume dependence,
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i.e. the free energy becomes an extensive quantity. That
means that adjacent volume elements larger than L interact
(mostly) with surface interaction, while smaller volume
elements interact through the total volume. Therefore this
interaction range serves also as an infrared cutoff for the
relevant interactions. In quasiparticle systems the interac-
tion range corresponds to the linear size of the cross
section, the inverse of the free mean path. In general,
strongly interacting systems have large L, and weakly
interacting ones have small L.

This is the scale, beyond which a coarse grained de-
scription is sensible [31,32], since only there can one speak
about densities of different physical quantities. The free
energy in a coarse grained description is dominated by the
integral of the free energy density, while the corrections
coming from the surface interaction are subleading.
Therefore in a microscopic description we should choose
the volume size at least V ¼ L3 in order to catch all the
relevant local physics effects. Therefore we define our free
energy density as

f ¼ � T

L3
ln

�
L3

X
K

Z d4k

ð2�Þ4 %KðkÞe��k0

�
: (20)

We can separate the ground state (vacuum) contribution,
where always1 %vacðk0Þ ¼ 2��ðk0Þ:

f ¼ � T

L3
ln

�
1þ L3

X
K

Z d4k

ð2�Þ4 %KðkÞe��k0

�
: (21)

From this generic form the entropy density reads

s ¼ 1

L3
ln

�
1þ L3

X
K

Z d4k

ð2�Þ4 %KðkÞe��k0

�

þ 1

Z

X
K

Z d4k

ð2�Þ4 �k0%KðkÞe��k0 : (22)

Then the transport coefficient to entropy density ratio
reads

�J

s
¼

�
3Z

P
K

R
d4k
ð2�Þ4

k2

k2
0

e��k0ðJKðkÞ%KðkÞÞ2
1
L3 lnð1þ L3

P
K

R
d4k
ð2�Þ4 %KðkÞe��k0Þ þ 1

Z

P
K

R
d4k
ð2�Þ4 �k0%KðkÞe��k0

: (23)

In case of shear viscosity we have to substitute J 2 !
k2T 2=5.

III. MINIMIZATION OF SHEAR VISCOSITY TO
ENTROPY DENSITY RATIO

Equation (23) gives the functional dependence of �J=s
on %, and so we can study mathematically the minimum of
this ratio by varying %. The above formula, however,
contains the unknown J factor. To say something con-
structive we have to make assumptions on this function: we
will assume that it can get at most power law k0 contribu-
tions in a strongly interacting system. In this case we can
perform an analysis to find the lower bound.

There is a simple way to decrease the value of �J=s: we
start with an arbitrary % with finite �J=s and make a
rescaling % ! �% with � ! 0. Then the integrals of %
become small; we can make a linearization in s with
respect to %. Then the numerator is quadratic, the denomi-
nator is linear, and so �J=s ! ��J=s, in the � ! 0 limit it
vanishes.

In a physical system this simple procedure cannot be
performed, because we have a sum rule in each quantum
channel

Z dk0
2�

%Kðk0;kÞ ¼ UKðkÞ; 8 K;k: (24)

But this constraint is not really restricting. To understand it
we should remark that all % integrals for �J and s are
weighted by e��k0 . Therefore �J=s is sensitive to the k0 �
T regime, say, the infrared (IR) regime. The sum rule, on
the other hand, depends also on the k0 � T regime, the
ultraviolet (UV) regime. Therefore we may rescale the IR
part of the energy density of states and still maintain the
sum rules.
To see this we assume that we can linearize the entropy

density in % and try to find the minimal �J. The generic
case wewill discuss later. The assumption of linearizability
also means that Z � 1. To simplify the notation we in-
troduce

X
K

Z d3k

ð2�Þ3 ¼
Z
Q
: (25)

For the linearized case, in this symbolic notation the trans-
port coefficient and the linearized entropy density read

�J ¼
Z
Q

Z dk0
2�

	Qðk0Þ%2
Qðk0Þe��k0 ;

s ¼
Z
Q

Z dk0
2�


ðk0Þ%Qðk0Þe��k0 ;

(26)

where

1Note that in some systems there is a residual entropy at the
vacuum. To avoid this case we should understand s� svac for
entropy density in the following.
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	Qðk0Þ ¼ �k2

3k20
J 2

KðkÞ; 
ðk0Þ ¼ 1þ �k0: (27)

We shall minimize �J with the constraint (24), and so we
apply Lagrange multipliers to each quantum channel. To
have control on the thermodynamics we also fix the en-
tropy density s. Then we have to minimize the expression

min
Z
Q

Z dk0
2�

½	Qðk0Þ%2
Qðk0Þe��k0 � 2�
ðk0Þ%ðk0Þ

� e��k0 � 2�Q%Qðk0Þ�: (28)

Its solution provides the spectral function

%Qðk0Þ ¼
�
ðk0Þ þ �Qe

�k0

	Qðk0Þ : (29)

The normalization condition can be satisfied if

�Q ¼ UQ � �X1

X0

; � ¼ s� R
Q UQX1=X0R

QðX2 � X2
1=X0Þ

; (30)

where

X0 ¼
Z dk0

2�

e�k0

	Qðk0Þ ; X1 ¼
Z dk0

2�


ðk0Þ
	Qðk0Þ ;

X2 ¼
Z dk0

2�


2ðk0Þ
	Qðk0Þ e

��k0 :

(31)

Then the minimal �J reads

�J ¼
ðs� R

Q
UQX1

X0
Þ2R

QðX2 � X2
1

X0
Þ2

þ
Z
Q

U2
Q

X0

: (32)

The concrete expressions for Xi are potentially diver-
gent. To define the result we have to introduce an energy
cutoff �0 into the system. Then the qualitative behavior of
the Xi quantities, assuming J 2ðk0Þ � ka0:

X0 ��2�a
0 e��0 ; X1 ��4�a; X2 � convergent:

(33)

Therefore removing the energy cutoff results in vanishing
Xn
1=X0 factors. This is exactly the mathematical appear-

ance of the qualitative analysis in the beginning of the
section: the sum rule constraints of (24) can be easily
satisfied by tuning only the UV part of %.

When we remove the UV cutoff what remains is

�Jmin ¼ s2R
Q X2

: (34)

Evaluating the integral in the denominator, for concrete-
ness for shear viscosity where we assume J � k2, we
obtain

�

s

��������min
� s

NQLT
4
; (35)

where NQ is the effective number of quantum channels.

This formula is valid for small s.
We remark here that the same line of thought leads to the

conclusion that also �=" has a lower limit which is pro-
portional to " itself. Therefore s has no singled out role in
this analysis.
We can perform the same analysis for large s, too. This

time we omit the sum rule constraints, but we cannot omit
Z. Our strategy will be to fix Zs and minimize Z�J.
Therefore we have to minimize the expression

min

�Z
Q

Z dk0
2�

	Qðk0Þ%2
Qðk0Þe��k0

� 2�

�
Z lnZ
L3

þ
Z
Q

Z dk0
2�

�k0%Qðk0Þe��k0

��
; (36)

where

Z ¼ 1þ L3
Z
Q

Z dk0
2�

%Qðk0Þe��k0 : (37)

The minimum condition yields

%Qðk0Þ ¼ �
1þ lnZþ �k0

	Qðk0Þ : (38)

If lnZ � 1 we get back (29), and this corresponds to the
small s case. Here we follow the opposite limit and assume
thatZ dominates the above expression in the relevant k0 �
T domain:

%Qðk0Þ � �
lnZ

	Qðk0Þ : (39)

With this density of states we can calculate

Z ¼ 1þ �Y0 lnZ; Zs ¼ 1

L3
ðZ lnZþ �Y1 lnZÞ;

(40)

where

Y0 ¼ L3
Z
Q

Z dk0
2�

e��k0

	Qðk0Þ ;

Y1 ¼ L3
Z
Q

Z dk0
2�

�k0e
��k0

	Qðk0Þ :

(41)

For the case of the shear viscosity, assuming J Q � k2 we

obtain Y1 � Y0 � NQðLTÞ4. For J Q ¼ k2 there is a factor

of 3 between them, so we may assume that their values are
of similar order of magnitude in general. Then in the
expression of Zs the first term is proportional to ðlnZÞ2,
the second only to lnZ. Therefore the second term can be
omitted, and we find

Z s � Z lnZ
L3

) s ¼ lnZ
L3

: (42)

Therefore in the large Zs regime s and Z are not indepen-
dent. So if we fix a large value for Zs it means fixing a
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large value for separately s andZ. LargeZ also means that
the vacuum contribution can be omitted, and then

� ¼ Z
Y0 lnZ

: (43)

Finally for the transport coefficient we obtain

� ¼ Z
L3Y0

; (44)

therefore the �=s ratio reads

�

s

��������min
¼ eL

3s

Y0L
3s

� eL
3s

L3s

1

NQðLTÞ4
: (45)

So we can summarize the small and large s cases in a
common formula

�

s

��������min
� F ðL3sÞ
NQðLTÞ4

; (46)

where for small values F ðxÞ � x, and for large values
F ðxÞ � ex=x.

The results have several interesting consequences. First
of all we see that if we distribute the entropy uniformly into
NQ quantum channels, we can reduce the �=s ratio at any

temperature to zero. This corresponds to the construction
of [26] with a large number of particle species. In that
model L3s� lnNQ because of the mixing entropy, which

for large NQ leads to 1= lnNQ dependence for the shear

viscosity to entropy ratio. In this construction the entropy
goes to infinity, while the shear viscosity stays constant.

If we fix the number of dominant quantum channels then
the �=s ratio has a minimum for each fixed entropy, but
this minimum depends on the value of the entropy itself.
The theoretical lower bound is zero, which, however, can
be reached only at zero entropy, i.e. at zero temperature.

If we have noninteracting quasiparticles, then the effec-
tive interaction range is zero, L ! 0 and the �=s ratio is
infinity. In the case of weak coupling the interaction range
is related to the cross section, or the inverse lifetime of the
particle. A more detailed description for the quasiparticle
systems is done in the next section.

IV. QUASIPARTICLE SYSTEMS

Apart from the theoretical bound determined above, it is
still a question how the �=s ratio behaves in a real system.
In this section we actualize the general formulas for qua-
siparticle systems and discuss the small-width case.

For quasiparticles we use that the energy contribution
from noninteracting subsystems simply added in the free
energy, so in weakly interacting bosonic/fermionic system
we can write

f ¼ T
Z d4k

ð2�Þ4 %QPðkÞð	Þ lnð1
 e��k0Þ: (47)

The entropy density can be calculated as s ¼ �@f=@T.

s ¼ X
Q

Z d4k

ð2�Þ4
�

�k0
e�k0 
 1


 lnð1
 e��k0Þ
�
%QðkÞ

� X
Q

Z d4k

ð2�Þ4 Xð�k0Þ%QðkÞ: (48)

For concreteness we will calculate the shear viscosity
coefficient from now on. The viscosity to entropy density
ratio reads

�

s
¼

�
15Z

P
K

R
d4k
ð2�Þ4

ðk2Þ2
k2
0

e��k0ðJKðkÞ%KðkÞÞ2
P
Q

R
d4k
ð2�Þ4 Xð�k0Þ%QðkÞ

: (49)

Formally it is similar to the perturbation theory motivated
expressions of [30]. But here the logic is different; we do
not use propagating states, but instead energy eigenstates
as intermediate states.
To treat the problem analytically we will assume that

JKðkÞ does not depend too strongly on the momentum on
the relevant momentum regime, where, for example %ðkÞ
exhibits a peak. We also will assume that there is a single
dominant quantum channel where the largest contribution
for entropy as well as the shear viscosity comes. Therefore
we analyze a reduced shear viscosity from the dominant
quantum channel as

�� ¼ �

15

Z d4k

ð2�Þ4
ðk2Þ2
k20

e��k0%2
KðkÞ: (50)

The �=s ratio then reads

��

s
¼

�
15

R
d4k
ð2�Þ4

ðk2Þ2
k20

e��k0%2
KðkÞR

d4k
ð2�Þ4 Xð�k0Þ%QðkÞ

: (51)

We hope that �� characterizes well the true �=s, so we will
use this quantity to assess the importance of the off-shell
effects.

A. Small-width approximation

If the integral is dominated by a Dirac-delta-like peak
then near the peak region we may approximate

%KðkÞjk0�"k �
2�

ðk0 � "kÞ2 þ �2
: (52)

In relativistically invariant systems "2k ¼ k2 þm2, and

approximately the same is true at finite temperatures with
thermal masses.
The product of two functions can be approximated by

%2
KðkÞ � %Kðk0 ¼ "kÞ%ðkÞ � 2

�
2��ðk0 � "kÞ: (53)

By replacing back this expression into (50) we find
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��QP ¼ 1

15��T

Z 1

0
dk

k6

"2k
e�"k=T; (54)

where the QP subscript refers to the small-width quasipar-
ticle case. Depending on the dispersion relation we can
obtain results like

��QP ¼

8>>><
>>>:

8
5�2

T4

� ; if "k ¼ k;
1ffiffiffiffiffi
2�

p m3=2T5=2

� e�m=T; if "k ¼ mþ k2

2m ;

4
15

ffiffiffiffiffi
2�

p m7=2T1=2

� ; if "k ¼ k2

2m :

(55)

The first case corresponds to the high temperature case, the
second the low temperature relativistic case, and the third a
low temperature nonrelativistic gas case (Chapman-
Enskog formula).

The free energy in the quasiparticle case (52) reads after
partial integration:

fQP ¼ � 1

6�2

Z 1

E0

dEkðEÞ3nðEÞ; (56)

where n
ðEÞ ¼ ðe�E 
 1Þ�1 Bose-Einstein or Fermi-
Dirac particle number density. For the entropy we obtain

s ¼ �

6�2

Z 1

E0

dEn
ðEÞ d

dE
ðEk3ðEÞÞ: (57)

In the different dispersion relation case we get

sQP ¼

8>>><
>>>:
A
 4T3�2

90 ; if "k ¼ k;
T1=2m5=2

ð2�Þ3=2 e��m; if "k ¼ mþ k2

2m ;

ðmTÞ3=2
2ð2�Þ3=2 ; if "k ¼ k2

2m ;

(58)

where A
 ¼ ð1; 8=7Þ. Then the ratio reads

��QP

sQP
¼

8>>><
>>>:

36
A
�4

T
� ; if "k ¼ k;

2� T2

�m ; if "k ¼ mþ k2

2m ;
16�
15

m2

�T ; if "k ¼ k2

2m :

(59)

In the first, m � T case the width must be determined
by the temperature which is the only scale in the system:
�� T by dimensional reasons. Therefore in the first case
we obtain a temperature-independent ratio.

In the second, low temperature massive case we have to
take into account that the quasiparticles are stable at zero
temperature, and the first scattering states which are re-
sponsible for the decay have to be excited thermally.

Therefore we expect that �� e�M=T , where M is the
mass of the excited state. In this case the ratio grows like

T2eM=T at small temperature.
In the third case the width can be proportional to T, but

also in this case the ratio will grow like 1=T2.
So we can see that in the quasiparticle case the �=s ratio

is at most constant, but in all massive cases it is bounded
from below. The lower bound of this ratio is probably
provided by the AdS/CFT results.

The inverse proportionality to � also suggests that in
environments where the correlation lengths, in particular,
the quasiparticle lifetimes grow, the �=s ratio will de-
crease. This is the case for second order phase transitions.

V. RELEVANCE OF THE OFF-SHELL EFFECTS IN
DIFFERENT PHYSICAL SITUATIONS

In the field theoretical systems besides the (quasi)parti-
cles one should count with a multiparticle contribution
which appears as a continuum in the energy density of
states. The simple picture suggested by the small-width
quasiparticle approximation of the previous section may
break down more or less in the case of strong continuum.
In this section we consider three physical situations

where the presence of off-shell effects can significantly
modify the small-width quasiparticle picture. The first is
the effect of the wave function renormalization, the second
is the case of large thermal width, and the third is the case
of a theory with zero mass excitations.

A. Wave function renormalization

For the first example we take a system where besides the
quasiparticle peak there is a separate continuum. The
normalization requirement (24) tells us that in the full
case the peak should be smaller than in the quasiparticle
approximation: the factor we have to apply is the wave
function renormalization. At small enough temperatures
we will see only the quasiparticle peak; then the �=s ratio
is simply rescaled by the wave function renormalization
factor.
To demonstrate the effect we take a toy model, where the

full spectral density is taken as

%ðkÞ ¼ Z%QPðkÞ þ 2�
1� Z

E2 � E1

�ðE2 > k0 > E1Þ; (60)

i.e. we take a step-function-like spectral density in the
continuum regime, which means that in this toy model
we do not care about the details of the continuum, only
an effective height is taken into account. Here we take the
relativistic form E2

1;2 ¼ k2 þM2
1;2, while %QP has the form

of (52). The proportionality factors are taken into account
to satisfy the sum rule

Z dk0
2�

%ðk0Þ ¼
Z dk0

2�
%QPðk0Þ ¼ 1: (61)

We will assume the hierarchy m � M1;2 and T <M1. In

this limit in the square %2 we can neglect the cross terms,
and we can use nonrelativistic approximation in the E1;2

energies. We obtain in the leading order

�� ¼ Z2 ��QP þ 1

5
ffiffiffiffiffiffiffi
2�

p ð1� ZÞ2T5=2M5=2
1

�M2
e�M1=T; (62)

where �M ¼ M2 �M1. With similar assumptions the en-
tropy density reads
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s ¼ ZsQP þ 1

ð2�Þ3=2
ð1� ZÞT3=2M5=2

1

�M
e�M1=T: (63)

If the temperature is lower than the threshold, then the
radiative corrections for both �� and s are suppressed. Then
approximately we obtain

��

s
¼ Z

��QP

sQP

: (64)

That means that even though the continuum contribution
cannot be seen, its effect is measurable in the �=s ratio.

The value of Z is determined by the relative contribution
of the continuum in the sum rule as compared to the
quasiparticle peak. In weak coupling cases this ratio is
suppressed by (powers of) the coupling constant, so Z �
1 and so the effect on �=s is small. However, in strongly
coupled theories the continuum becomes more and more
important, and, correspondingly, the wave function de-
creases. As Z ! 0 the continuum contribution slowly takes
over and it will dominate the �=s ratio. In this simple case
of the theoretical Z ! 0 limit the continuum yields ��=s�
T=�M. This demonstrates a mathematical example where
in a constructed system the �=s ratio can go to zero. Still,
we have to remark that there does not exist a physical
system where this type of continuum would be manifested.
But it emphasizes the importance of the continuum part of
the spectral function in the transport. Two more realistic
cases will be studied in the next sections.

B. Large-width case

In lots of realistic examples there is a quasiparticle peak,
but its width is large, comparable to the mass scales of the
system, cf., for example, [30]. At finite temperature
strongly coupled theories, moreover, the quasiparticle
peak can merge with the continuum, forming a broad,
slowly varying spectral function, as it can be seen, for
example, in the 2PI simulations [33–35]. In this case the
‘‘width’’ of the peak has nothing to do with the quasipar-
ticles. In fact there are no real particles in the plasma; the
excitations decay before a particle is formed. Cor-
respondingly, as the width grows, the quasiparticle picture
becomes less and less good approximation.
To treat this effect numerically in the case of the trans-

port coefficients, we take a spectral function which could
describe a spectral function of a quantum channel at finite
temperature, and which is of a Breit-Wigner–type form

%BWðkÞ ¼ 1

N
4
2

kk0
ðk20 � E2

kÞ2 þ 
4
k

: (65)

The N prefactor, necessary for normalization, is N ¼
ð�þ 2 arctanðE2

k=

2
kÞÞ=ð2�Þ. In the above formula the dis-

persion relation and the momentum dependence of the 

parameter are arbitrary, but we assume spatial rotational
invariance. In the weak coupling limit the width corre-
sponds to � ¼ 
2=ð2EkÞ. In the high temperature field
theories we expect 
� g2T. In the strongly coupled case

 � T is also possible.
In the ��=s formula we rescale by the temperature, so we

choose T ¼ 1. Then we have to calculate

��

s
¼

R1
0 dkk6

R1
0 dk0e

�k0ð%BW=k0Þ2
15

R1
0 dkk2

R1
0 dk0ðk0ðek0 � 1Þ�1 � lnð1� e�k0ÞÞ%BW

; (66)

where we have chosen, for the sake of concreteness, the
minus sign in X.

For a particular choice of 
k ¼ 
 ¼ const and Ek ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, we find the plot of the ratio in Fig. 1. This

figure shows how the small-width quasiparticle picture

which yields in this case �T2=
2 breaks down for the
larger width case, where we find �
2=T2 behavior.
Looking at these figures as a function of temperature at
fixed 
 we see that at high temperatures the �=s ratio
increases with increasing temperature, while at low tem-
perature it decreases with increasing temperature. While
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FIG. 1 (color online). The shear viscosity to entropy ratio as a function of the imaginary self-energy.
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the former is characteristic for gases, the latter is the
behavior of the fluids. So in this approximation we can
give an account for the �=s ratio in the fluid-gas crossover.

How can we understand mathematically this behavior?
The small-width regime corresponds to the quasiparticle
approximation above, so we have to understand the large 

regime to examine the 
 � T case. Because of the expo-
nential suppression for k0, the value of k0 cannot grow
larger than T. The peak region, however, is in the vicinity
of jk20 � E2

kj � 
2. Therefore k0 cannot play a role in

saturating the integrand (unless we are in the quasiparticle
regime 
 � m), and so we can neglect k0 here. Then the
dominant contribution should come from Ek � 
, since
there is no exponential suppression for k. As a result k0 �
k and the k0 and k integrations decouple. For 
 � m, the
case Ek � 
 � m means that we can use the ultrarelativ-
istic dispersion relation. Then for the numerator we have

�� !
Z 1

0
dk0e

�k0
Z 1

0
dkk6

1

N 2

16
4

ðk4 þ 
4Þ2 � 
3; (67)

and for the denominator we obtain

s !
Z 1

0
dk0k0ðk0ðek0 � 1Þ�1 � lnð1� e�k0ÞÞ

�
Z 1

0
dkk2

1

N
4
2

k4 þ 
4
k

� 
: (68)

Therefore we expect that the ratio grows like 
2=T2. In the
opposite case, when 
 � m, but the decoupling of the
integrals is still true, we can neglect the 
 factor in the
denominator and we obtain

�� !
Z 1

0
dk0e

�k0
Z 1

0
dkk6

1

N 2

16
4

ððk2 þm2Þ2 �

4

m2
;

(69)

and

s !
Z 1

0
dk0k0ðk0ðek0 � 1Þ�1 � lnð1� e�k0ÞÞ

�
Z 1

0
dkk2

1

N
4
2

ðk2 þm2Þ2 �

2

m
: (70)

Therefore the ratio behaves as 
2=m, so the trend of the
large 
 regime continues.

To have a feeling of when the small-width description
starts to dominate, we remark that the quasiparticle con-
tribution is on one hand suppressed by e�Ek , but, on the
other hand, the denominator can be small, too. Decoupling
of the integrals will not be true if the denominator can
compensate the exponential suppression. In the small mass
case, when also 
 � m is true, the quasiparticle regime
gives e�k=
8 with k� 
, as opposed to the 1=4
8 factor-
ized case. So on-shell effects will become strong if 
 &
1:4. In the large mass case the on-shell contribution is
e�Ek=
8 with Ek �m, and the off-shell effects yield

1=m8. Then the borderline is at 
�me�m=8. In the hypo-
thetical m ! 1 case, therefore, there is no quasiparticle
regime, and the linear 
2 trend will continue until 
 ¼ 0,
where the ratio is zero.

C. Low temperature systems with zero mass excitation

If we wonder whether we can reach in a real system zero
value for �=s, with finite number of quantum channels, we
must reach, according to (46), zero entropy. In a real
system this can happen only at zero temperature. In the
small-width case, as we have seen, the �=s ratio diverges
in the massive case, and, formally, stays constant in the
zero mass case.
The zero mass systems, however, need a more detailed

study, since there are never classical Dirac-delta-like spec-
tral functions. To see this, we recall that if we take a
quantum field theoretical system with a stable particle
with mass m which interacts with another particle with
mass M then the spectral function of this system will
contain a Dirac-delta peak at k0 ¼ m and a continuum
starting at the threshold mþM. The imaginary part of
the self-energy, because of kinematical reasons, is propor-

tional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðp2; m2;M2Þp

, where �ðx; y; zÞ ¼ ðx� y�
zÞ2 � 4y2z2. For a finite M this leads to a square-root

behavior for the complete spectral function, %�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � ðmþMÞ2p

near the threshold.
If the massive particle interacts with a zero mass parti-

cle, all this means that there is no gap between the quasi-
particle peak and the continuum. Moreover, in this caseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðp2; m2; 0Þp ¼ p2 �m2, which is the same as the tree

level part of the real part. This has the consequence that
near the threshold the spectral function is divergent %�
ðp2 �m2Þ�1. There are logarithmic corrections to this
behavior; for example, in QED at one loop level in
Lorenz gauge [36]

%ðp2 � m2Þ ¼ 2�ðp2 �m2Þ 	�
ðp6 �mÞðð1þ 	

� lnj p2�m2

�2 jÞ2 þ 	2

�2Þ
: (71)

The leading logarithmic corrections can be resummed by
the renormalization group or by Bloch-Nordsieck con-
struction [37]. The result is the modification of the thresh-
old behavior

%ðp2 � m2Þ ¼ 2�ðp2 �m2Þðp6 þmÞm�2� sin	

ðp2 �m2Þ1��
;

� ¼ �	

�
; 	 ¼ e2

4�
:

(72)

The main features, however, still survived: there is no gap
between the quasiparticle peak and the continuum, and
there is a rising spectral function as we approach the
mass shell.
This behavior can be studied numerically, too. In case of

QCD one can use Monte Carlo data to reconstruct the
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spectral function [38], which exhibits qualitatively the
same behavior as in the QED case.

According to the above analysis in all systems contain-
ing zero mass particles, the energy density of states cannot
contain a zero width quasiparticle. The would-be quasipar-
ticle continuously radiates long-living soft zero mass ex-
citations, and continuously interacts with them. The
spectral function is not Lorentzian, it has no width in the
usual sense, and it does not describe a decay either. At
larger temperature we will still observe a quasiparticle,
although the mechanism of how it is formed is far from
trivial [39]. At low temperatures, however, we are in a
nonquasiparticle system, where the effect of the threshold
behavior cannot be neglected.

At small temperatures we are in an almost Lorentz-
invariant system. Because of the volume normalization
we can write %ðkÞ ¼ k0 �%ðk2Þ, where �% depends only on
the Lorentz-invariant k2 form. Then we write [cf. (51)]

��

s
¼

�
R

d4k
ð2�Þ4 ðk2Þ2e��k0 �%2ðkÞ

15
R

d4k
ð2�Þ4 k0Xð�k0Þe��k0 �%ðkÞ : (73)

The exponential factor forces the system to have the pos-
sible lowest energy values, i.e. near the threshold.

First let us assume that the lowest lying threshold is at
k2 ¼ M2 with finite mass. This is conceivable if the zero
mass particle is not an asymptotic state, like in low energy
QCD. Near the colorless bound states, which have
color multipole moments, the gluons can still exist, and
the effective gluon cloud can result in a continuous thresh-
old behavior. In this case we can use �k0 >�M � 1,
and so Xð�k0Þ � �k0. We change into 4D polar coordi-
nates (k0 ¼ k cosh�, kz ¼ k sinh� cos�, ky ¼
k sinh� sin� sin�, and kx ¼ k sinh� sin� cos�), taking
into account that k0 > 0, and the 3D rotational invariance:

Z d4k

ð2�Þ4 �ðk0Þ ! 1

4�3

Z 1

0
dkk3

Z 1

0
d�sinh2�: (74)

We use the integral formula

Z 1

0
d�sinhn�e�z cosh� ¼ Kn=2ðzÞ�ðnþ1

2 Þffiffiffiffi
�

p ðz=2Þn=2 (75)

(Kn is the modified Bessel function of the second kind),

and the asymptotic form KnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð2xÞp

e�x to arrive at

��

s
¼ T2

R1
0 dkk7=2e��k �%2ðkÞR1

0 dkk7=2e��k �%ðkÞ : (76)

Near the threshold we power expand the spectral function
like

�%ðk � MÞ ¼ C�ðk�MÞðk2 �M2Þw: (77)

And then find

��

s
¼ �ð1þ 2wÞ

�ð1þ wÞ Cð2MÞwT2þw: (78)

This result cleanly shows that if there exists a system
described above, it must have a vanishing �=s ratio in
the T ! 0 limit.
If the zero mass particle is an asymptotic state, then the

lowest lying energy eigenvalues belong to the quantum
channel of the massless particle. Since it interacts with
itself, the spectral function has no gap here either. A special
class is the conform theories, and another the weakly
interacting gauge bosons, like the photon gas, where the
photon-photon scattering is mediated by a virtual electron
loop. In the massless case the above analysis goes through
without modification and it yields

��

s
� CT2ð1þwÞ: (79)

This result could be obtained by purely dimensional analy-
sis, since the dimension of C is�2ð1þ wÞ. The numerator
of (73) contains %2, and the denominator only %, so there
remains a factor C in the ratio. Since the ratio is dimen-
sionless, something has to compensate this factor. In the
massless case, only the temperature can do that: thus we

obtain �T2ð1þwÞ dependence.
In conformal field theories without anomalous dimen-

sions, C is dimensionless and w ¼ �1. That predicts a
temperature-independent �=s ratio. In other cases, i.e.
either in a nonconformal field theory or in a conformal
field theory with anomalous dimension w can differ from
�1, and then we again observe a vanishing �=s ratio in the
zero temperature limit.

VI. CONCLUSION

In this paper we examined the shear viscosity to entropy
density ratio using exact representation through the density
of states or energy spectral functions. We examined what
can be said purely mathematically about the ratio, assum-
ing some physical conditions (sum rules) for the spectral
functions, and keeping the entropy density constant. For
the argumentation we had to make some assumptions for
certain matrix elements in a strongly coupled system. Then
we concluded that the �=s ratio has no lower bound in a
most generic class of physical systems. To understand this
statement qualitatively we recall that �� %2 and s� % if
the temperature is low enough. Therefore if the density of
states exhibits large peaks (quasiparticle systems) then
%2 � % and so the �=s ratio is large; if % is small every-
where then %2 � % and the ratio is small. However, if we
fix the entropy density then there is a minimum, where��
s2. This means that �=s can go to zero (in a fixed system)
only at zero entropy density, i.e. at zero temperature.
Although mathematically the situation is clear, it is hard

to show physical systems where a small �=s ratio can
occur. First of all if it consists of a quasiparticle at all,
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they must not have small width, since the small-width
approximation excludes small �=s ratio. Candidates for
such a system are quasiparticle systems with strong con-
tinuum (small wave function renormalization constant),
high temperature strongly interacting systems, or low tem-
perature systems with zero mass excitations. In the first two
cases it is possible to go below 1=4�, but we can never
reach zero value. In the third case if the threshold behavior

is ðk2 �M2Þw then the �=s ratio can reach zero as T2ð1þwÞ
(in the M ¼ 0 case) or T2þw (the massive case). So if w>
�1 then we will find a vanishing ratio in the T ! 0 limit.

As far as the heavy ion experiments are concerned, the
QCD at finite temperature and density represents a finite
entropy density system. Therefore there is a lower bound

for the �=s ratio, but its value is not necessarily 1=4�.
However, the relevant scales are set either by �QCD or the

temperature (since the couplings are of order 1), and these
two scales are again similar. Therefore we are close to a
one-scale system, where the predictions of the conformal
theory may apply.
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